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N‹ set of positive integers
i, j, r, `, i1, . . . mute index variables

#a cardinality of vector or set a
R set of real numbers

s0, 1r open interval
p¨q` positive part of p¨q, i.e. pxq` “ maxpx, 0q
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L2pRq space of square integrable functions over R
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g, g1, g2, . . . real-valued (multivariate) functions

g1 ˝ g2 chaining of functions
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i“1 gi tensor product of functions gi’s
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C, Σ, Σ1, Γ, Γ1, . . . covariance matrices
ϕn,Σp¨q probability density of a centred n-variate normal distribution with non-singular covariance Σ

Φq,Σ q-variate cumulative normal distribution of covariance matrix Σ
f objective function
D input set, typically D Ă Rd

x,x1 mute variables in D
xi,j jth coordinate of vector xi

n a number of evaluations
N total evaluation budget
n0 size of initial design
q batch size
X a batch of q new points pxn`1, . . . ,xn`qq P Dq

X̆ a candidate batch of q points px̆n`1, . . . , x̆n`qq P Dq

Xi1:i2 shortcut notation for
`

xJi1
,xJi1`1, . . . ,x

J
i2

˘J for i1, i2 P N, i1 ď i2
pΩ,F ,Pq probability triplet

B Borel σ-algebra
L2pΩ,Pq space of random variables with finite variance

U, V random variables
X a random vector in D

GPpm, cq Gaussian process (GP) distribution with mean m and covariance c
Y, Z Gaussian processes
m, c Y ’s mean and covariance functions
µ, k Z’s mean and covariance functions
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Chapter 1

Introduction

Context and motivations

In risk analysis of a complex system, it is crucial to ensure that moderate
variations of input parameters will not move the system towards very dif-
ferent conditions from reference ones. A particularly challenging situation is
when the sensitivity of the system to input perturbations substantially varies
across the input space. Many systems abruptly change regime: in material
science with percolation of porous media; in epidemiology with outbreak of a
pathogen according to uncertain characteristics of a population; in signal and
image processing with discontinuities or edges (i.e. abrupt changes in the grey
levels) deteriorating the efficiency of compression algorithms; in thermody-
namics with phase transition, and ‘cliff effects’ in mechanics where competing
phenomena can generate steep transitions and strong gradients in the response
of a material. This last contextual example is encountered in safety studies of
composite materials used in nuclear plants conducted by the French Institute
for Radiological Protection and Nuclear Safety (Institut de Radioprotection et
de Sûreté Nucléaire, abbreviated IRSN).

Let us assume that we aim to study one real-valued response of some deter-
ministic system with respect to d variables, formally an objective function
f : x P D Ă Rd Ñ fpxq P R. Abrupt changes of regime are reflected for
instance, for differentiable f ’s, by changing magnitude of the gradient norm
depending on regions of the input space or, to take an alternative viewpoint,
by spatially-varying main local frequencies. Here we will informally refer to f
possessing such features as “functions with heterogeneous variations”.

Figures 1.1 to 1.3 show synthetic and real-world examples of functions with

1
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Figure 1.1: Top: functions with high variation zones, obtained by generating
sample paths of a non-stationary warped Gaussian process (see section 2.2 for
details), with predictors based on five evaluations. A classical interpolating
model is used, more precisely a Gaussian process model with stationary co-
variance of type Matérn ν “ 5

2 , see section 2.1. Bottom: concentration of the
prediction error around high variation zones (empirical assessment, displaying
the absolute differences between predictions and true values, averaged on a
moving window of width 1

10).
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Figure 1.2: A function with heterogeneous variations (eq. (1.1)), its prediction
from a standard model (stationary GP model, with covariance of type Matérn
ν “ 5{2, isotropic, see section 2.1), model error, and its moving average of
radius 0.01.
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Figure 1.3: Example of an output of interest (cracking energy) with respect to
a mechanical input controlling the cracking of a composite material subjected
to a traction force.

heterogeneous variations in uni- and bivariate cases. The first univariate func-
tions (fig. 1.1), drawn randomly1, have a steep transition in the middle of the
input domain. The bivariate toy function is defined for px1, x2q P r0, 1s2 by

fpx1, x2q “ sinp2.5x1q cosp2x2q ` arctanp30ppx1 ` 0.5x2q ´ 0.7qq
` psinp35px1 ` 0.3x2qq ` cosp20px2 ` 0.2x1qqqe

´50px2`0.1x1´0.4q2 .
(1.1)

The one-dimensional function displayed in fig. 1.3 is extracted from fracture
dynamics calculations for composite materials, arising from risk studies at
IRSN. Evaluating this function can be considered as expensive – one to three
days of computation for a single point – because it requires heavy high-fidelity
numerical simulations.

Such expensive functions are typically encountered in the resolution of partial
differential equations from physical sciences and engineering [Forrester et al.,
2008], and more generally in all application fields that appeal to computer
experiments [O’Hagan, 1978, Sacks et al., 1989, Schonlau, 1997]. The lack of
data due to prohibitive evaluation costs makes the analysis of such functions
challenging. One way around this problem is to rely on predictions of f . How-
ever, in our context of interest, using standard prediction approaches can lead

1as realisations of a warped Gaussian process, see later section 2.1.1
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to poor predictions not only in scarcely explored region of the input space, but
also in regions of high variations. To alleviate this issue, it is natural to think
of reinforcing exploration in such areas. From a different perspective, one can
also attempt to incorporate prior knowledge pertaining to the heterogeneous
variations of f within the models used for prediction. Our main focus here is
on Gaussian process (GP) models that have become quite popular in the last
decades for approximating and exploring systems based on scarce evaluations
and have become a standard in the design and analysis of computer experi-
ments (see e.g. [Sacks et al., 1989, Jones et al., 1998, Santner et al., 2003]).
Gaussian process models consist of assuming that the unknown objective func-
tion f is a sample path of a Gaussian process Y indexed by the input space of f .
The function f is approached by a so-called ‘posterior’ stochastic process that
takes the evaluations into account. This statistical (and Bayesian) framework
offers efficient tools, notably for designing parsimonious and optimal evalua-
tion strategies. Through a choice of a mean and a covariance functions, GP
models are versatile and can integrate practitioner’s initial knowledge on f .
A good specification of the GP model as well as the use of adapted sampling
criteria, i.e. predefined functions determining the next evaluations based on
the current GP model, are two crucial aspects in GP-driven sequential design
of experiments. We now focus on the first point.

