

# ANALYSES RADIOLOGIQUES D'EFFLUENTS ET D'ECHANTILLONS ENVIRONNEMENTAUX

CATALOGUE DES ANALYSES REALISEES PAR L'ASNR

Rapport interne N° PSE-ENV/SAME/2025-00016

DIRECTION DE L'EXPERTISE ET DE LA RECHERCHE EN ENVIRONNEMENT

# LE SERVICE D'ANALYSES ET DE METROLOGIE DE L'ENVIRONNEMENT

Le Service d'analyses et de métrologie de l'environnement (SAME) est un service au sein de la Direction de la recherche et de l'expertise de l'environnement. Il a pour mission entre autres choses :

- Le développement de techniques de préparation et de détection de la radioactivité dans les échantillons de l'environnement, pour mieux répondre aux problématiques d'étude et de surveillance de l'environnement en situation normale;
- Le mesurage de la radioactivité (bas niveau et très bas niveau) d'échantillons fournis par l'ASNR selon des protocoles techniques ayant un niveau de référence reconnu, notamment dans le cadre d'activités d'études, d'expertises ou de surveillances de l'environnement (incluant les effluents d'installations nucléaires ou radiologiques) ou dans les denrées alimentaires.

LE SAME COMPTE

4

#### **LABORATOIRES**

Pour mener à bien ses missions, le SAME réalise annuellement plus de

13 000 analyses Ce document présente les analyses réalisées par l'IRSN pour les échantillons de l'environnement et les effluents, par type de matrice : eaux, solides, aérosols, effluents liquides, effluents gazeux.

Les méthodes employées et analyses réalisées sous accréditation COFRAC[1] (LERCA-LMN) sont présentées sur fond de couleur bleue.

Les méthodes employées et analyses réalisées sous accréditation COFRAC<sup>[2]</sup> (LMRE) y sont présentées sur fond de couleur jaune.

Les méthodes employées et analyses réalisées sous accréditation COFRAC sur les deux sites du SAME y sont présentées sur fond de couleur rouge.

#### **POUR NOUS CONTACTER:**

#### **ASNR**

Service d'analyses et de métrologie de l'environnement 31 rue de l'Ecluse BP 40035 78116 Le Vésinet Cedex

asnr.same@asnr.fr

<sup>[1]</sup> Portée d'accréditation n° 1-7438 LERCA-LMN disponible sur le site du COFRAC : www.cofrac.fr précisant les matrices, les radionucléides et les gammes d'activité accréditées.

<sup>[2]</sup> Portée d'accréditation n° 1-7437 LMRE disponible sur le site du COFRAC : : www.cofrac.fr précisant les matrices, les radionucléides et les gammes d'activité accréditées.

#### **SOMMAIRE**

| EAUX               | 6  |
|--------------------|----|
| LAIT               | 10 |
| Solides            | 11 |
| AIR, GAZ ET        |    |
| AEROSOLS           | 16 |
| EFFLUENTS LIQUIDES | 18 |
| EFFLUENTS GAZEUX   | 20 |

| Radionucléide                                                                | Type de méthode                                                                                                                   | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse   | Quantité minimale<br>nécessaire   | Seuil de décision³                          | Unité                                    |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------|------------------------------------------|
| <sup>3</sup> H (HTO) <sup>[1,2]</sup>                                        | Scintillation liquide<br>(direct ou après<br>distillation)                                                                        | 4                             | 50 mL                             | 12 mL                             | 2,4 (mesure rapide)<br>1 (mesure longue)    | Bq/L                                     |
| ³H (HTO) bas<br>niveau                                                       | Scintillation liquide par ALOKA (direct)                                                                                          | 8                             | 100 mL                            | 100 mL                            | 0,15                                        | Bq/L                                     |
| <sup>3</sup> H libre (HTO) bas<br>niveau par<br>recroissance <sup>3</sup> He | Méthode par<br>recroissance <sup>3</sup> He :<br>dégazage sous vide suivi<br>de stockage +<br>spectrométrie de masse<br>gaz rares | 24                            | 300 mL                            | 20 mL                             | 0,008                                       | Bq/L                                     |
| <sup>14</sup> C[1]                                                           | Scintillation liquide                                                                                                             | 4                             | 50 mL                             | 50 mL                             | 2,4 (mesure rapide)<br>1 (mesure longue)    | Bq/L                                     |
| <sup>90</sup> Sr <sup>[1]</sup>                                              | Séparation chimique + scintillation liquide                                                                                       | 12                            | 6 L                               | 0,5 L                             | 1,5.10 <sup>-3</sup> (pour 6 L)             | Bq/L                                     |
| <sup>90</sup> <b>S</b> r <sup>[2]</sup>                                      | Séparation chimique + compteur proportionnel                                                                                      | 12                            | ≈ 100 L d'eau<br>concentrée à sec | ≈ 100 L d'eau<br>concentrée à sec | Pour les eaux sèches<br>ou en cendres : 0,6 | Bq/kg de cendres pour<br>20 g de cendres |
| <sup>129</sup>  , <sup>131</sup>                                             | Spectrométrie γ (direct)                                                                                                          | 4                             | 2L                                | 0,5 L                             | 0,2 à 1,4                                   | Bq/L                                     |
|                                                                              | Spectrométrie γ<br>(après évaporation)                                                                                            | 8                             | 6 L                               | 0,5 L                             | 0,05 (après concentration)                  | Bq/L                                     |

