

Faire avancer la sûreté nucléaire

Spécification technique CTHEN 14-07

Caisson pour filtres THE pouvant équiper le dernier niveau de filtration d'installations nucléaires

Hortense DESJONQUERES

Rapport n° PSN-RES/SCA/2014-59

Pôle sûreté des installations et des systèmes nucléaires

Service du confinement et de l'aérodispersion des polluants

Bureau d'évaluation de l'instrumentation de radioprotection et des équipements nucléaires

Pôle sûreté des installations et des systèmes nucléaires

Service du confinement et de l'aérodispersion des polluants Bureau d'évaluation de l'instrumentation de radioprotection et des équipements nucléaires Bâtiment 389 BP 68 91192 GIF-SUR-YVETTE CEDEX

Spécification technique CTHEN 14-07

Caisson pour filtres THE pouvant équiper le dernier niveau de filtration d'installations nucléaires

Rapport n° PSN-RES/SCA/2014-59 Autres références : Rapport n° PSN-RES/SCA/BIREN/14-07

Fiche descriptive du rapport Report description sheet

Titre

Spécification technique CTHEN 14-07

Sous-titre

Caisson pour filtres THE pouvant équiper le dernier niveau de filtration des installations nucléaires

Title

Sub title

Auteur/author(s)

Hortense DESJONQUERES

Type de document : Document type :	Spécification technique	Date de diffusion : Distribution date :	
Référence(s):	PSN-RES/SCA/2014-59 PSN-RES/SCA/BIREN/14-07	E-mail de l'auteur :	hortense.desjonqueres@irsn.fr
Elément DATP	001/12/01/05		

Mots-clés (Max. 5):	Installations nucléaires, filtres à Très Haute Efficacité, dernier niveau de filtration, caisson
Key-words (Max. 5):	

RESUME

Cette spécification technique définit l'ensemble des caractéristiques requises et les méthodes d'évaluation des performances de caissons pour filtres à Très Haute Efficacité (THE) pouvant équiper le dernier niveau de filtration (DNF) d'installations nucléaires.

HISTORIQUE DES MODIFICATIONS/CHANGE HISTORY

Indice de révision Revision	Date	Auteur Author	Pages ou paragraphes modifiés Pages or paragraphs changed	Nature des modifications Nature of the changes
1		H. DESJONQUERES	Version d'origine	

Table des matières

LECEV DNF

THE

Liste des tableaux

Tableau 1 :	Dimensions/Débits nominaux des filtres THE
	Liste des symboles
IRSN	Institut de Radioprotection et de Sûreté Nucléaire
PSN	Pôle Sûreté des installations et des systèmes Nucléaires
SCA	Service du Confinement et de l'Aérodispersion des polluants
BIREN	Bureau d'évaluation de l'Instrumentation de Radioprotection et des Équipements Nucléaires
CTHEN	Centre Technique d'Homologation des Équipements Nucléaires

Laboratoire d'Expérimentations en Confinement, Épuration et Ventilation

Dernier Niveau de Filtration

Très Haute Efficacité

1 Introduction

1.1 Objectifs et domaine d'application

La présente spécification définit les caractéristiques techniques et les exigences minimales requises pour des ensembles « caisson + filtres THE », pouvant équiper le dernier niveau de filtration (DNF) des aérosols d'installations nucléaires (en fonction des exigences de sûreté), dans des conditions de fonctionnement normal et dans des conditions de fonctionnement dégradé.

Les contrôles et essais décrits dans ce document, sont destinés à vérifier que le caisson permet de maintenir les performances minimales d'épuration du DNF, telles que définies dans le cadre de l'homologation des filtres THE selon la spécification CTHEN 93-030.

Les essais de qualification devront être effectués avec un filtre THE homologué suivant la spécification technique CTHEN 93-030.

1.2 Définitions

Les définitions suivantes sont principalement extraites du « Guide de ventilation des installations nucléaires » - 2^{nde} édition (1987) et de la norme ISO 17873 « Critères pour la conception et l'exploitation des systèmes de ventilation des installations nucléaires autres que les réacteurs nucléaires » (2004). Elles sont données au regard de la problématique DNF.

1.2.1 Dernier niveau de filtration (DNF)

On appelle dernier niveau de filtration (DNF), le dispositif ultime de filtration des aérosols avant tout rejet dans l'environnement.

1.2.2 Caisson de filtration

Dans un réseau de ventilation, un caisson est un boîtier étanche qui contient les éléments filtrants, qui peuvent être du type : filtre, pré-filtre ou cellule à charbon actif.

Les caissons de filtration utilisés pour le DNF sont des caissons à sas étanches.

1.2.3 Caisson de filtration à sas étanche

Un caisson à sas étanche est un dispositif permettant la mise en place ou l'évacuation d'éléments d'épuration, sans rupture de confinement, afin d'éviter la dispersion de la contamination entre l'intérieur du réseau de ventilation sur lequel est implanté le caisson contenant le filtre et le local abritant le caisson de filtration.

Il peut contenir plusieurs étages de filtration pouvant accueillir différents types d'éléments filtrants.

1.2.4 Caisson mono-alvéolaire/multi-alvéolaire

Chaque caisson peut comporter plusieurs alvéoles en parallèle, constituant un même niveau ou étage de filtration, ou plusieurs filtres en série. Une alvéole est un espace pouvant accueillir un filtre pleine taille ou deux filtres demi-taille (cf. tableau 1 au paragraphe 2.5).

1.2.5 Berceau ou cadre de levage

Le berceau ou cadre de levage est la structure métallique permettant de positionner le filtre à l'intérieur du caisson.

1.2.6 Plan de joint

Le plan de joint est la partie métallique sur laquelle vient se positionner le filtre THE et contre laquelle le joint du filtre vient s'écraser.

1.2.7 Joint d'étanchéité

Le cadre, auquel est assemblé le médium filtrant, comporte un joint d'étanchéité pour assurer l'étanchéité avec le plan de joint du caisson, et prévenir les fuites de contournement.

