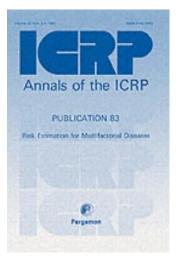
# Considération des effets héréditaires dans le système de radioprotection : évolution et état actuel

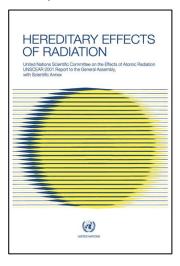
Travaux du Task Group 121 de la CIPR

**GT CIPR, 12 juin 2025** 



**Dominique Laurier** 


## Effets héréditaires : historique


#### Effets génétiques radioinduits

- Démonstration qu'une exposition aux rayons X peut induire des changements génétiques observables chez la mouche drosophile (Muller 1927)
- Effets génétiques de l'exposition aux rayonnements ionisants mis en évidence dans des études chez la souris (Russell et al., 1958)
- Risque de dommages génétiques dus aux radiations introduit dans les recommandations de la CIPR (CIPR 1956)
- Effets héréditaires considérés comme des effets stochastiques (CIPR 1977)

#### Dernières mises à jour

- ICRP Pub 83 (1999)
- UNSCEAR 2001 report





## Effets héréditaires : types d'effets

#### Maladies Mendéliennes : troubles résultant de mutations qui se produisent dans des gènes uniques

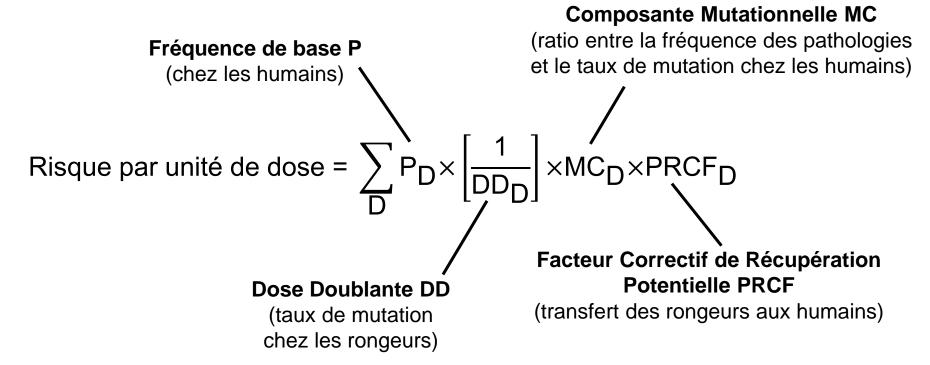
 Autosomique dominant et récessif, X-lié récessif : achondroplasie, neurofibromatose, syndrome de Marfan, mucoviscidose, hémochromatose, syndrome de Bloom, ataxie télangiectasie, hémophilie, dystrophie musculaire de Duchenne, maladie de Fabry, syndrome de Rett...

## Maladies chromosomiques : dues à des anomalies du nombre ou de la structure des chromosomes

Trisomie 21, syndrome du Cri du chat ...

## Malformations congénitales : défauts structurels qui sont présents à la naissance, qu'ils soient détectés ou non à ce moment-là

• Les anomalies congénitales concernent le système musculosquelettique, le système urogénital, le cœur et le système circulatoire, le système digestif et la fente labiale avec/sans fente palatine


Maladies chroniques : maladies qui peuvent ou non se développer chez les individus, selon la présence ou l'absence de facteurs de risque, qui peuvent être génétiques ou environnementaux

• Liste de 26 troubles très divers avec un fondement génétique possible : diabète de type II, maladie coronarienne, hypertension essentielle, psychoses affectives, varices des membres inférieurs, rhinite allergique, asthme, ulcère peptique, arthrite rhumatoïde, ostéochondrose juvénile de la colonne vertébrale ...

3

## Effets héréditaires : quantification

Pour une catégorie d'effet D :



L'approche d'évaluation des risques tient compte des dommages génétiques sur 2 générations

## Effets héréditaires : paramètres de calcul

#### Dose Doublante (Doubling Dose, DD) (Sankaranarayanan and Chakraborty 2000)

- Définie comme « la dose absorbée par les organes de la reproduction nécessaire pour produire autant de mutations héréditaires que celles qui surviennent spontanément au cours d'une génération »
- D'après les données expérimentales disponibles de souris mâles, il existe une augmentation linéaire des taux de mutation dans le test des sept locus jusqu'à 9 Gy (Russell et al, 1958)
- Application d'un facteur de réduction du débit de dose de 3 pour le transfert à des conditions d'irradiation chronique
- Hypothèse que la sensibilité aux dommages génétiques liés au rayonnement est la même pour les deux sexes : le taux estimé pour les hommes a été retenu comme étant applicable aux femmes