<sup>&</sup>lt;sup>3</sup> Il est à noter que pour certains couples radionucléides-matrice, la valeur du seuil de décision peut être inférieure à la valeur minimale de la gamme de la portée d'accréditation.

| Radionucléide                                                              | Type de méthode                                     | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse                 | Quantité minimale nécessaire                                                         | Seuil de décision <sup>3</sup>                          | Unité        |
|----------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------|--------------|
| Autres émetteurs<br>gamma <sup>[1,2]</sup> , dont<br><sup>134,137</sup> Cs | Spectrométrie $\gamma$                              | 16                            | 500 mL                                          | 50 mL                                                                                | 0,1                                                     | Bq/L         |
| <sup>210</sup> Pb                                                          | Spectrométrie γ<br>(direct ou après<br>évaporation) | 8                             | 2 L en mesure directe<br>6 L pour concentration | 0,5 L                                                                                | 2 (en direct)<br>0,01 (après<br>concentration)          | Bq/L         |
| <sup>129</sup>  , <sup>127</sup>                                           | Séparation chimique +<br>ICP-MS/MS                  | 4                             | 1 L filtrée à 0,45 μm                           | Eau de mer : 200 mL<br>filtrée à 0,45 µm ;<br>Eau douce : 50 mL<br>filtrée à 0,45 µm | 0,011<br>LQ : 0,4                                       | Bq/L<br>μg/L |
| <sup>210</sup> Po <sup>[1]</sup>                                           | Séparation chimique + spectrométrie $\alpha$        | 6                             | 1 L                                             | 0,5 L                                                                                | 1,5.10 <sup>-3</sup>                                    | Bq/L         |
| <sup>226</sup> Ra <sup>[1]</sup>                                           | Séparation chimique + ICP-MS                        | 4                             | 500 mL filtrée à 0,45<br>µm et acidifiée        | 300 mL filtrée à 0,45<br>µm et acidifiée                                             | LQ: 0,01                                                | Bq/L         |
| <sup>228</sup> Ra<br>(mesure via les<br>descendants)                       | Spectrométrie γ<br>(direct ou après<br>évaporation) | 8                             | 2 L en mesure directe<br>6 L pour concentration | 0,5 L                                                                                | 1 (en direct)<br>0,01 (après<br>concentration)          | Bq/L         |
| <sup>228, 230, 232</sup> Th                                                | Séparation chimique + spectrométrie $\alpha$        | 8                             | 1 L                                             | 0,5 L                                                                                | 2.10 <sup>-3</sup>                                      | Bq/L         |
| <sup>230,232</sup> Th                                                      | Séparation chimique + ICP-MS                        | 6                             | 200 mL filtrée à 0,5<br>µm et acidifiée pH < 1  | 100 mL filtrée à 0,5<br>μm et acidifiée pH < 1                                       | LQ :<br><sup>230</sup> Th : 10<br><sup>232</sup> Th : 1 | mBq/L        |