First angle: modelling approaches

Adapting the covariance of Y to specific classes of objective functions f has
inspired a lot of research. For example, for objective functions with a better
representation in polar coordinate, [Padonou and Roustant, 2016] propose GP
models that incorporate the geometry of the disk. Similarly, appropriate co-
variances exist for functions known to satisfy degeneracies such as symmetries
or harmonicity [Ginsbourger et al., 2016a], and for functions with a sparse
ANOVA decomposition [Durrande et al., 2012, Ginsbourger et al., 2016b]. In
the absence of such specific assumption on f , it is common to take station-
ary covariance functions [Stein, 1999]. A stationary covariance is invariant by
translation: for a GP with a constant mean, it implies that the distribution of
outputs pYx, Yx1qJ, for every pair px,x1q in the input space, depends only on
the difference x´ x1.

Let us focus again on figs. 1.1 and 1.2 and discuss how standard GP models2 ac-
tually perform when predicting two synthetic test functions that possess abrupt

2i.e. with constant mean and stationary covariance with here type Matérn and smooth-
ness parameter ν “ 5{2, see section 2.1
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changes in function values or local frequency. In both figures, we represent the
absolute difference between objective functions and their predictions. These
prediction errors are spatially averaged on short windows, localising where the
model is less accurate. We observe in fig. 1.1 that the prediction errors are
higher where f varies faster, i.e. it has higher derivatives. Similarly in fig. 1.2,
we see more prediction errors in the high variation regions, localised around
the line of equation 2x1 ` x2 “ 7{150 (for the cliff) and around the line of
equation x1 ` 10x2 “ 4 (for the change of average frequency). Although prac-
titioners can often tell if such area of heterogeneity exists, they may possess
only limited information on their locations, shapes or orientations.

When f is known to possess heterogeneous variations, it is sensible to de-
part from the stationary hypothesis and consider non-stationary covariances
that account for this property. An appropriate non-stationary covariance can
adapt progressively to the heterogeneous behaviour as long as it is re-estimated
step-by-step as new evaluations become available. Among various proposals
from non-stationary GP modelling, we consider later in section 2.2 convolu-
tion methods, see [Paciorek and Schervish, 2004, Gibbs, 1997], or input space
warping approaches [Sampson and Guttorp, 1992]. We focus in this thesis on
the latter, where non-stationary GPs come from the chaining of a GP with a
warping of the space D. A review of existing space warping approaches is in
section 2.2. The main challenge here is to estimate the warping with arbitrary
d-dimensional D from scarce evaluations. An important question to address in
GP modelling, and in particular when using input space warping, is the bal-
ance between the flexibility and the sparsity of a model, i.e. the compromise
between the capability to predict accurately diverse types of functions, and
having a low number of model parameters, for easing (or just enabling) the
model estimation. In the present context of small data sets and heterogeneous
variations, maintaining sparsity of GP models while keeping nice flexibility
properties is a requirement.

The question of non-stationary modelling is also addressed in the field of signal
or image processing. Capturing local variations in a signal or an image, seen as
heterogeneity of a function, is possible with the well-known wavelet transform
[Daubechies, 1992, Mallat, 1998]. It can detect breakdowns, and contrary to
the Fourier transform, it informs about precise locations of the breakdowns as
well as their scale levels (or ‘local frequencies’). The main challenge is here
to adapt existing wavelet approaches to the context of computer experiments
where regular and dense grids of evaluations are not available.
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Second angle: sampling approaches

As an alternative to non-stationary covariance, allocating more evaluations in
specific regions (for our purpose, regions of high variations) can be achieved by
a sampling strategy based on a GP model. Sampling criteria are real-valued
functions on D (or Dq in the case of batch-sequential design) scoring the rel-
evance of evaluating next at any candidate point x P D. Maximisation of the
criteria and updates of the model with new evaluations are then repeated until
a stopping condition is met, e.g. depletion of the evaluation budget. Criteria
classically derive from the posterior variance for allocating evaluations to un-
explored regions as for example the Mean Squared Error (MSE) and Integrated
MSE (IMSE) criteria [Sacks et al., 1989], detailed in section 2.1.2. While these
strategies may eventually learn high-variation regions of a function with a het-
erogeneous behaviour, in stationary cases it is done in a non-adaptive way as
the prediction covariance does not depend directly3 on evaluation outputs but
solely on the location of evaluation points. Therefore, to outperform these gen-
eral purpose criteria in cases when a specific goal is predetermined (here take
advantage of the capabilities of the model in a context of high heterogeneity
and expensive evaluations), many specific criteria are developed for targeting
the evaluation locations in areas of interest.

When the goal is to optimise f , a number of sampling criteria have been
proposed in the literature [Jones, 2001, Frazier et al., 2008, Contal et al., 2014].
The Expected Improvement (EI) criterion [Mockus, 1989, Jones et al., 1998]
and its multipoint version for batch evaluations are particularly popular in
the literature for their intuitive definitions, and their properties (e.g. the one-
step lookahead optimality [Ginsbourger and Le Riche, 2010]). Defined on Dq, a
multipoint criterion provides after maximisation a batch of points deemed most
promising for parallel evaluations of f . This allows to distribute evaluations
over several experimental units, as parallel computing became popular in recent
years due to the fast development of clouds, clusters and GPUs.

In addition, several criteria are dedicated to further objectives, such as inver-
sion, estimation of excursion set of f above a given threshold, probability of
failure, etc. Associated design strategies aim at getting precise predictions of
f in specific regions of interest, for instance around a contour lines of f with a
threshold value. As examples we mention the targeted IMSE [Picheny et al.,
2010], the Expected Improvement of Ranjan et al. [2008] which uses the dif-
ference between the posterior GP and the threshold, methods of Bect et al.