## Effets héréditaires : paramètres de calcul

#### Fréquence de base (Baseline frequency, P)

- Définie comme « le nombre de cas naturels de maladies ayant un déterminisme génétique reconnu » chez l'Homme
- Sources:
  - Années 1970 pour les maladies mendéliennes (Trimble et Doughty 1974; UNSCEAR 1977)
  - Années 1970 pour les maladies chromosomiques, British Columbia Survey (Trimble et Dougthy 1974)
  - Années 1980 pour les maladies congénitales et chroniques, population hongroise (Czeizel et Sankaranarayanan 1984; Czeizel et al, 1988)
- Taux estimés (pour 100 naissances vivantes) :

| • | Maladies Mendéliennes      | 1,5  |
|---|----------------------------|------|
| • | Malformations Congénitales | 6,0  |
| • | Maladies Chroniques        | 65.0 |



## Effets héréditaires : paramètres de calcul

#### Composante Mutationnelle (Mutation component, MC)

- Mesure de l'augmentation de la fréquence de la maladie lorsque le taux de mutation est augmenté chez les humains
- Estimations:
  - Maladies autosomiques dominantes et liées au chromosome X 0,30
  - Maladies chroniques
     0,02

## Facteur correctif de récupération potentielle (Potential Recoverability Correction Factor, PRCF) (*Unscear 2001*)

- Reflète le rapport entre la quantité de mutations induites qui conduiront à la maladie chez les humains et dans les études sur la souris
- Estimations:
  - Maladies Mendéliennes 0,15 à 0,30
  - Maladies chroniques
     0,02 à 0,09



## Effets héréditaires : estimation du risque de maladies génétiques

#### Risque de maladie génétique (pour 100 naissances vivantes par Gy)

|                                | Population reproductive     |                        | Population totale      |  |
|--------------------------------|-----------------------------|------------------------|------------------------|--|
| Catégorie de maladie           | Etendue du risque<br>par Gy | Risque moyen<br>par Gy | Risque moyen<br>par Gy |  |
| Mendéliennes et chromosomiques | 0,13 to 0,25                | 0,19                   | 0,08                   |  |
| Malformations congénitales     | 0,24 to 0,30                | 0,27                   | 0,11                   |  |
| Chroniques                     | 0,03 to 0,12                | 0,08                   | 0,03                   |  |
| TOTAL                          |                             | 0,54                   | 0,22                   |  |

(d'après Sankaranarayanan et Wassom 2008)

Risque moyen pour la population totale estimé à 40 % de celui pour la population reproductrice (0 à 30 ans)



#### Effets héréditaires : contribution au détriment

#### Coefficients de risque nominal ajustés du détriment (pour 100 par Sv)

Pour les effets stochastiques après une exposition aux rayonnements à faible dose/débit de dose

| Population exposée   | Cancer | Effets<br>« Héritables » | Total |
|----------------------|--------|--------------------------|-------|
| Population totale    | 5,5    | 0,2                      | 5,7   |
| Travailleurs adultes | 4,1    | 0,1                      | 4,2   |

(ICRP Publication 103, 2007)

- Effets héréditaires considérés comme une ligne supplémentaire dans le tableau des risques nominaux
- Pondération par la sévérité initialement calculée pour les cancers
- Contribution limitée des effets héréditaires (environ 2 à 4 %) au détriment total



Ces estimations de risque sont-elles encore adaptées aujourd'hui ?



#### Effets héréditaires : conclusions

- Manque de clarté de la procédure de quantification des risques
- Évolution des connaissances sur les taux de base et sur l'impact des mutations sur les maladies héréditaires
- Intégration des cancers dans la catégorie des maladies chroniques à déterminisme génétiques
- Validité questionnable du système de pondération par la sévérité pour les maladies héréditaires
- Pas d'observation d'effets chez les descendants de populations exposées aux rayonnements ionisants chez l'humain, mais limites des résultats épidémiologiques disponibles
- Impact potentiel des mécanismes épigénétiques dans la transmission transgénérationnelle de phénotypes

#### Détriment : processus de révision

**TG 102 Detriment Calculation TG 91 – Dose** and dose rate effects **TG 111 Détriment Individual response** radiologique **TG 115 RP of astronauts TG 119 Circulatory diseases** 

TG 121 – Risks for next generations

TG 122 – Update of cancer detriment

TG 123
Effects classification

TG 128
Stratification of RP

TG 118 RBE, Q, W<sub>R</sub>



### Examen et révision du Système de Radioprotection



Amrenova A, Ainsbury E, Baudin C, Giussani A, Lochard J, Rühm W, Scholz-Kreisel P, Traut K, Vaillant L, Wakeford R, Laurier D. Consideration of hereditary effects in the radiological protection system: evolution and current status.

Int J Radiat Biol. 2024;100(9):1240-1252.