| Radionucléide                                                                         | Type de méthode                                    | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse                | Quantité minimale<br>nécessaire                | Seuil de décision <sup>3</sup>                                                                                                            | Unité         |
|---------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 234, 235, 236, 238 <b>U</b> [1]                                                       | Séparation sur<br>colonne + ICP-MS                 | 6                             | 200 mL filtrée à 0,5<br>µm et acidifiée pH < 1 | 100 mL filtrée à 0,5<br>μm et acidifiée pH < 1 | LQ:<br><sup>234</sup> U:2<br><sup>235</sup> U:0,023<br><sup>236</sup> U:0,022<br><sup>238</sup> U:1                                       | mBq/L         |
| <sup>236</sup> U/ <sup>238</sup> U bas niveau                                         | Séparation chimique + ICP-MS                       | 12                            | 200 mL filtrée à 0,5<br>µm et acidifiée pH < 1 | 100 mL filtrée à 0,5<br>µm et acidifiée pH < 1 | LQ :<br><sup>236</sup> U/ <sup>238</sup> U : 1×10 <sup>-8</sup>                                                                           | -             |
| 234, 235, 238 <b>U</b> [1]                                                            | ICP-MS                                             | 4                             | 100 mL filtrée à 0,45<br>μm et acidifiée       | 50 mL filtrée à 0,45<br>μm et acidifiée        | LQ:  234U: 1,1.10 <sup>-5</sup> μg/L  234U: 2,6 mBq/L  235U: 7,3.10 <sup>-4</sup> μg/L  235U: 0,06 mBq/L  238U: 0,1 μg/L  238U: 1,3 mBq/L | μg/L<br>mBq/L |
| <sup>238</sup> Pu <sup>239+240</sup> Pu <sup>,</sup> <sup>241</sup> Am <sup>[1]</sup> | Séparation sur<br>colonne +<br>spectrométrie α     | 8                             | 1 L                                            | 0,5 L                                          | 0,5 à 1.10 <sup>-3</sup>                                                                                                                  | Bq/L          |
| <sup>241</sup> Pu                                                                     | Scintillation liquide après spectrométrie $\alpha$ | 10                            | 1 L                                            | 0,5 L                                          | 0,1 (pour 500 mL)                                                                                                                         | Bq/L          |
| <sup>99</sup> Tc                                                                      | Séparation chimique + ICP-MS                       | 4                             | 500 mL                                         | 250 mL                                         | LQ: 6.10 <sup>-2</sup>                                                                                                                    | Bq/L          |
| <sup>237</sup> Np                                                                     | Séparation chimique + ICP-MS/MS                    | 4                             | 1 L filtré à 0,45 μm                           | 50 mL filtré à 0,45 μm                         | 0,001                                                                                                                                     | Bq/L          |

| Radionucléide                         | Type de méthode                                                                 | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse | Quantité minimale<br>nécessaire | Seuil de décision <sup>3</sup>   | Unité |
|---------------------------------------|---------------------------------------------------------------------------------|-------------------------------|---------------------------------|---------------------------------|----------------------------------|-------|
| Indice $\alpha$ global <sup>[1]</sup> | Evaporation sur coupelle + scintillation solide                                 | 4                             | 2 L                             | 1 L                             | 8.10 <sup>-3</sup> (pour 100 mL) | Bq/L  |
| Indice β global <sup>[1]</sup>        | Evaporation sur coupelle + compteur proportionnel                               | 4                             | 2 L                             | 1 L                             | 4.10 <sup>-2</sup> (pour 100 mL) | Bq/L  |
| Indice β global<br>Eaux de mer        | Evaporation puis<br>dépot du résidu sur<br>coupelle + compteur<br>proportionnel | 6                             | 1 L                             | 0,5 L                           | 0,25                             | Bq/L  |

| Elément Stable | Type de méthode | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse | Quantité minimale<br>nécessaire | Limite de quantification | Unité |
|----------------|-----------------|-------------------------------|---------------------------------|---------------------------------|--------------------------|-------|
| К              | ICP-AES         | 3                             | 200 mL                          | 50 mL                           | 1                        | mg/L  |

| Radionucléide | Type de méthode                    | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse | Quantité minimale<br>nécessaire | Seuil de décision <sup>3</sup> | Unité |
|---------------|------------------------------------|-------------------------------|---------------------------------|---------------------------------|--------------------------------|-------|
| 129           | Séparation sur colonne + ICP-MS/MS | 8                             | 4 L + bronopol                  | 3 L + bronopol                  | 30                             | mBq/L |

| Radionucléide                                    | Type de méthode                                                                                            | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse   | Quantité minimale<br>nécessaire   | Seuil de décision <sup>3</sup> | Unité                     |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|-----------------------------------|--------------------------------|---------------------------|
| ³H lié (TOL) bas<br>niveau par ³He               | Méthode par Helium-3<br>: dégazage sous vide<br>suivi de stockage +<br>spectrométrie de<br>masse gaz rares | 24                            | 150 g sec                         | 5 g sec                           | 0,02                           | Bq/kg sec                 |
| <sup>3</sup> H lié (TOL) lié four <sup>[2]</sup> | Combustion + neutralisation + distillation + scintillation liquide sur eau de combustion                   | 12                            | 120 g sec                         | 50 g sec                          | 0,7                            | Bq/L eau de<br>combustion |
| <sup>3</sup> H total (HTO +TOL)                  | Oxidizer + scintillation liquide                                                                           | 4                             | 1 g frais                         | 0,5 g frais                       | 10                             | Bq/kg frais               |
| <sup>14</sup> C                                  | Oxidizer + scintillation liquide                                                                           | 4                             | 1 g sec                           | 0,5 g sec                         | 40                             | Bq/kg sec                 |
| <sup>14</sup> C <sup>[1]</sup>                   | Synthèse benzène + scintillation liquide                                                                   | 6                             | 40 g sec                          | 20 g sec                          | 2                              | Bq/kg de carbone total    |
| <sup>14</sup> C                                  | Spectrométrie de<br>masse par<br>accélération - AMS                                                        | 15                            | 2,5 g sec                         | 1 g sec                           | 1,2                            | Bq/kg de carbone total    |
| <sup>55</sup> Fe                                 | Séparation sur colonne +scintillation liquide                                                              | 8                             | 20 g de cendres<br>pour 100 g sec | 10 g de cendres<br>pour 100 g sec | 20                             | Bq/kg de cendres          |