3The prediction covariance indirectly depends on the output values via the model esti-
mation, see section 2.1.
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[2011], Chevalier et al. [2014a] that focus on reducing the uncertainty on a vol-
ume of the excursion set, or approaches of Chevalier et al. [2013], Azzimonti
[2016] where the emphasis is put on estimating excursion sets by exploiting
notions from random sets theory. Several of the criteria of interest may be
formulated within the framework of stepwise uncertainty reduction (SUR), see
[Bect et al., 2017] and references therein. This framework aims at finding an
optimal sequence of evaluation points in order to reduce a targeted uncertainty
quantity.

Gramacy and Lee [2009] adapt variance-based sampling criteria for favouring
high variation regions via a non-stationary model and facilitate multipoint
asynchronous designs with unknown batchsize4. A natural idea that we will
pursue here to build criteria favouring high variation regions is to exploit con-
ditional distributions of partial derivatives of Y . In particular, the fact that
these conditional distributions are Gaussian and with known moments will be
a key to obtain tractable formulas for candidate sampling criteria.

Structure of the thesis

Chapter 2 is a state-of-the-art on GP models and design of experiments, with
two main methodological foci: on non-stationary models and their use for
sequential design of experiments and on EI sampling for global optimisation.

We then tackle contributions to modelling and sampling heterogeneous func-
tions from two angles. For the first angle, in chapter 3 we rely on a new family
of non-stationary covariances (WaMI, for warped multiple index) that simulta-
neously generalises features from Multiple Index GPs and tensorised warpings
(presented in chapter 2). A GP model using with a WaMI covariance (WaMI-
GP) is investigated through mathematical analysis. In particular, we explore
its ability to approximate a quite wide family of functions while remaining
tractable (with a moderate number of parameters to be inferred). Indeed, it is
shown that the model can incorporate any orientation of heterogeneous varia-
tions, and besides this, the number of covariance parameters increases affinely
with slope 1 with respect to the number of inputs. Also, independently of the
WaMi covariance, an algorithm building a warped GP model, called Wav-GP,
is proposed. It uses the local scale of a wavelet transform for the warping
estimation.

For the second angle, chapter 4 is dedicated to sampling criteria. We study
4‘Asynchronous’ means that the differences in evaluation times are taken into account in

the construction of the design for improving the use of parallel computers.
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several proposals of derivative-based criteria built for the exploration of high
variation regions. These criteria are meant to make a trade-off between filling
the space uniformly for a global exploration and intensifying the sampling in
high variation regions for a faster reduction of prediction error. We conduct
derivations of these criteria which rely on the variance of the GP gradient norm
field, facilitating their optimisation. Our aim in this chapter is also to present
a set of novel results pertaining to the calculation, the computation and the
optimisation of the multipoint EI criterion. As most of these novel results apply
to a broader class of criteria, we present a generalisation of the multipoint EI5.
The obtained formula is then revisited, leading to a numerical approximation
of the multipoint EI with arbitrary precision and very significantly reduced
computation time. Moreover, approaches for fast gradient approximations
with controllable accuracy are presented.

Chapter 5 deals with a series of applications of the methods developed in the
previous chapters with a special attention to the comparisons with existing
approaches. After describing the respective contexts of applications, the first
part of the chapter has two aims. The first one is to show the expressive-
ness encoded by WaMI-GP models and to compare then with other modelling
methods introduced in the next chapter. The second aim is to evaluate the
performance of the derivative-based criteria compared to classical MSE and
IMSE criteria in both stationary and non-stationary settings. These compar-
isons are made in particular on two mechanical test cases. The first test case
stems from numerical simulations of fracture dynamics arising in risk studies
at IRSN in the framework of the MIST lab activity. The second test case is a
three-dimensional fluid dynamics application from NASA that was used in an
article about the Treed Gaussian Process model [Gramacy and Lee, 2009].

Three further numerical experiments are performed. The first one is related to
the implementation of a batch-sequential approach to function approximation
under WaMI-GP modelling and its comparison with a baseline method, illus-
trating substantial speed-ups that can be of particular interest for industrial
and further real-world applications. The second application concerns the ap-
plication of the Wav-GP approach and highlights its potential for prediction
of heterogeneous functions. The last application illustrates the accuracy of
the proposed fast approximation of multipoint EI and its gradient, and the
associated speed-ups obtained in multipoint EI maximisation experiments.

5Generalisation that allows accounting for noise in conditioning observations and also
exponentiating the improvement.



Chapter 2

State-of-the-art of Gaussian
process modelling and design of
experiments, with a focus on
non-stationarity

We focus on Gaussian process (GP) models, popular for approximating and
exploring non-linear systems based on a small number of evaluations. They
have become a standard in the design and analysis of computer experiments
(see e.g. [Sacks et al., 1989], [Jones et al., 1998] and [Santner et al., 2003]). The
approach relies on the assumption that the objective function f is a realisation
of a Gaussian process Y . In this chapter, we review the state-of-the-art of GP
modelling and we discuss the impact of the choice of Y on model construc-
tion, prediction results and sequential designs. Section 2.1 is devoted to some
generalities on GP modelling and designs of experiments, including targeted
designs for a given purpose like sampling f in certain areas of interest. We
focus in section 2.2 on non-stationary GP in order to include knowledge on
heterogeneous variations of f .

9
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2.1 Framework

2.1.1 Generalities on GP modelling

Basic definitions and key properties

Let us consider a real valued stochastic process Y “ pYxqxPD, i.e. a collection
of random variables indexed by D, defined on a probability space pΩ,F ,Pq,
and taking values in the measurable space pR,Bq, with B the Borel σ-algebra
of R. At fixed ω P Ω, the function xÑ Yxpωq is called a realisation or a sam-
ple path of Y . See for example [Knill, 1994] for an introduction to stochastic
processes. A GP is a stochastic process verifying the following.

Definition 1 (Gaussian process). A stochastic process Y on D is Gaussian if
and only if @n P N‹, @x1, . . . ,xn P D, and @α1, . . . , αn P R, the finite linear
combination of indexed random variables

n
ř

i“1
αiYxi follows a normal distribu-

tion.