1.2.8 Filtre et filtre THE

Un filtre, au sens de la spécification technique CTHEN 93-030, est un dispositif d'épuration des aérosols constitué d'un médium filtrant, assemblé de manière étanche dans une armature rigide dénommée « cadre ». Le filtre est intercalé dans le circuit de ventilation de façon à ce que l'aérosol soit contraint de traverser le médium filtrant.

Les filtres à très haute efficacité (THE) sont caractérisés par un coefficient d'épuration des aérosols (pour le filtre neuf) supérieur à 5000, pour une mesure réalisée à l'aérosol d'uranine, selon la norme NF X 44-011, au débit nominal.

1.2.9 Pré-filtre

Un pré-filtre est un dispositif filtrant, disposé en amont des filtres principaux, permettant de minimiser, grâce au piégeage des particules de grandes dimensions, le colmatage des filtres principaux.

1.2.10 Coefficient d'épuration

Le coefficient d'épuration E est une grandeur permettant de qualifier l'efficacité d'un filtre à épurer les aérosols. Il est défini comme le rapport des concentrations en aérosols en amont (C_A) et en aval (C_a) du filtre : $E = C_A / C_a$

En France, pour la mesure du coefficient d'épuration des filtres THE, l'aérosol d'essai utilisé est à base d'uranine, ou fluorescéine sodée, conformément à la méthode de mesure décrite dans la norme NF X 44-011.

1.2.11 Résistance mécanique

La résistance mécanique d'un filtre est la valeur de la perte de charge (en pascal) à partir de laquelle se produit une rupture du médium filtrant, consécutive à un accroissement de débit ou à un colmatage excessif.

1.2.12 Débit de fuite

Une fuite est caractérisée par le débit d'air qui s'échappe d'un équipement pour une différence de pression donnée. La mesure d'un débit de fuite permet de qualifier l'étanchéité d'un équipement lors de sa mise en surpression ou en dépression.

1.3 Elaboration de la spécification technique

Le présent document a été élaboré dans le cadre d'un groupe de travail animé par le SCA/BIREN, auquel ont participé des représentants de laboratoires d'essais, de fabricants, d'exploitants nucléaires et d'unités en charge d'expertises de sûreté.

2 EXIGENCES DE CONCEPTION

2.1 Identification

Un marquage sera apposé sur le cadre extérieur du caisson, en face avant, et comportera *a minima* les indications suivantes :

- ♥ la date de fabrication,
- b la référence du modèle et le numéro de série du caisson,
- le nom du fabricant et les références des filtres THE homologués, selon la spécification CTHEN 93-030, compatibles, *i.e.* qui ont été testés avec le caisson dans le cadre de l'homologation,
- b le sens de circulation de l'air dans le réseau de ventilation,
- la référence à la présente spécification technique, le numéro du certificat d'homologation et le nom de l'organisme l'ayant délivré.

Ces éléments seront inscrits de manière à rester lisibles pendant la durée de vie du caisson en condition normale de fonctionnement. Leur présence sera vérifiée par un examen visuel.

2.2 Dimensions géométriques

Les caractéristiques dimensionnelles du caisson devront être en adéquation avec celles des filtres THE homologués suivant la spécification technique CTHEN 93-030.

Elles seront précisées dans la documentation technique fournie par le fabricant.

Le caisson pourra comporter :

- une ou plusieurs alvéoles,
- 🔖 🛮 un ou plusieurs étages.

Les dimensions nominales des filtres THE conformes à la spécification technique CTHEN 93-030 sont indiquées au paragraphe 2.5.

2.3 Accessoires

Le caisson sera équipé a minima des composants suivants :

- un dispositif de changement de l'élément filtrant en manipulation étanche; s'agissant d'un sac plastique d'intervention en vinyle, le fabricant devra fournir l'attestation de classement de réaction au feu (M1 selon la norme NF P. 92.507) et les essais décrits dans cette spécification seront réalisés sans sac vinyle,
- un manomètre équipé de tuyaux ne se dégradant pas en température afin de maintenir l'étanchéité du caisson lors des essais d'homologation,
- deux prises de pression pour le raccordement d'un manomètre destiné à la mesure de la perte de charge, dont les bouchons ne devront pas se dégrader en température, lors des essais d'homologation.

Les caissons soumis à essais ne comporteront pas de préfiltre métallique, cet élément n'entrant pas dans le champ de l'homologation des caissons.

Les caissons pourront comporter des registres d'isolement. Cependant aucune exigence ne sera associée au débit de fuite du registre, dont la valeur pourra éventuellement être donnée, à titre indicatif.

2.4 Conditions de fonctionnement

Les conditions normales de fonctionnement sont les suivantes :

- un niveau d'irradiation faible,
- une pression atmosphérique (entre 900 et 1040 hPa),
- de l'air en tant que composant majoritaire de l'atmosphère à épurer (humidité relative inférieure à 80%).

Les conditions dégradées de fonctionnement sont :

- un empoussièrement variable,
- des élévations de température possible (liées à une situation d'incendie, par exemple).

2.5 Débit nominal de l'ensemble « caisson/filtre »

Le tableau 1 ci-dessous présente les valeurs des débits nominaux requis en fonction des dimensions du filtre utilisé. Pour avoir le débit nominal de l'ensemble « caisson/filtre », ces valeurs devront être multipliées par le nombre d'alvéoles en parallèle composant le caisson. Dans le cas de filtres demi taille, il conviendra également de prendre en compte le nombre de filtres par alvéole.

Dimensions nominales du filtre (en mm) longueur x largeur x profondeur	Débits nominaux (en m³.h ⁻¹)
610 x 610 x 292	3400
610 x 305 x 292	1500
600 x 325 x 202	1250
600 x 65 x 202	100

Tableau 1 : Dimensions/Débits nominaux des filtres THE

Chaque alvéole peut contenir un ou plusieurs filtres. Dans la documentation technique, le fabricant précisera donc les débits nominaux pour chaque configuration de montage de l'ensemble « caisson/filtre », en fonction des tailles de filtres utilisés. Les essais d'homologation seront réalisés en fonction de ces indications.