| Radionucléide                                                          | Type de méthode                                                             | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse                                                                                  | Quantité minimale nécessaire                                                                 | Seuil de décision <sup>3</sup>              | Unité                              |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------|
| <sup>63</sup> Ni                                                       | Séparation sur<br>colonne +scintillation<br>liquide                         | 20                            | <ul><li>125 g de cendres pour<br/>sols et sédiments</li><li>65 g de cendres pour<br/>végétal et animal</li></ul> | 65 g de cendres pour<br>sols et sédiments<br>35 g de cendres pour<br>végétal et animal       | 0,3 (sol et sédiments) 0,6 (faune et flore) | Bq/kg de cendres                   |
| <sup>90</sup> <b>Sr</b> <sup>[1,2]</sup>                               | Séparation chimique +<br>scintillation<br>liquide/compteur<br>proportionnel | 10 - 20                       | 20 à 50 g de cendres<br>(sol et sédiment)<br>30 g de cendres<br>(autres matrices<br>solides)                     | 20 à 30 g de cendres<br>(sol et sédiment)<br>10 g de cendres<br>(autres matrices<br>solides) | 0,3 à 0,6                                   | Bq/kg dans la qualité<br>reçue     |
| <sup>99</sup> Tc                                                       | Séparation chimique + ICP-MS                                                | 30                            | 100 g sec                                                                                                        | 50 g sec                                                                                     | 10                                          | Bq/kg sec                          |
| 129                                                                    | Spectrométrie γ<br>(direct)                                                 | 4                             | 500 g à 1 kg sec ou<br>frais                                                                                     | 100 g sec ou frais                                                                           | 3                                           | Bq/kg sec ou frais<br>(pour 500 g) |
| 129 <b> </b> [2]                                                       | Spectrométrie γ                                                             | 12                            | 100 g sec                                                                                                        | 50 g sec                                                                                     | 4                                           | Bq/kg sec                          |
| <sup>135</sup> Cs, <sup>137</sup> Cs<br>Sols, Sédiments                | Purification sur colonne + ICP-MS                                           | 20                            | 100 g sec                                                                                                        | 50 g sec                                                                                     | 30                                          | Bq/kg sec de <sup>137</sup> Cs     |
| Emetteurs<br>gamma <sup>[1,2]</sup><br>Denrées alimentaires<br>solides | Spectrométrie γ                                                             | 8 - 16                        | 500 g à 1 kg frais, sec                                                                                          | 100 g sec ou frais                                                                           | 0,1 à 0,5 (pour <sup>137</sup> Cs)          | Bq/kg dans la qualité<br>reçue     |
| Emetteurs<br>gamma <sup>[1,2]</sup><br>Sol, Sédiments,                 | Spectrométrie γ                                                             | 16                            | 60 g sec ou de<br>cendres                                                                                        | 20 g sec ou de<br>cendres                                                                    | 0,2 à 0,6 (pour <sup>137</sup> Cs)          | Bq/kg dans la qualité<br>reçue     |