From this definition, the mean function m : x Ñ E pYxq, and the covariance
function c : px,x1q Ñ covpYx, Yx1q fi E ppYx ´mpxqqpYx1 ´mpx1qqq exist on
D and D2 respectively. Indeed Yx1 and Yx ` Yx1 have by definition normal
distributions and thus finite mean and variance from which mpxq and cpx,x1q
can be derived; in other words, Gaussian processes automatically fulfil the
second order stochastic process condition: @x P D, E pY 2

x q ă 8. Reciprocally,
a GP is completely determined in term of finite dimensional distributions by
a mean and a covariance function [Rasmussen and Williams, 2006]. To create
a GP distribution, one can pick any function from D to R as a mean function,
but a covariance function c is valid if, and only if, it is a symmetric function
(i.e. @x, x1 P D, cpx,x1q “ cpx1,xq) and positive definite (i.e. for any choice
of n P N‹ and weights α1, . . . , αn, c verifies

řn
i“1

řn
j“1 αiαjcpxi,xjq ě 0).

In the rest of this section, we give basic properties of a Gaussian process
Y with mean mp¨q and covariance cp¨, ¨q, whose distribution is denoted by
Y „ GPpm, cq.
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Link with Gaussian vector conditioning

Consider Y „ GPpm, cq, for n P N‹, a random vector Y 1:n “ pYx1 , . . . , Yxnq
J,

with px1, . . . ,xnq P Dn is a Gaussian vector1. Its mean vector and covariance
matrix are:

m “ pmpx1q, . . . ,mpxnqq
J and C “ pcpxi,xjqq i“1,...,n

j“1,...,n
. (2.1)

Let us assume that we observe a realisation y1:n P Rn of this vector Y 1:n and
call this event An “ tYx1 “ y1u X . . . X tYxn “ ynu. For x P D, the random
variable Yx is in general dependent on Y 1:n (equivalently ‘correlated’, in Gaus-
sian case). In fact, knowing the evaluation event An reduces the uncertainty
on Y and impacts its distribution. The updated distribution of Yx knowing
An is called conditional distribution of Yx given An and can be analytically
computed using the following property of Gaussian vectors.

Proposition 1 (Gaussian vector conditioning). Let Y “

´

Y paq,Y pbq
¯J

be a

Gaussian vector with E
´

Y paq
¯

“ mpaq, E
´

Y pbq
¯

“ mpbq, cov
´

Y paq
¯

“ Ca,a

invertible, cov
´

Y pbq
¯

“ Cb,b and cov
´

Y paq,Y pbq
¯

“ Ca,b. Then the condi-
tional distribution of Y pbq knowing the event Y paq

“ ypaq, is also a multivariate
Gaussian distribution, with mean and covariance matrix

mb|a

´

Y paq
¯

:“ E
´

Y pbq
ˇ

ˇ

ˇ
Y paq

¯

“mpbq
` CJa,bC

´1
a,a

´

Y paq
´mpaq

¯

(2.2)

and

Cb|a :“ cov
´

Y pbq
ˇ

ˇ

ˇ
Y paq

¯

“ Cb,b ´ C
J
a,bC

´1
a,aCa,b. (2.3)

When the mean and the covariance are known, these formulas can be used to
calculate directly the mean function mn and the covariance function cn of Y
conditioned on n observations. We have for all x,x1 P D

mnpxq “ E pYx|Anq “ mpxq ` cnpxq
JC´1

py1:n ´mq , (2.4)
cnpx,x

1
q “ cov pYx, Yx1 |Anq “ cpx,x1q ´ cnpxq

JC´1cnpx
1
q (2.5)

with cn : xÑ pcpx,xiqq
J

i“1,...,n and m, C as in eq. (2.1).
1A Gaussian vector is a random vector such that any linear combination of its components

is normally distributed.
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Basics on building GP models

Example of a GP conditioned on data points. Using GP conditioning,
we can already illustrate our first example of GP model. Let us assume that
f is a realisation of Y of given mean and covariance functions m and c. With
this hypothesis, evaluated values y1:n at some points X “ px1, . . . ,xnq are
considered as a realisation of the vector Y 1:n. Assuming for simplicity that m
and c are given, they often involve parameters that are actually estimated on
An in practice. The GP conditioned on an evaluation set An has distribution
GP pmn, cnq as in eq. (2.4) and it can be used as a probabilistic model of f .
The conditional mean mn is used as a prediction and cn provides a measure of
the prediction uncertainty, in particular with the prediction standard deviation
σn : xÑ

a

cnpx,xq.

Figure 2.1 shows mean, variance and some sample paths of a GP for a one-
dimensional test case. We consider D “ r0, 1s, m the null function on D and
c a stationary Matérn covariance with smoothness parameters ν “ 5{2 [Stein,
1999, Rasmussen and Williams, 2006]

k
‘5{2’
θ,σ : hÑ σ2

˜

1`
?

5h
θ
`

5
3

ˆ

h

θ

˙2
¸

exp
ˆ

´
?

5h
θ

˙

, (2.6)

fixed correlation length θ “ 1{10, and standard deviation σ “ 1 (see later
in this section 2.1.1 for a discussion on covariance parametrisation). The GP
is then conditioned on four evaluations points arbitrarily taken. We observe
a reduction of the variance around the evaluations and an interpolation of
the evaluation by the mean and by the sample paths from the conditional
distribution. For an illustrations of a bivariate model, see e.g. fig. 2.4. We see
now some approach for accounting for the uncertainty on m and c.

From prior assumptions to predictions. The term prior normally refers
to probability distributions assumed before taking the evaluations into account,
as opposed to posterior distributions. The model and its quality strongly
depend on the determination of the prior Gaussian process Y , especially if
few evaluations are available. Often in practice, the distribution of Y is
parametrised by a (real-valued) vector of unknown parameters θ P Θ, where Θ
is a multidimensional parametric space. The vector θ is then estimated with
the data set. In a pure Bayesian model, θ follows a given probability distri-
bution which impacts the posterior distribution of Y via the Bayes formula
[Rasmussen and Williams, 2006]. In contrast, we adopt in this thesis the em-
pirical Bayes view-point as in [Sacks et al., 1989, Roustant et al., 2012]. In this
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Figure 2.2: GP model (right) and posterior join distribution at two candidate
evaluation points.

setting, one must first get the formulas of the posterior distribution calculated
with a deterministic arbitrary θ. Then the GP model is obtained by plugging
in these formulas a value of θ estimated from the data, e.g. defined by cross-
validation minimisation or by maximum likelihood (see [Park and Baek, 2001]
and paragraph ‘Parameter estimation’).