2.6 Perte de charge nominale associée au caisson

La perte de charge associée au caisson au débit nominal, devra être précisée dans la documentation technique du fabricant ; elle fera l'objet d'un contrôle par le laboratoire d'essai, qui pourra établir, sur demande, la courbe d'évolution de la perte de charge du caisson en fonction du débit.

2.7 Résistance thermique dynamique

L'essai de résistance thermique dynamique permet d'évaluer le comportement de l'ensemble « caisson/filtre » dans des conditions opératoires simulant un incendie.

L'essai consiste à soumettre l'ensemble « caisson/filtre » à des paliers de températures suivant le diagramme en annexe 3 et en cohérence avec le protocole d'essais de la spécification technique CTHEN 93-030, décrit au paragraphe 4.3 du présent document.

Après cet essai, qui se termine par une mesure du coefficient d'épuration à l'aérosol d'uranine devant être supérieur à 5000, une observation de l'état du plan de joint et du berceau sera effectuée afin de noter toute détérioration du caisson ou de ses accessoires (écailles de peinture, joint collé, déformation du plan de joint...).

2.8 Gauchissement

Le gauchissement est évalué afin de s'assurer de la possibilité de remplacer le filtre, de manière à autoriser la remise en route de la ventilation pour une utilisation temporaire après un incendie.

Le dispositif de montage/démontage du filtre doit rester opérationnel après l'essai en température. Il ne devra pas avoir subi de déformation empêchant le retrait du filtre, ainsi que l'introduction d'un filtre neuf.

L'étanchéité de l'ensemble « caisson/filtre neuf » sera vérifiée par une mesure du coefficient d'épuration à l'aérosol d'uranine.

Le coefficient d'épuration, mesuré à température ambiante, au débit d'essai (voir définition du terme « débit d'essai » au paragraphe « 3.2 Conditions de réalisation des essais), devra être supérieur à 5000.

2.9 Etanchéité de l'ensemble « caisson/filtre »

Les mesures du débit de fuite interne/externe permettent d'évaluer les fuites au niveau des capots de manutention.

2.9.1 Mesure du débit de fuite interne/externe en statique

Le débit de fuite correspondra au débit d'air injecté (extrait) nécessaire pour maintenir la surpression (dépression) à 5000 Pa (-5000 Pa), imposée à l'intérieur du caisson, par rapport au milieu extérieur. Cet essai sera réalisé selon le paragraphe 4.5 de la présente spécification.

Mesuré à température ambiante, le débit de fuite devra être inférieur à 10^{-2} Nm³.h⁻¹ / alvéole (dans les conditions normales de température et de pression).

2.9.2 Mesure du débit de fuite interne/externe à 120°C ou 200°C en dynamique

Le débit de fuite correspondra au débit injecté (extrait) nécessaire pour maintenir la surpression (dépression) à 5000 Pa (-5000 Pa), imposée à l'intérieur du caisson, lorsqu'il est soumis au passage d'un flux d'air chaud à la température de 120°C ou 200°C (correspondant à la température de qualification du filtre THE testé avec le caisson). Cet essai sera réalisé selon les informations données au paragraphe 4.6 de la présente spécification.

Le débit de fuite devra être inférieur à 5.10⁻² Nm³.h⁻¹ / alvéole (dans les conditions normales de température et de pression).

Après cet essai, une observation de l'état du plan de joint et du berceau sera effectuée afin de noter toute détérioration du caisson ou de ses accessoires (écailles de peinture, joint collé, déformation du plan de joint...).

2.10 Classement au feu des matériaux et tenue en température

Aucune exigence particulière en termes de réaction au feu n'est retenue à l'égard des matériaux constituant le caisson ; si disponibles, les procès-verbaux de classement de réaction au feu seront joints au dossier technique de fabrication.

Les peintures intérieure et extérieure du caisson devront résister sans dégradation, à la température maximale d'essai (300 °C). La peinture extérieure du caisson ne doit pas émettre, lors des essais d'homologation du caisson (essais en température), des composés toxiques pour les opérateurs d'essais. En cas de doute, ne peindre que les parties où sont appliqués les joints du couvercle du caisson et ne pas peindre l'extérieur du caisson.

Ces exigences seront vérifiées par examen de la documentation technique fournie par le fabricant (fiche technique, fiche toxicologique, rapports d'essais...).

3 CONFIGURATIONS D'ESSAIS

L'objectif de ce chapitre est d'expliciter les critères qui permettront de définir la configuration « caisson + filtres » retenue pour la réalisation des essais, celle-ci conditionnant la portée de l'homologation qui sera délivrée à l'équipement.

3.1 Matériel d'essais

La réalisation des différents essais du paragraphe 4, nécessite l'utilisation des équipements suivants :

- une (ou plusieurs) boucle(s) d'essais aéraulique(s) :
 - o permettant d'obtenir des débits d'air jusqu'à 4000 m³.h⁻¹ à 400°C au niveau du filtre,
 - o permettant de mettre le caisson en surpression (dépression) à 5000 Pa (-5000 Pa) par rapport à la pression atmosphérique,
 - o utilisant de l'air atmosphérique filtré,
- de générateurs d'aérosols permettant de qualifier l'efficacité du filtre pour des températures comprises entre la température ambiante et 300°C (exemple : générateur d'aérosol d'uranine et générateur de d'aérosol de chlorure de sodium (NaCl) à barreau [avec un photomètre de flamme régulé en pression mesurant les concentrations amont et aval en NaCl]),
- un manomètre différentiel mesurant la perte de charge du caisson,
- un transmetteur de débit adapté à la gamme de mesure,
- 🦫 un thermocouple mesurant la température de l'air.

<u>Nota</u>: il peut y avoir des limitations en termes de taille et de nombre d'alvéoles du caisson, en fonction de la capacité des moyens d'essais permettant de vérifier les exigences de la présente spécification technique. Ils pourront être réalisés, par exemple, sur les boucles SIMOUN et STARMANIA de l'IRSN. Compte tenu des performances de ces bancs d'essais en termes de débits, il ne sera possible de tester que des caissons mono-alvéolaires et multi-alvéolaires à un étage, comportant jusqu'à 3 alvéoles au maximum.