| Radionucléide                                                              | Type de méthode                                         | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse | Quantité minimale<br>nécessaire | Seuil de décision <sup>3</sup>                                                                                                                                    | Unité                       |
|----------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Sables, Boues, faune et flore terrestre et marine                          |                                                         |                               |                                 |                                 |                                                                                                                                                                   |                             |
| <sup>210</sup> Po                                                          | Dépôt sur coupelle + spectrométrie $\alpha$             | 8                             | 20 g sec                        | 10 g sec                        | 0,25                                                                                                                                                              | Bq/kg sec                   |
| <sup>226</sup> Ra                                                          | Séparation chimique + ICP-MS                            | 8                             | 20 g de cendres                 | 10 g de cendres                 | LQ : 2,5 à 3                                                                                                                                                      | Bq/kg dans la qualité reçue |
| 228, 230, 232 <b>Th</b>                                                    | Séparation chimique + spectrométrie $\alpha$            | 8                             | 20 g de cendres                 | 10 g de cendres                 | 0,15                                                                                                                                                              | Bq/kg de cendres            |
| 230, 232 <b>Th</b> [1]                                                     | Minéralisation,<br>purification sur<br>colonne + ICP-MS | 6                             | 5 g de cendres                  | 5 g de cendres                  | LQ :<br><sup>230</sup> Th: 2<br><sup>232</sup> Th: 0,2                                                                                                            | Bq/kg de cendres            |
| <sup>230, 232</sup> Th                                                     | Minéralisation,<br>purification sur<br>colonne + ICP-MS | 20                            | 5 g de cendres                  | 5 g de cendres                  | LQ :<br><sup>230</sup> Th: 0,1<br><sup>232</sup> Th: 0,03                                                                                                         | Bq/kg de cendres            |
| <sup>232</sup> Th, <sup>235</sup> U, <sup>238</sup> U et leurs descendants | Spectrométrie γ                                         | 16                            | 60 g                            | 20 g                            | <sup>228</sup> Ac: 0,6<br><sup>210</sup> Pb: 2<br><sup>214</sup> Pb (à l'équilibre<br>avec <sup>226</sup> Ra): 2<br><sup>234</sup> Th: 4<br><sup>235</sup> U: 0,2 | Bq/kg sec                   |
| 234, 235, 236, 238                                                         | Minéralisation,<br>purification sur<br>colonne + ICP-MS | 10                            | 5 g de cendres                  | 2 g de cendres                  | LQ :<br><sup>234</sup> U : 0,2<br><sup>235</sup> U : 10 <sup>-2</sup><br><sup>236</sup> U : 6.10 <sup>-4</sup>                                                    | Bq/kg de cendres            |

| Radionucléide                                             | Type de méthode                                                                       | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse                                                         | Quantité minimale<br>nécessaire                                                         | Seuil de décision <sup>3</sup>                                                                                                  | Unité            |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                           |                                                                                       |                               |                                                                                         |                                                                                         | <sup>238</sup> U : 0,2                                                                                                          |                  |
| <sup>236</sup> U/ <sup>238</sup> U bas niveau             | Minéralisation,<br>purification sur<br>colonne + ICP-MS                               | 12                            | 5 g de cendres                                                                          | 2 g de cendres                                                                          | LQ: $^{236}$ U/ $^{238}$ U = 1×10 <sup>-8</sup>                                                                                 | g/g              |
| 234, 235, 236, 238U                                       | Minéralisation,<br>purification sur<br>colonne + ICP-MS                               | 10                            | 5 g de cendres                                                                          | 2 g de cendres                                                                          | LQ:<br><sup>234</sup> U:0,2<br><sup>235</sup> U:10 <sup>-2</sup><br><sup>236</sup> U:6.10 <sup>-4</sup><br><sup>238</sup> U:0,2 | Bq/kg de cendres |
| <sup>239, 240, 241</sup> Pu                               | Reprise électrodépôt<br>α+ purification sur<br>colonne + ICP-MS<br>secteur magnétique | 13                            | 200 g de cendres pour<br>sol et sédiment<br>50 g de cendres pour<br>végétal et animal   | 200 g de cendres pour<br>sol et sédiment<br>50 g de cendres pour<br>végétal et animal   | LQ :<br><sup>239</sup> Pu : 3.10 <sup>-4</sup><br><sup>240</sup> Pu : 10 <sup>-3</sup><br><sup>241</sup> Pu : 0,3               | Bq/kg de cendres |
| <sup>239+240</sup> Pu, <sup>238</sup> Pu                  | Séparation chimique + spectrométrie α                                                 | 8                             | 20 g de cendres                                                                         | 10 g de cendres                                                                         | 0,03 à 0,7                                                                                                                      | Bq/kg de cendres |
| <sup>239+240</sup> Pu, <sup>238</sup> Pu <sup>[1,2]</sup> | Séparation chimique +<br>électro-dépôt +<br>spectrométrie α                           | 30                            | 200 g de cendres pour<br>sol et sédiment / 50 g<br>de cendres pour<br>végétal et animal | 200 g de cendres pour<br>sol et sédiment / 50 g<br>de cendres pour<br>végétal et animal | 0,2.10 <sup>-3</sup> (sol et<br>sédiments)<br>0,4.10 <sup>-3</sup> (faune et<br>flore)                                          | Bq/kg de cendres |
| <sup>241</sup> Am                                         | Séparation chimique + spectrométrie $\alpha$                                          | 8                             | 20 g de cendres                                                                         | 10 g de cendres                                                                         | 0,03 à 0,1                                                                                                                      | Bq/kg de cendres |