Analytical formula for a Gaussian posterior distribution of Y are tractable if
we consider the following formula determining the prior

Yx “ β
Jgpxq ` Zx (2.7)

where g is a function from D to Rp, β “ θ a random vector of unknown trend
parameters following an improper prior distribution2, and is Z a given centred
GP. For this setting, corresponding to the case of ‘universal kriging’ [Matheron,
1973, Handcock and Stein, 1993], formulas for the posterior distribution are
[Roustant et al., 2012]

E pYx|Anq “ gpxqJpβ ` cpxqJC´1
py1:n ´G

pβq (2.8)
cov pYx, Yx1 |Anq “ cpx,x1q ´ cpxqJC´1cpx1q (2.9)

`pgpxqJ ´ cpxqJC´1GqJpGJC´1Gq´1
pgpx1qJ ´ cpx1qJC´1Gq

2A improper prior can be seen as a limit of uniform distributions when their support
converges to Rp. This type of prior distribution are used under conditions that insure a
proper posterior distribution (see [Helbert et al., 2009]).
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with pβ “ pGJCGq
´1
GJC´1y1:n, cpxq is defined as in eq. (2.4) (i.e. c : x Ñ

pcpx,xiqq
J

i“1,...,n) and G is the nˆ p matrix pgpx1q, . . . , gpxnqq
J. In a Bayesian

interpretation, these formulas derive from the assumption that the process Z
has a given distribution GPp0RD , cq (with 0RD the null function on D). In prac-
tice θ contains not only the trend coefficients β, but also covariance parameters
of Z and possible other model parameters. In contrast to β, the estimations of
other parameters rarely use closed form formulas and require numerical esti-
mation approaches (see later e.g. for cross-validation and maximum likelihood
approaches in an empirical Bayes manner).

The subcase named ‘ordinary kriging’ corresponds to p equals 1 and g1 is the
constant function equal to 1. The matrix G is then a vector of size n with all
components equal 1, denoted 1n, and pβ is a real value pβ “ 1

1JnC´11n1JnC´1y1:n.

We conclude this part with an illustration of an example of ordinary kriging
(fig. 2.2). The settings are exactly the same as for fig. 2.1 except two differ-
ences: the mean value is not fixed to zero but to an unknown constant (using
an improper prior as in Helbert et al. [2009]), and the covariance parameters
are estimated by maximum likelihood following the procedure explained in
the following paragraph. This figure also display the distribution of a vector
pYxn`1 , Yxn`2q for a batch of q “ 2 arbitrary points xn`1, xn`q P D.

Cross-validation. We now review methods for estimating a parametrised
model from a data set. The estimation by cross-validation aims at minimising
prediction errors, for instance the integrated squared error ∆

∆pθq “
ż

D

pfpuq ´mn,θpuqq
2 du, (2.10)

with mn,θ the model prediction built from n observations. Its dependence on
the parameter vector θ is emphasised via the subscript. As f is only partially
known, ∆ is approximated using errors at each evaluation point xi when this
evaluation is withdrawn from the training data set. A general k-fold cross-
validation requires first to partition the evaluations into k groups (or folds).
We denote with I : t1, . . . , nu Ñ t1, . . . , ku the function giving the group index
of each evaluation. The model estimator is then

pθ P argmin
θ

˜

n
ÿ

i“1

´

m
piq
n,θpxiq ´ yi

¯2
¸

(2.11)

with m
piq
n,θpxiq the prediction at point i without the evaluations of the group

Ipiq, i.e. without evaluations with index in the preimage I´1pIpiqq.
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When k “ n (corresponding to Ipiq “ i, i “ 1, . . . , n), the prediction at point
i is made after removing only the ith evaluation. This setting is called leave-
one-out cross validation. The constant k, which has an impact on pθ, remains
a parameter that needs to be tuned. As the number of folds increase, the
computational cost of the cross-validation process increase linearly with the
number of folds. Putting these constraints aside, the choice of k involves for
θ a bias-variance trade-off discussed e.g. in [James et al., 2013]. For a more
general overview on cross-validation, see Arlot [2008] and references therein.

Maximum likelihood. Maximum likelihood estimation (MLE) consists of
finding a parameter vector θ maximising the (logarithm of the) likelihood
function given the evaluations. For given parameter values θ, the likelihood
is defined here as the prior probability density of the Gaussian vector Y 1:n
evaluated at the observed values y1:n:

Lpθ;y1:nq “ ϕn,Cpθqpy1:n ´mpθqq (2.12)

withmpθq and Cpθq (as in eq. (2.1)) depending on θ and with ϕn,Σ the prob-
ability density function of N p0,Σq, a centred n-variate normal distribution
with covariance matrix Σ. In this work, parameter estimation by maximum
likelihood is mainly performed via the R package kergp [Deville et al., 2015];
the numerical optimisation relies on the BFGS algorithm [Battiti and Masulli,
1990] with one or several initial evaluations.