3.2 Conditions de réalisation des essais

3.2.1 Cas des caissons mono-alvéolaires

Dans le cas des caissons mono-alvéolaires, le débit d'essai sera le débit nominal défini, selon le paragraphe 2.5, en fonction du type de filtre.

3.2.2 Cas des caissons multi-alvéolaires

Dans le cas des caissons multi-alvéolaires, les essais, principalement les essais en température, ne pourront pas être réalisés au débit nominal de l'ensemble « caisson +filtre ». Ils seront donc réalisés à débit réduit, qui correspondra au débit nominal de l'ensemble divisé par le nombre d'alvéoles.

3.3 Configurations prises en compte dans le cadre de l'homologation

La structure des caissons mono-alvéolaires et multi-alvéolaires pouvant être différente, il ne pourra pas être procédé à une homologation par analogie entre ces deux configurations, chacune d'elles devant faire l'objet d'essais.

La conception des caissons possédant 2 ou 3 alvéoles est a priori équivalente ; ceux-ci pourront donc être traités par analogie après étude du dossier technique du fabricant.

Il n'y aura pas d'analogie possible avec des caissons possédant plus de 3 alvéoles.

4 CONTROLES ET ESSAIS DE QUALIFICATION-EXIGENCES DE PERFORMANCE

Les essais de qualification devront être effectués sur un caisson correspondant à la description du paragraphe 3.2, équipé d'un filtre THE neuf, homologué suivant la spécification technique CTHEN 93-030. L'ensemble « caisson/filtre » à tester sera fourni par le demandeur de l'homologation. La chronologie des essais telle que définie ci-après devra être respectée.

4.1 Accessoires

Une inspection visuelle du caisson est effectuée, afin de constater la présence des accessoires listés au paragraphe 2.3 de la présente spécification.

4.2 Perte de charge nominale associée au caisson

Le laboratoire procédera à la vérification de la perte de charge liée au caisson, au débit d'essai. Il pourra établir, sur demande particulière du fabricant, la courbe d'évolution de la perte de charge du caisson en fonction du débit.

4.3 Résistance thermique dynamique

L'essai de résistance thermique dynamique sera réalisé sur une boucle d'essais en température comme définie au paragraphe 3.1, selon le protocole décrit ci-dessous (*cf.* séquence 1 du logigramme de l'annexe 2).

L'ensemble « caisson/filtre », placé sur la boucle d'essais, sera soumis, au débit d'essai, à un courant d'air atmosphérique chauffé suivant le diagramme de température (cf. figures 1 et 2 de l'annexe 3) correspondant à la température de qualification du filtre (120°C ou 200°C).

Le coefficient d'épuration et la perte de charge seront mesurés en continu. Les aérosols d'essai seront l'uranine, à température ambiante, et le chlorure de sodium au-delà de la température ambiante.

La résistance mécanique de l'ensemble « caisson/filtre » sera appréciée comme la perte de charge maximale au-delà de laquelle il sera constaté une brusque diminution de la perte de charge ou du coefficient d'épuration, pouvant être due à une dégradation du caisson ou de tout élément d'un ou de plusieurs filtres.

L'essai de résistance thermique dynamique se décompose selon les étapes suivantes :

a) Essai préalable :

- vérification préalable du coefficient d'épuration de l'équipement testé, par une mesure à l'aérosol d'uranine, à température ambiante,
- le CE devra être supérieur à 5000, au débit d'essai.

b) Précolmatage :

réglage de la boucle d'essai au débit volumique nominal et à une température de l'air de 77°C (350 K),

précolmatage de l'ensemble avec un aérosol submicronique de chlorure de sodium (NaCl) utilisé pour les mesures du coefficient d'épuration à chaud, pour que, à sa température de qualification (120°C ou 200°C), l'équipement testé présente une perte de charge de 2000 Pa au débit d'essai; l'équipement sera colmaté jusqu'à une perte de charge ΔP donnée par la relation ci-dessous, sous un flux d'air à une température de 77°C:

$$\Delta P = 2000 \times \left(\frac{T+111}{350+111}\right) \left(\frac{350}{T}\right)^{\frac{3}{2}}$$
 , en Pa.

T étant la température maximale 393 K (120°C) ou 473 K (200°C).

Cette formule est dérivée de la formule de Sutherland donnant la relation entre la viscosité dynamique μ et la température, et où C vaut 111 pour l'air :

$$\mu = \mu_0 \times \left(\frac{273 + C}{T + C}\right) \left(\frac{T}{273}\right)^{\frac{3}{2}}$$

Quand l'équipement est précolmaté, l'essai proprement dit peut commencer.

c) Simulation du « flash-over »

- maintien, pendant la durée de l'essai, de la perte de charge à une valeur proche de 2000 Pa, par ajustement du débit d'air,
- \triangleright augmentation « brusque » (i.e. le plus rapidement possible) de la température de l'air à une température maximale T_{max} :
 - T_{max} = 200°C pour les filtres qualifiés à 120°C,
 - T_{max} = 300°C pour les filtres qualifiés à 200°C,
- \triangleright maintien du palier à T_{max} (défini à ± 10°C) pendant 5 minutes.

d) Fonctionnement en température

- > abaissement de la température, à la température de qualification :
 - T = 120°C pour les filtres utilisables jusqu'à 120°C,
 - T = 200°C pour les filtres utilisables jusqu'à 200°C,
- ajustement du débit pendant l'essai, pour que la perte de charge reste constante et égale à 2000 Pa (à $\pm 10 \%$),
- mesure en continu du coefficient d'épuration (test au NaCl).

Cette étape dure en principe 2 heures après l'obtention du palier à 120°C ou 200°C.

e) Simulation des ouvertures et fermetures des clapets coupe-feu

Cette étape comprend la réalisation de 6 cycles thermiques simulant l'effet des fermetures et des ouvertures potentielles des clapets coupe-feu, comprenant chacun :

- un abaissement de la température de l'air à 75°C, sans modification du débit,
- > une nouvelle élévation de la température à la température de qualification :
 - T = 120°C pour les filtres utilisables jusqu'à 120°C,
 - T = 200°C pour les filtres utilisables jusqu'à 200°C.