| Radionucléide                      | Type de méthode                                    | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse | Quantité minimale nécessaire                    | Seuil de décision <sup>3</sup>                  | Unité            |
|------------------------------------|----------------------------------------------------|-------------------------------|---------------------------------|-------------------------------------------------|-------------------------------------------------|------------------|
| <sup>241</sup> Am <sup>[1,2]</sup> | Séparation chimique +<br>électro-dépôt +           | •                             |                                 | 200 g de cendres pour<br>sol et sédiment / 50 g | 0,2.10 <sup>-3</sup> (sol et sédiments)         | Bq/kg de cendres |
| Alli ·                             | spectrométrie $\alpha$                             | 30                            |                                 | de cendres pour<br>végétal et animal            | 0,4.10 <sup>-3</sup> (faune et flore)           |                  |
| <sup>241</sup> Pu                  | Scintillation liquide après spectrométrie $\alpha$ | 10                            | 20 g de cendres                 | 10 g de cendres                                 | 10 (pour 5 g)                                   | Bq/kg de cendres |
| <sup>242, 244</sup> Cm             | Séparation chimique + spectrométrie $\alpha$       | 10                            | 20 g de cendres                 | 10 g de cendres                                 | 0,03 à 0,1                                      | Bq/kg de cendres |
| <sup>237</sup> Np                  | Séparation chimique + ICP-MS/MS                    | 8                             | 10 g de cendres                 | 5 g de cendres                                  | 0,01                                            | Bq/kg            |
| Indice $\alpha$ global             | Dépôt sur coupelle + scintillation solide          | 4                             | 1 g                             | 100 mg                                          | 20 à 30 (pour 50 mg)                            | Bq/kg            |
| Indice β global                    | Dépôt sur coupelle +<br>compteur<br>proportionnel  | 4                             | 1 g                             | 100 mg                                          | 60 (pour 100 mg)                                | Bq/kg            |
| Emetteurs gamma artificiels et 40K | Spectrométrie γ                                    | 16                            | 10 g maximum                    |                                                 | Orsay : 3<br>Vésinet : 1,6 à 25<br>Modane : 0,3 | mBq              |

# Air, gaz et aérosols

| Radionucléide                                                                   | Type de méthode                                                                                                              | Délai Indicatif (semaines) | Seuil de décision <sup>3</sup>                              | Unité |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------|-------|
| <sup>3</sup> H atmosphérique                                                    | Scintillation liquide                                                                                                        | 4                          | 0,3 (pour un quantité minimale<br>de 200 mL)                | Bq/L  |
| <sup>14</sup> C atmosphérique<br>(prélevé par barbotage d'air dans la<br>soude) | Scintillation liquide                                                                                                        | 4                          | 0,2 de soude (pour une quantité<br>minimale de 160 mL)      | Bq/L  |
| <sup>14</sup> C atmosphérique<br>(sous forme de carbonates)                     | Scintillation liquide                                                                                                        | 4                          | 1 à 3                                                       | mBq   |
| <sup>90</sup> Sr                                                                | Calcination, minéralisation, coprécipitation, purification sur colonne + mesure oxalate d'yttrium sur compteur proportionnel | 6 - 8                      | Variable en fonction du filtre.<br>Contacter le laboratoire | Bq    |
| <sup>230, 232</sup> Th                                                          | Calcination, minéralisation,<br>Purification sur colonne + ICP-<br>MS                                                        | 6                          | Variable. Contacter le laboratoire                          | Bq    |
| 234, 235, 236, 238                                                              | Calcination, minéralisation, purification sur colonne, ICP-MS                                                                | 5                          | Variable. Contacter le laboratoire                          | Bq    |
| <sup>239+240</sup> Pu, <sup>238</sup> Pu                                        | Séparation chimique + électrodépôt + spectrométrie $\alpha$                                                                  | 8 - 12                     | Variable. Contacter le laboratoire                          | Вq    |
| <sup>239</sup> Pu, <sup>240</sup> Pu, <sup>241</sup> Pu                         | Reprise électrodépôt α,<br>purification sur colonne + ICP-<br>MS secteur magnétique                                          | 1                          | Variable. Contacter le<br>laboratoire                       | Bq    |
| <sup>241</sup> Am, <sup>244</sup> Cm                                            | Séparation chimique + électrodépôt+ spectrométrie $\alpha$                                                                   | 12                         | Variable. Contacter le<br>laboratoire                       | Вq    |

# Air, gaz et aérosols

| Radionucléide                    | Type de méthode                                    | Délai Indicatif (semaines) | Seuil de décision <sup>3</sup>                                             | Unité |
|----------------------------------|----------------------------------------------------|----------------------------|----------------------------------------------------------------------------|-------|
| <sup>129</sup>  , <sup>127</sup> | Minéralisation, purification sur colonnes + ICP-MS | 6                          | Variable. Contacter le laboratoire                                         | mBq   |
| Emetteurs gamma                  | Spectrométrie $\gamma$                             | 4                          | 0,015 (comptage sur détecteur<br>anticosmique 48 h)<br>0,04 (comptage 6 h) | Bq    |