Classical covariance structures

In the absence of specific prior assumption on f , it is common to take stationary
GP distributions [Stein, 1999] as prior. The finite-dimensional distributions of
stationary GP are invariant by translation: a GP is stationary if and only if, for
any h, x P Rd, with px,x`hq P DˆD, the distribution of outputs pYx, Yx`hqJ,
does not depend on x, but only on h. A covariance function c is said to be
stationary when it defines a stationary centred3 GP distribution, meaning that
there exists a real-valued function g on Rd such that for all x,x1 P D:

cpx,x1q “ gpx´ x1q. (2.13)

When a covariance depends only on the Euclidean norm ||x´x1||, i.e. written
cpx,x1q “ kp||x´x1||q, it is called ‘isotropic’. Not every function k guarantees

3i.e. the mean function is constant equal to zero.
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that c is a covariance function: the function k is named ‘positive definite
radial basis function on D’ if c is positive definite on D. The function from
the Matérn family with parameter ν “ 5{2 (see eq. (2.6)) and the Gaussian
(or square exponential) function k‘8’ : h Ñ expp´h2q are common positive
definite radial basis functions. The Matérn class is quite popular not only for
radial Matérn kernels [Rasmussen and Williams, 2006], but also for its tensor
product counterparts [Roustant et al., 2012], where c is formulated on D2 as

cpx,x1q “ k
‘5{2’
θ1,σ1p|x1 ´ x

1
1|q ˆ . . .ˆ k

‘5{2’
θd,σd

p|xd ´ x
1
d|q (2.14)

with θ1, . . . , θ ą 0 and σ1, . . . , σd ě 0. A reason for the success of Matérn
kernels is its tunable smoothness, with the parameter ν controlling the order
of (almost sure) differentiability of the associated GP realisations (see details
on differentiability later in this section).

Given an isotropic kernel on Rd, geometric anisotropy can be easily generated
by replacing the Euclidean distance with a distance sometimes called Maha-
lanobis distance

distΓpx,x
1
q “

a

px´ x1qJΓpx´ x1q, (2.15)

where Γ is a symmetric definite matrix. With expensive evaluations, it is
important to keep the number of model parameters moderate. But in general
anisotropic GP models, the dimension of θ increases quadratically with d. In
general, geometric anisotropy requires to parametrise a rotation (dpd ´ 1q{2
parameters) and length-scale parameters for each axis (dpd´1q{2 parameters in
total). With low rank Γ, it is possible to reduce parameters to a linear number
with dimensionality reduction (see e.g [Rasmussen and Williams, 2006]). One
can also consider parsimonious multidimensional non-linear regression like the
Single Index Model (SIM) [Brillinger, 1977]. In the framework of Gaussian
Process models (see GP-SIM, [Choi et al., 2011, Gramacy and Lian, 2012b]),
the prior covariance is defined from an univariate covariance kb, parametrised
by a vector b, chained with a scalar product with a vector a P Rd :

cθpx,x
1
q “ kbpa

Jx,aJx1q. (2.16)

If kb is stationary, cθ is also stationary. With this covariance function, the
dimension of θ “ tb,au increases affinely in d with slope 1. With a fixed θ,
this model has a constant prior covariance on any subspace of the typeH1ˆH2,
with H1, H2 hyperplanes with normal vector a. Relaxing this constraint, the
multiple index model is an extension proposed by [Xia, 2008]. It uses a more
complex r-variate covariance function for kb, r P N‹, and extends the scalar
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product to a matrix product:

cθpx,x
1
q “ kb pAx, Ax

1
q (2.17)

where A is a rˆd matrix and kb a parametrised r dimensional positive definite
kernel. If kb is isotropic on Rr, say with radial basis function k‘5{2’

b1,b2 , b1, b2 ě 0,
it follows that cθ is anisotropic on Rd with Mahalanobis distance matrix Γ “
AJA:

cθpx,x
1
q “ k

‘5{2’
b1,b2

´

a

px´ x1qAJApx´ x1q
¯

. (2.18)

Differentiability of GPs

The smoothness of GPs are linked in particular to the properties of their
covariance functions. Let us now briefly review some definitions and properties
about GP differentiability.

Mean squared regularity. For second order stochastic processes, and in
particular GPs, mean squared continuity and differentiability is defined as fol-
low.

Definition 2. Given a point x P D, a GP Z is said to be mean-square con-
tinuous at x if E pZ2

xq ă `8 and

lim
hÑ0

“

E
`

pZx`h ´ Zxq
2˘‰

“ 0. (2.19)

Furthermore, mean squared differentiability of Z at a point x P D in the ith
canonical direction is established by the existence of a random variable Ui,x of
order 2 (P L2pΩ,Pq) such that

lim
hÑ0

«

E

˜

ˆ

Zx`hei ´ Zx
h

´ Ui,x

˙2
¸ff

“ 0. (2.20)

We write Ui,x “ B

Bti
Yt

ˇ

ˇ

ˇ

t“x
or simply B

Bxi
Yx, and pU1, . . . , Udq

J
“ ∇t rYts pxq, or

simply ∇Yx.

Continuity and differentiability of a GP is closely related to a similar regularity
for the covariance function as stated in the following proposition.
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Proposition 2 (Characterisation of mean square regularity). Let Z be a GP
on D with continuous mean function m and covariance function c. Z is mean-
square continuous if and only if

xÑ cpx,xq (2.21)

is continuous on D.

Assuming the differentiability of m and the existence for all i “ 1, . . . , d, x P D
of derivatives B2

BtiBt1i
cpt, t1q

ˇ

ˇ

ˇ

t“t1“x
, then for all x,x1 P D, k, ` P 1, . . . , d, we have

E p∇Yx q “ ∇mpxq, and (2.22)

cov
ˆ

BYx
Bxk

,
BYx1

Bx`

˙

“
B2cpt, t1q

BtkBt1`

ˇ

ˇ

ˇ

ˇ

t“x,t1“x1
. (2.23)

A Gaussian process with such property induces a distribution for their deriva-
tives. The joint distribution between Y and its derivatives can be derived,
see e.g. Wu et al. [2017]. In particular, for every x1, . . . ,xn P D, inte-
ger ` ď n, and indices J “ pj1, . . . , j`q P t1, . . . , du`, the Gaussian vector
´

BYx1
Bxj1

, . . . ,
BYxp
Bxj`

, Yx``1 , . . . , Yxn

¯J

is distributed as

N

˜

ˆ

Bmpx1q

Bxj1
, . . . ,

Bmpx`q

Bxj`
,mpx``1q, . . . ,mpxnq

˙J

,

ˆ

O2
C OC

O1C C

˙

¸

(2.24)

with C “pcpxi,xjqq i“``1,...,n
i1“``1,...,n

OC “

˜

Bcpt,xiq

Btji

ˇ

ˇ

ˇ

ˇ

t“xi

¸

i“1,...,`
i1“``1,...,n

O1C “

˜

Bcpxi, t
1q

Btji1

ˇ

ˇ

ˇ

ˇ

t1“xi1

¸

i“``1,...,n
i1“1,...,`

O2
C “

¨

˚

˝

B2cpt, t1q

BtjiBt
1
ji1

ˇ

ˇ

ˇ

ˇ

ˇ

t“xi
t1“x

i1

˛

‹

‚

i“1,...,`
i1“1,...,`

.