La durée d'un cycle élémentaire est de 20 minutes, les durées des phases température « haute » et température « basse » étant équivalentes.

f) Fin de l'essai

L'essai est interrompu:

- à l'issue des 6 cycles,
- > ou lorsqu'une baisse brutale de la perte de charge ou du coefficient d'épuration est constatée.

g) Validation de l'essai

L'essai de résistance thermique dynamique est validé après vérification, par un test à l'aérosol d'uranine, à température ambiante, du coefficient d'épuration qui doit être supérieur à 5000, au débit d'essai ; la perte de charge correspondante est relevée.

Remarque:

Le coefficient d'épuration et la perte de charge de l'ensemble « caisson/filtre » sont mesurés en continu pendant l'essai. Concernant le suivi du coefficient d'épuration du filtre pendant le cycle en température, les résultats obtenus ne peuvent être fournis qu'à titre indicatif, compte tenu des fortes incertitudes associées à la mesure au chlorure de sodium.

4.4 Gauchissement

A la fin des essais de résistance thermique dynamique, le filtre est retiré et remplacé par un filtre neuf. Dans le cas de caissons multi-alvéolaires, tous les filtres sont retirés et remplacés par des filtres neufs.

Lors du changement du filtre ou des filtres, un contrôle de l'état du berceau et du plan de joint sera effectué pour chaque alvéole.

Une nouvelle mesure du coefficient d'épuration à l'aérosol d'uranine, à température ambiante, est ensuite réalisée pour vérifier l'étanchéité au niveau du plan de joint.

Le coefficient d'épuration devra être supérieur à 5000, au débit d'essai.

4.5 Mesure du débit de fuite interne/externe en statique

L'ensemble « caisson/filtre » est isolé, au niveau des brides de raccordement du caisson, par deux plaques fournies par le fabricant, selon le schéma de montage de l'annexe 4.

La mise en surpression du caisson sera réalisée par injection d'air comprimé; le débit d'air nécessaire pour maintenir la surpression à 5000 Pa sera mesuré.

La mise en dépression du caisson à - 5000 Pa sera réalisée au moyen d'un ventilateur. Le débit d'air nécessaire pour maintenir constante cette dépression sera mesurée.

Cette méthode s'inspire des conditions d'essai décrites dans la norme ISO 10648-2 (paragraphe 5.3 « méthode à pression constante »).

Dans les deux cas, le débit de fuite devra être inférieur à 10⁻² Nm³.h⁻¹/ alvéole (dans les conditions normales de température et de pression).

La séquence d'essais, réalisée à température ambiante, est décrite en annexe 2.

4.6 Mesure du débit de fuite interne/externe à 120°C ou 200°C en dynamique

Un système d'enveloppe étanche, fourni par le fabricant, est disposé sur la partie du caisson, comportant les portes d'installation des filtres, selon le schéma de montage de l'annexe 5

L'ensemble « caisson/filtre » est soumis au passage d'un flux d'air chaud à une température de 120°C ou 200°C (correspondant à la température de qualification du filtre THE testé avec le caisson), jusqu'à atteinte des températures d'équilibre mesurées en différents points de la paroi du caisson (cf. implantation des thermocouples en annexe 5).

Deux mesures de débit de fuite vont être réalisées, la première en mettant le caisson en surpression et la deuxième en mettant le caisson en dépression :

- en surpression, la perte de charge du filtre est amenée à 2000 Pa par accroissement du débit de filtration. La pression statique dans le caisson est ensuite augmentée jusqu'à une valeur de 5000 Pa, en fermant une vanne de charge en aval du caisson, tout en maintenant la perte de charge du filtre constante;
- en dépression, la perte de charge du filtre est également amenée à 2000 Pa par accroissement du débit de filtration, puis la pression statique dans le caisson est diminuée jusqu'à une valeur de - 5000 Pa en fermant une vanne de charge en amont, tout en maintenant la perte de charge du filtre constante.

Nota: le maintien des conditions d'essai (perte de charge de 2000 Pa au niveau du filtre et une pression statique en amont du caisson de +/- 5000 Pa) peut amener la température du flux d'air à évoluer ; cette dernière sera maintenue à la valeur la plus proche de 120°C ou 200°C (en fonction du filtre testé avec le caisson).

La séquence d'essais est décrite en annexe 2.

Dans les deux cas, le débit de fuite devra être inférieur à 5.10⁻² Nm³.h⁻¹/ alvéole (dans les conditions normales de température et de pression).

Remarque:

Cet essai ne permet pas d'évaluer les fuites au niveau des brides de raccordement du caisson. Les débits de fuite pourront être mesurés à l'aide d'un débitmètre massique ou par traçage gazeux.

5 SYSTEME DE MANAGEMENT INTEGRE : DEMARCHE QUALITE

Le maintien des performances minimales d'épuration du dernier niveau de filtration des installations nucléaires de base est requis dans le cadre de l'analyse de sûreté.

De ce fait, le fabricant et l'exploitant doivent mettre en place un système de management, permettant de surveiller la qualité de la réalisation et du contrôle de conformité des équipements constitutifs du DNF (depuis leur fabrication jusqu'à leur mise en place dans l'installation, ainsi que le suivi de leurs performances), conformément à l'arrêté du 07 février 2012 fixant les règles générales relatives aux installations nucléaires de base (abrogeant l'arrêté qualité du 10 août 1984). Ainsi, le fabricant prendra des dispositions organisationnelles et définira des moyens de contrôle de la fabrication, afin de s'assurer que les équipements produits sont conformes à l'équipement évalué dans le cadre de la présente procédure d'homologation.

6 <u>Documentation technique</u>

Le fabricant est tenu de transmettre, préalablement à tout essai, une documentation technique détaillée du caisson pour lequel une demande d'homologation est formulée.