# Effluents liquides

| Radionucléide               | Type de méthode                                            | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse | Quantité minimale nécessaire | Seuil de décision <sup>3</sup>                                                           | Unité |
|-----------------------------|------------------------------------------------------------|-------------------------------|---------------------------------|------------------------------|------------------------------------------------------------------------------------------|-------|
| <sup>3</sup> H Libre (HTO)  | Scintillation liquide<br>(direct ou après<br>distillation) | 4                             | 50 mL                           | 10 mL                        | 10                                                                                       | Bq/L  |
| <sup>3</sup> H Libre (HTO)  | Oxidizer + Scintillation liquide                           | 4                             | 10 mL                           | 1 mL                         | 30                                                                                       | Bq/L  |
| <sup>14</sup> C             | Scintillation liquide (direct)                             | 4                             | 50 mL                           | 10 mL                        | 10                                                                                       | Bq/L  |
| <sup>14</sup> C             | Oxidizer + Scintillation liquide                           | 4                             | 10 mL                           | 1 mL                         | 50                                                                                       | Bq/L  |
| <sup>55</sup> Fe            | Séparation chimique<br>+scintillation liquide              | 5                             | 1 L acidifié à pH < 1           | 0,55 L acidifié à pH <<br>1  | 0,3                                                                                      | Bq/L  |
| <sup>63</sup> Ni            | Séparation chimique +scintillation liquide.                | 5                             | 200 mL acidifié à<br>pH < 1     | 100 mL acidifié à<br>pH < 1  | 0,5                                                                                      | Bq/L  |
| <sup>90</sup> Sr            | Séparation chimique + scintillation liquide                | 6                             | 500 mL acidifié à<br>pH < 1     | 250 mL acidifié à<br>pH < 1  | 0,05                                                                                     | Bq/L  |
| <sup>99</sup> Tc            | Séparation chimique + ICP-MS                               | 4                             | 250 mL                          | 100 mL                       | LQ: 6.10 <sup>-2</sup>                                                                   | Bq/L  |
| <sup>228, 230, 232</sup> Th | Séparation chimique + Spectrométrie $\alpha$               | 8                             | 500 mL acidifié à<br>pH < 1     | 100 mL acidifié à<br>pH < 1  | 2.10 <sup>-3</sup>                                                                       | Bq/L  |
| <sup>230, 232</sup> Th      | Séparation chimique + ICP-MS                               | 6                             | 100 mL                          | 50 mL                        | LQ :<br><sup>230</sup> Th : 1.10 <sup>-2</sup><br><sup>232</sup> Th : 1.10 <sup>-3</sup> | Bq/L  |

# Effluents liquides

| Radionucléide                            | Type de méthode                                    | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse | Quantité minimale<br>nécessaire | Seuil de décision <sup>3</sup>                                                                                          | Unité |
|------------------------------------------|----------------------------------------------------|-------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------|
| 234, 235, 236, 238U                      | Séparation chimique +<br>ICP-MS                    | 6                             | 100 mL                          | 50 mL                           | LQ :<br><sup>234</sup> U : 5<br><sup>235</sup> U : 0,5<br><sup>236</sup> U : 2.10 <sup>-3</sup><br><sup>238</sup> U : 5 | mBq/L |
| <sup>237</sup> Np                        | Séparation chimique + ICP-MS                       | 8                             | 500 mL acidifié à<br>pH < 1     | 250 mL acidifié à<br>pH < 1     | LQ: 2.10 <sup>-5</sup>                                                                                                  | Bq/L  |
| <sup>239+240</sup> Pu, <sup>238</sup> Pu | Séparation chimique + Spectrométrie $\alpha$       | 8                             | 500 mL acidifié à<br>pH < 1     | 250 mL acidifié à<br>pH < 1     | 2 à 8.10 <sup>-3</sup>                                                                                                  | Bq/L  |
| <sup>241</sup> Am                        | Séparation chimique + Spectrométrie $\alpha$       | 8                             | 500 mL acidifié à<br>pH < 1     | 250 mL acidifié à<br>pH < 1     | 5.10 <sup>-3</sup>                                                                                                      | Bq/L  |
| <sup>241</sup> Pu                        | Scintillation liquide après spectrométrie $\alpha$ | 10                            | 500 mL acidifié à<br>pH < 1     | 250 mL acidifié à<br>pH < 1     | 0,4                                                                                                                     | Bq/L  |
| Emetteurs gamma                          | Spectrométrie γ                                    | 4                             | 500 mL                          | 50 mL                           | 0,5 (pour <sup>137</sup> Cs)                                                                                            | Bq/L  |
| Indice α global                          | Evaporation sur coupelle + scintillation solide    | 4                             | 50 mL acidifié à<br>pH < 1      | 25 mL acidifié à<br>pH < 1      | 0,1                                                                                                                     | Bq/L  |
| Indice β global                          | Evaporation sur coupelle + compteur proportionnel  | 4                             | 50 mL acidifié à<br>pH < 1      | 25 mL acidifié à<br>pH < 1      | 0,2                                                                                                                     | Bq/L  |