This allows for Bayesian conditioning given evaluations of a function or its
derivatives.
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Sample path differentiability. Although mean square properties are easier
to derive from the regularity of the covariance, the interpretations of sample
path properties are more straightforward as they directly inform on the as-
sumptions on f .

Definition 3. Given a point x P D, a Gaussian process Y is said to be sample
path continuous at x if

P
´

lim
hÑ0

Zx`h “ Zx

¯

“ 1. (2.25)

Furthermore, sample path differentiability of Y at a point x P D in the ith
canonical direction is established by the existence of a random variable Ui,x
such that

P
ˆ

lim
hÑ0

Zx`hei ´ Zx
h

“ Ui,x

˙

“ 1. (2.26)

As the mean square partial derivatives are equal to the corresponding sample
path derivatives with probability one [Doob, 1953] we also write Ui,x “ B

Bxi
Yx,

and ∇Yx “ pU1, . . . , Udq
J.

Proposition 3 (Sufficient conditions for sample path differentiability). Let Y
be a separable4, on an open subset D of Rd, with covariance function c. If for
all i “ 1, . . . , d, Bc

BxiBx1i
exists on D2, and if for some b, h, ε ą 0, it holds that

for all i “ 1, . . . , d, and for all x, x1 P D with ||x´ x1|| ď ε,

B2cpt, t1q

BtiBt1i1

ˇ

ˇ

ˇ

ˇ

t“x
t1“x

`
B2cpt, t1q

BtiBt1i1

ˇ

ˇ

ˇ

ˇ

t“x1

t1“x1

´ 2 B
2cpt, t1q

BtiBt1i1

ˇ

ˇ

ˇ

ˇ

t“x
t1“x1

ď
b

ˇ

ˇln ||x´ x1||
ˇ

ˇ

1`h (2.27)

then the sample paths of Y are C1pDq with probability one.

See [Scheuerer [2009], p. 55] for a proof. This property says that a GP is
sample path differentiable if its mean square partial derivatives exist (through
the condition on c) and are sample path continuous (through the inequality
condition (2.27), see Adler [2010]).

4In general the distribution of a stochastic process does not determine the sample paths
properties, as discussed in [Doob, 1953] centred Gaussian process, and in e.g. Scheuerer
[2009]. We assume in this thesis that the Gaussian processes are separable, meaning that
the distribution determines the properties of sample paths (see [Scheuerer [2009], section
5.2] for a definition).
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Wavelet analysis and its application to stochastic processes

The continuous wavelet transform [Daubechies, 1992] of y P L2pRq with respect
to an admissible5 wavelet ψ P L2pRq consists of scalar products between y with
translated and dilated instances of ψ:

@pτ, sq P R2, Wypτ, sq “

ż

R
ypxqψτ,spxqdx, (2.28)

where ψτ,s : xÑ 1?
hs
ψ
`

x´τ
hs

˘

with h Ps0,8r. For each values pτ, sq, Wypτ, sq is
the wavelet coefficient of y related to the scale h´s and the position τ .

Concerning wavelets methods throughout this thesis, most of the time d “ 1
is assumed, except for the presentation of some general concepts or for the bi-
variate case study (section 5.3.2). The wavelet transform is computed using an
analytic derivative of the Gaussian wavelet, as in [Omer and Torresani, 2016],
defined by its Fourier transform ψ̂ which vanishes for negative frequencies

ψ̂puq “ ue´u
2 for u ě 0, ψ̂puq “ 0 for u ă 0. (2.29)

Figure 2.3 illustrates a wavelet transform of a simple function with varying
local frequency.

The wavelet transform can be applied to the sample paths of a stochastic
process Y „ GPpm, cq. Guérin [2000] gives sufficient conditions to ensure the
almost sure existence of the resulting transform (here d “ 1):

• Y is a second order mean square continuous stochastic process,

• there exists r ą 0 such that EpYxYx1q “ Op|xx1|rq at infinity.

• the wavelet functions belong to the Schwartz space, i.e. the space of C8
functions vanishing rapidly at infinity:

SpRq :
"

ψ P C8pRq| @α ě 0, β P N, sup
tPR

`

|tαψpβqptq|
˘

ă 8

*

.

From there it follows that for all τ, s P R,
ż

R
E |ψτ,spxqYx| dx ă 8, (2.30)

which ensures that the sample paths of the process pψτ,spxqYxqxPD are in-
tegrable, leading to the definition for all τ, s P R2 of the random variable
WY pτ, sq.

5i.e.
ş

R ψptqdt “ 0
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Figure 2.3: Wavelet transform of xÑ sinp80πxq1r0,0.5spxq`sinp20πxq1s0.5,1spxq,
with h “ 1{2.

We essentially focus on cases where Y is a Gaussian Process with almost surely
continuous paths, so that WY pτ, sq exists for all τ, s and pWY pτ, sqqpτ,sqPR2 is
itself a Gaussian process. The wavelet analysis of a Gaussian process is further
exploited for the estimation of the warping involved in non-stationary GP
models in section 3.4.

2.1.2 Generalities on design of computer experiments

A design of experiments is a set of points in the input space D locating the
experiment evaluations. By extension, ‘design of experiments’ refers to the
decision rules that determines the evaluation locations. In a case of expensive
evaluations, the choice of design is crucial.