Cette documentation fera l'objet d'un examen par l'organisme, indépendant du fabricant, chargé de l'homologation et sera composée a minima des pièces suivantes :

- un dossier technique de fabrication du caisson comprenant un descriptif sommaire des différents composants et du mode de fonctionnement, des plans d'ensemble et de détail,
- un projet du dossier technique qui sera remis avec le caisson lors de sa livraison pour installation (suivant le détail ci-dessous),
- les documents attestant de la composition, de la tenue en température, de la réaction au feu, requis au titre de la présente spécification technique, ou disponibles ; il peut s'agir de fiches techniques, toxicologiques, PV d'essais, procès-verbaux de classement de réaction au feu, concernant les matériaux composant le caisson (par exemple, peinture, joint des capots de manutention et colle des joints, joints de brides de raccord au réseau de ventilation, équipement de mesure),
- b le manuel du système qualité utilisé pour la fabrication comprenant les moyens de contrôle mis en place au niveau de la fabrication.

Le dossier technique remis avec le caisson lors de sa livraison pour installation, devra contenir en particulier les éléments suivants :

- ♥ le nom du fabricant,
- 🔖 la référence du modèle de caisson et son numéro de série,
- ♥ la date de fabrication,
- Uindication de la conformité à la présente spécification technique et le n° certificat d'homologation et le nom de l'organisme l'ayant délivré,
- b le débit nominal et la perte de charge associée,
- 🔖 le sens de circulation de l'air dans le réseau de ventilation,
- b les dimensions géométriques du caisson et son poids,
- les caractéristiques des matériaux constitutifs du caisson, des joints et de la colle utilisés ; si le caisson est peint intérieurement ou extérieurement, la référence de la peinture utilisée devra être précisée,
- bles consignes de montage et de démontage, avec éventuellement un plan de montage, la liste des outils nécessaires, la liste des couples de serrage,
- be le nom du fabricant et les références précises des filtres compatibles, i.e. qui ont été testés dans le cadre de l'homologation selon la spécification technique CTHEN 93-030,
- b les conditions d'entretien.

Nota: la résistance à la corrosion chimique ne faisant pas partie de la spécification technique, compte tenu de l'extrême diversité de la nature et des concentrations des effluents rencontrés dans les installations, il appartiendra à l'exploitant, de s'assurer que les matériaux utilisés sont compatibles avec la nature et les concentrations des effluents présents en situations normale ou incidentelle dans son installation.

7 CONCLUSION

Un certificat sera établi par l'organisme, indépendant du fabricant, en charge de la procédure d'homologation, après analyse de la documentation technique fournie par le fabricant et des résultats d'essais et de contrôles, sous réserve du constat de leur conformité aux exigences de la présente spécification technique.

L'homologation sera accordée pour une durée probatoire de deux ans, à l'issue de laquelle une enquête d'usage sera menée auprès des utilisateurs, pour recueillir leur retour d'expérience sur l'utilisation du matériel homologué.

Un marquage sera apposé sur la face avant du caisson, comportant les indications mentionnées au paragraphe 2.1; lors de la livraison sur site, le fabricant fournira une déclaration de conformité suivant le modèle joint en annexe 4.

Il convient de souligner que l'homologation peut être retirée dans l'un des cas suivants :

- le fabricant ne se conforme pas aux prescriptions de la documentation technique fournie dans le cadre de l'instruction du dossier d'homologation; ceci sous-entend qu'il lui appartient d'aviser l'organisme chargé de l'homologation, de tout changement dans le mode de fabrication, de fournisseur ou de sous-traitant, et qu'il devra être en mesure de démontrer que la qualité du produit n'en est pas affectée,
- si à la suite de malfaçons constatées (par exemple lors de l'enquête d'usage), le processus de fabrication n'a pas été corrigé,
- b lorsque le fabricant informe l'organisme chargé de l'homologation, qu'il cesse de fabriquer le produit.

REFERENCES

Réglementation

- Arrêté du 10 août 1984 relatif à la qualité de la conception, de la construction et de l'exploitation des installations nucléaires de base,
- Arrêté du 07 février 2012 fixant les règles générales relatives aux installations nucléaires de base.

Spécifications techniques particulières

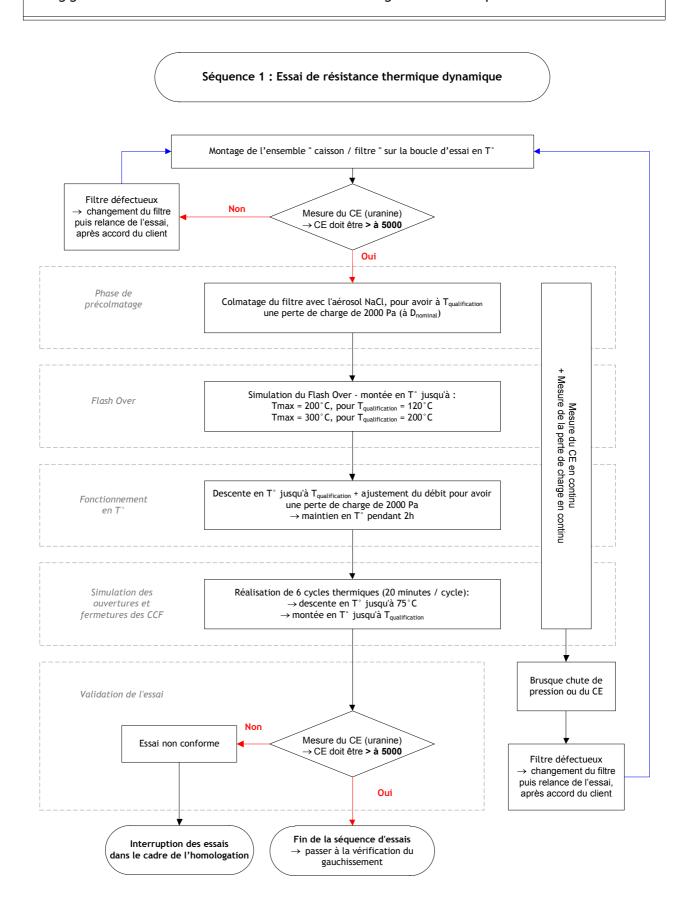
- Spécification technique CTHEN n°93-030 (indice 0, janvier 1994), concernant « les filtres à très haute efficacité (THE) équipant le dernier niveau de filtration des installations nucléaires »,
- o Guide de ventilation des installations nucléaires 2^{ème} édition (juillet 1987).