# Effluents gazeux

| Radionucléide                                                                                       | Type de méthode                                    | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse               | Quantité minimale<br>nécessaire            | Seuil de décision <sup>3</sup>                                                                                                    | Unité  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------|
| <sup>3</sup> H atmosphérique<br>(prélevé par barbotage de<br>l'air dans l'eau)                      | Scintillation liquide                              | 4                             | 50 mL                                         | 10 mL                                      | 10                                                                                                                                | Bq     |
| <sup>14</sup> C<br>(prélevé par barbotage de<br>l'air dans l'eau)                                   | Scintillation liquide                              | 4                             | 20 mL                                         | 10 mL                                      | 10 dans la soude de<br>piégeage                                                                                                   | Bq     |
| <sup>90</sup> Sr                                                                                    | Séparation chimique + scintillation liquide        | 10                            | filtre                                        | filtre                                     | 0,1                                                                                                                               | Bq     |
| 234, 235, 236, 238U                                                                                 | Séparation chimique +<br>ICP-MS                    | 8                             | filtre                                        | filtre                                     | LQ:<br><sup>234</sup> U:0,2<br><sup>235</sup> U:2.10 <sup>-2</sup><br><sup>236</sup> U:6.10 <sup>-5</sup><br><sup>238</sup> U:0,2 | mBq    |
| <sup>241</sup> Pu                                                                                   | Scintillation liquide après spectrométrie $\alpha$ | 10                            | filtre                                        | filtre                                     | 0,1                                                                                                                               | Bq     |
| <sup>239+240</sup> Pu, <sup>238</sup> Pu,<br><sup>241</sup> Am, <sup>242</sup> et <sup>244</sup> Cm | Séparation chimique + Spectrométrie $\alpha$       | 8                             | filtre                                        | filtre                                     | 1.10 <sup>-3</sup>                                                                                                                | Bq     |
| Emetteurs gamma<br>sur cartouches et<br>filtres                                                     | Spectrométrie γ                                    | 2                             | Cartouche à charbon<br>actif + filtre aérosol | Cartouche à charbon actif + filtre aérosol | <sup>131</sup> I : 1 (à la date de<br>mesure)<br><sup>60</sup> Co : 0,1                                                           | mBq/m³ |
| Indice $\alpha$ global                                                                              | Compteur proportionnel                             | 2                             | filtre                                        | filtre                                     | 0,05                                                                                                                              | Bq     |

# Effluents gazeux

| Radionucléide   | Type de méthode        | Délai Indicatif<br>(semaines) | Quantité idéale<br>pour analyse | Quantité minimale<br>nécessaire | Seuil de décision <sup>3</sup> | Unité |
|-----------------|------------------------|-------------------------------|---------------------------------|---------------------------------|--------------------------------|-------|
| Indice β global | Compteur proportionnel | 2                             | filtre                          | filtre                          | 0,1                            | Bq    |

#### **ASNR**

#### Direction de la recherche et de l'expertise en environnement

E-mail asnr.same@asnr.fr

ASNR PSE-ENV/SAME/2025-00016 Tous droits réservés ASNR Mars 2025

#### Photos de couverture :

Mesure par ICP-AES. Philippe Dureuil/Médiathèque ASNR.

Piège froid pour la récupération de l'eau en sortie du four servant à la combustion d'échantillons solides prélevés dans l'environnement afin d'analyser le Tritium Organiquement Lié (TOL). Francesco Acerbis/Médiathèque ASNR Spectres d'émission de radioéléments détectés dans les échantillons par les détecteurs au germanium. Francesco Acerbis/Médiathèque ASNR.

Préparation d'échantillons pour la mesure du Strontium 90. Philippe Dureuil/Médiathèque ASNR.





Adresse du siège social : 15 rue Louis Lejeune - 92120 Montrouge

Adresse postale :

BP 17 - 92262 Fontenay-aux-Roses cedex

Courriel: asnr-courrier@asnr.fr

**TÉLÉPHONE** +33 (0)1 58 35 88 88

SITE INTERNET

www.asnr.fr