<u>Normes</u>

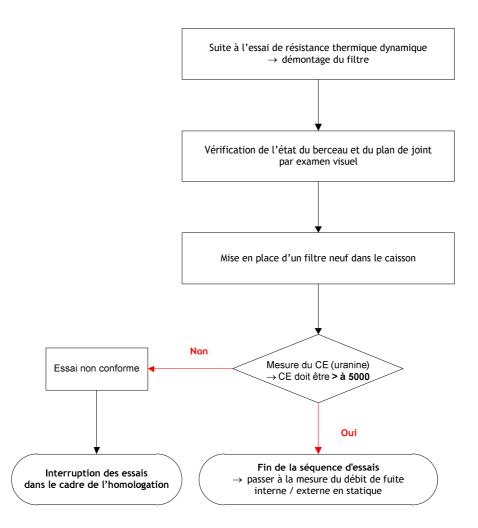
- o ISO 10648-2 (1994) : enceintes de confinement Partie 2 : Classification selon leur étanchéité et méthodes de contrôle associées,
- o ISO 17873 (2004): Critères pour la conception et l'exploitation des systèmes de ventilation des installations nucléaires autres que les réacteurs nucléaires,
- NF X 44-011 (mai 1972) : séparateurs aérauliques « méthode de mesure de l'efficacité des filtres au moyen d'un aérosol d'uranine (fluorescéine) ».
- NF P 92-507 (2004): Sécurité contre l'incendie Bâtiment Matériaux d'aménagement -Classement selon leur réaction au feu

ANNEXES

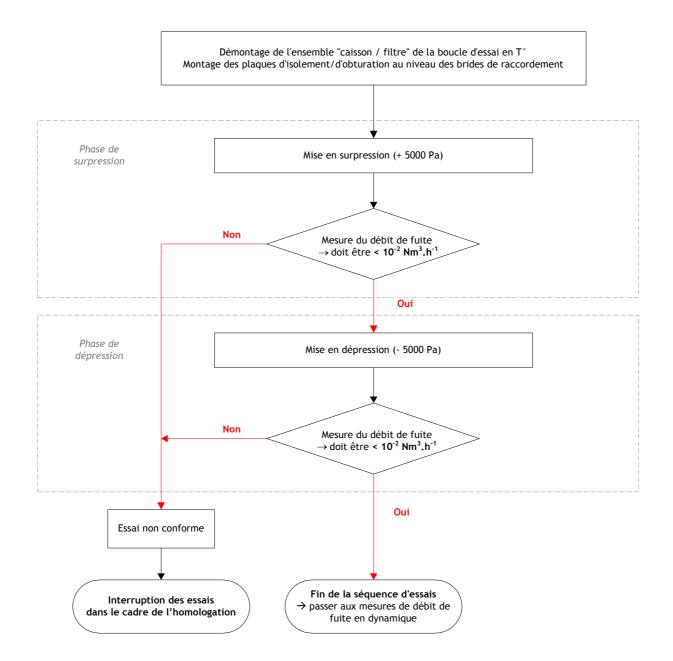
ANNEXE 1 : RECAPITULATIF DES EXIGENCES	21
ANNEXE 2: LOGIGRAMME DES ESSAIS	22
ANNEXE 3: DIAGRAMMES D'EVOLUTION DES TEMPERATURES POUR L'ESSAI DE	RESISTANCE
THERMIQUE DYNAMIQUE	26
ANNEXE 4: MONTAGE EXPERIMENTAL POUR LA MESURE DU DEBIT DE FUITE INTER	RNE/EXTERNE
EN STATIQUE	27
ANNEXE 5: MONTAGE EXPERIMENTAL POUR LA MESURE DU DEBIT DE FUITE INTERNE	E/EXTERNE A
120°C OU 200°C EN DYNAMIQUE	28
ANNEXE 6 : MODELE DE DECLARATION DE CONFORMITE	29

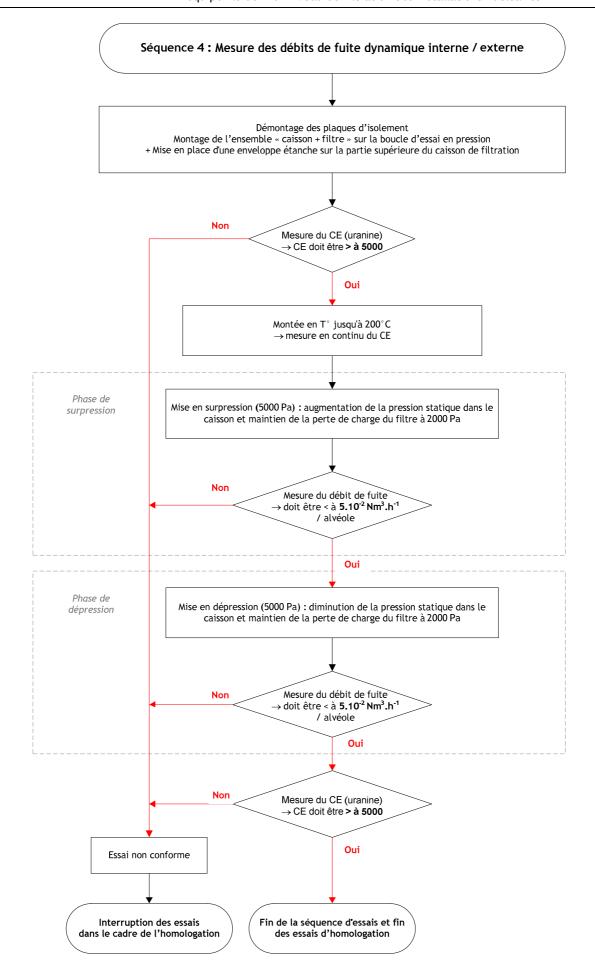

ANNEXE 1: RECAPITULATIF DES EXIGENCES

CRITERES	CONTROLES - EXIGENCES	PARAGRAPHES CONCERNES
1. Identification du caisson	Examen visuel (marquage) + documentation technique	2.1, 6
2. Dimensions	Documentation technique	2.2, 6
3. Accessoires	Examen visuel	2.3, 4.1
4. Débit nominal	Documentation technique	2.5, 6
5. Perte de charge nominale	Documentation technique	2.6, 4.2, 6
6. Résistance thermique dynamique	 CE à froid avant essai > 5000 Suivi du CE et de la ∆P pendant l'essai en température : pas de baisse brutale du coefficient d'épuration et de la perte de charge CE à froid après essai > 5000 	2.7, 4.3
7. Gauchissement	 Remplacement du ou des filtres par un filtre ou plusieurs neufs Parallèlement, vérification du plan de joint du ou des filtres CE à froid > 5000 	2.8, 4.4
8. Débit de fuite interne/externe en statique	 Mise en surpression/dépression du caisson à ± 5000 Pa Dans chaque configuration, débit de fuite < 10⁻² Nm³.h⁻¹ / alvéole* 	2.9.1, 4.5
9. Débit de fuite interne/externe à 120°C ou 200°C en dynamique	 Perte de charge au niveau de l'ensemble maintenue à 2000 Pa Mise en surpression/dépression du caisson à ± 5000 Pa Dans chaque configuration, débit de fuite < 5.10⁻² Nm³.h⁻¹ / alvéole* 	2.9.2, 4.6
10. Documentation technique	 Dossier technique de fabrication Documents attestant de la composition, de la tenue en température, de la réaction au feu Manuel Qualité Déclaration de conformité 	6 2.3, 2.11, 6 5, 6 7

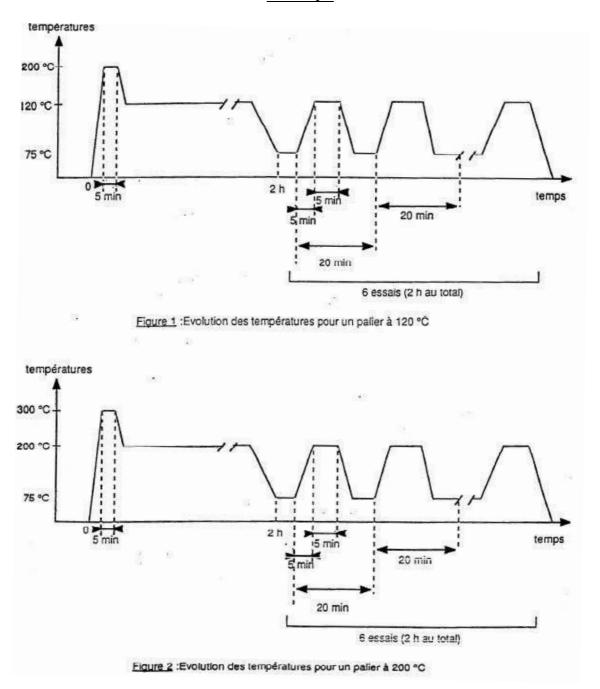

*CNTP : mesure ramenée dans les conditions normales de température et de pression.

ANNEXE 2: LOGIGRAMME DES ESSAIS

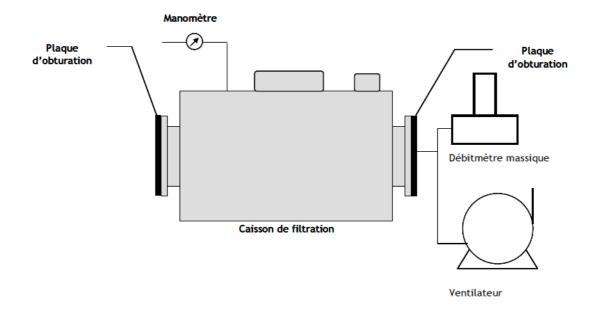

Logigramme des essais réalisés dans le cadre d'homologation selon la spécification CTHEN 14-07

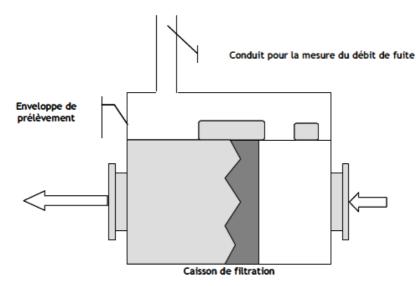


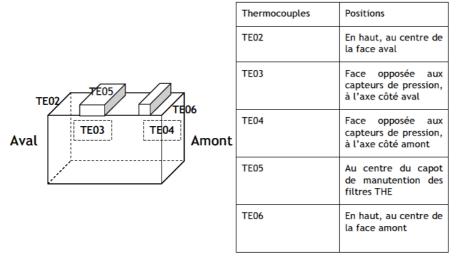
Séquence 2 : Gauchissement



Séquence 3 : Mesure des débits de fuite statique interne / externe




Annexe 3 : Diagrammes d'evolution des temperatures pour l'essai de resistance thermique <u>DYNAMIQUE</u>


ANNEXE 4: MONTAGE EXPERIMENTAL POUR LA MESURE DU DEBIT DE FUITE INTERNE/EXTERNE EN STATIQUE

ANNEXE 5 : MONTAGE EXPERIMENTAL POUR LA MESURE DU DEBIT DE FUITE INTERNE/EXTERNE A 120°C OU 200°C EN DYNAMIQUE

Caisson de filtration équipé du filtre THE avec le capot de collecte pour la mesure de débit de fuite interne/externe en dynamique

Implantation des thermocouples de contact sur le caisson de filtration équipé du filtre THE

Annexe 6: Modele de declaration de conformite

Le fabricant ¹
déclare que l'équipement neuf décrit ci-après ²
est conforme aux dispositions de la spécification technique CTHEN 14-07, concernant les caissons pour filtres THE équipant le dernier niveau de filtration des installations nucléaires
et de conception conforme à l'équipement ayant fait l'objet du certificat d'homologation n° , délivré le $^3,\mathrm{par}$ $^4.$
Fait à , le
Signature ⁵

¹ Raison sociale, adresse complète

² Description de l'équipement (marque, type, modèle, n° de série...)

³ Date de délivrance du certificat d'homologation

⁴ Nom de l'organisme ayant délivré le certificat d'homologation

⁵ Nom et fonction du signataire ayant pouvoir pour engager le fabricant