Model-free designs

When there is almost no information available on the studied function f ,
‘space-filling’ designs spread out as much as possible a given number of evalu-
ations across the input space. Such designs cover the whole input space in an
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equal (or uniform) manner. Model-free designs may be used as a first sampling
for building an initial model. The rest of the evaluations is then allocated ac-
cording to a model-based design of experiments (see in next section). In this
thesis, such designs, filling the input space, are obtained using the R package
DiceDesign, and are generated with the algorithm of ‘Latin hypercube sam-
pling, optimised with a maximin distance criterion’ [Dupuy et al., 2015]. See
[Pronzato and Müller, 2011] for a more detailed review on the space-filling
designs and their comparisons.

GP-based sequential designs

Let us consider a GP model built on a initial design of size n0. This first
approximation of f is a starting point of many sequential sampling methods.
In these methods, the sequential design itself is a loop incrementing n, the
current number of evaluations n “ n0 ` 1, . . . , N . If q experiments can be
performed at the same time, we can consider a (synchronised6) parallel design
of experiment in which n is incremented by q evaluations at each step.

Sequential sampling is typically driven by the optimisation of a family of infill
criteria Jn,q coupled with updating model parameters at each iteration. More
precisely, the next batch of evaluation pointsX “ txn`1, . . . ,xn`qu are selected
as

X P argmax
X̆PDq

Jn,q

´

X̆
¯

. (2.31)

Jn,q depends on the n subsequent evaluations: it is defined in terms of the
mean mn and the covariance cn of the posterior GP with n evaluations.

Variance-based designs

A first idea for a criterion is to evaluate the point from which the prediction
has the highest posterior variance xÑ cnpx,xq, in order to reduce the uncer-
tainty of the predicting GP. Classical criteria, Mean Squared Error (MSE) and
Integrated MSE (IMSE) are based on this idea, and allocate evaluations to
unexplored regions. First MSE, defined for q “ 1, chooses the next evaluation
in points where the variance on the prediction is high:

JMSE
n,1 pxq “ cnpx,xq. (2.32)

6meaning that the evaluations of f are treated as if they require the same time.
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In the case of deterministic evaluations, the MSE criterion can be reformu-
lated in maximin terms by changing the metric on D to the canonical met-
ric of the GP model covariance cn, i.e. considering the distance dpx,x1q “
a

cnpx,xq ` cnpx1,x1q ´ 2cnpx,x1q. Thus MSEmaximisation amounts to max-
imising a minimal distance to available design points, taking a distance that
accounts for covariances given by the model rather than the Euclidean dis-
tance.

As a generalisation for the multipoint case with q ą 1, X “ txn`1, . . . ,xn`qu,
we can consider the matrix of the posterior covariances pcnpxi,xj qqi,j“1,...,q
instead of the variance cnpx,xq. This matrix is then chained with a real-valued
function to define a criterion. Taking the trace of the matrix would lead to
trivial optimum, with x1 “ x2 “ . . . “ xq “ x

˚, where x˚ is a maximiser of
the MSE xÑ cnpx,xq. In contrast, we want that our criterion makes a trade-
off between first evaluating in the regions with highest model uncertainty for
each xi, and second spreading out these points in D. To get such compromise
between maximising the variance at each point and maximising their distance
from each other, the determinant is proposed. The criterion JMSE

n,q is then

JMSE
n,q pXq “ det

´

pcnpxi,xj qqi,j“1,...,q

¯

The usage of the determinant leads to maximising the hypervolume of an
ellipsoid of isoprobability of the Gaussian vector pY px1q, . . . , Y pxqqq

J. This
criteria is equivalent to the entropy maximisation of Shewry and Wynn [1987]
(see [Fang et al., 2006, Pronzato and Müller, 2011] for proofs).

It is experienced that the MSE criterion tends to sample the function on the
border of D. To circumvent this limitation, Integrated MSE (IMSE) can be
used. The aim of an IMSE design is to reduce the future integral of the MSE
over D. Thus minimising the IMSE corresponds to look for a batch of points X
minimising the integral of the future MSE if the points X are added, according
to the model:

J IMSE
n,q pXq “

ż

uPD

cn,X pu,uq du, (2.33)

with cn,Xpu,uq “ var
`

Yu|Yx1 , . . . , Yxn , Yxn`1 , . . . , Yxn`q
˘

. The term cn,X can
theoretically be obtained using the universal kriging formula, eq. (2.8), but sub-
stantial computational saving are made using ‘update formula’, see [Chevalier
et al., 2014b] for details. Figure 2.4 shows a sequential design of experiments
led by the IMSE criterion. While strategies based on such criteria tend to
fill the design space [Vazquez and Bect, 2011] and hence to eventually learn
high-variation regions, in stationary cases it is done in a non-adaptive way as
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the prediction variance does not depend on observations y1:n but solely on the
location of points x1, . . . ,xn (see eq. (2.4)). In contrast, GP-based adaptive
criteria have been used for estimating targeted regions according to a practical
need.

2.1.3 Targeted designs

Targeted designs and Stepwise Uncertainty Reduction

There are sampling strategies that aim at evaluating as efficiently as possible f
to learn a targeted feature and to answer problems such as inversion of the ob-
jective function, excursion set estimation (i.e. the set tx P D such that fpxq ě
y0u Ă D), probability of failure, etc. One method answering these issues is the
targeted IMSE [Picheny et al., 2010]. Like the IMSE sampling criterion, the
targeted IMSE computes an integral of the posterior variance over D. The
difference is that the posterior variance is multiplied by a weight function for
a better exploration of the regions around the border of the excursion set.
Other methods use the absolute difference between the posterior GP and the
excursion threshold as in [Ranjan et al., 2008, Bichon et al., 2008], or focus on
reducing the uncertainty on a volume of the excursion set [Bect et al., 2011,
Chevalier et al., 2014a]. Approaches of Chevalier et al. [2013], Azzimonti [2016]
estimate excursion sets by exploiting notions from random sets theory.

Some criteria can be formulated within the framework of Stepwise Uncertainty
Reduction (SUR). Its aim is to provide an optimal sequence of evaluation
points, selecting each point in order to reduce an uncertainty quantity. This
approach requires a precise definition of an uncertainty function Hn. The func-
tion Hn : pD ˆ Rqn Ñ R` gives the remaining uncertainty after n evaluations
yi “ Yxi , with pxi, yiqi“1,...,n P pD ˆ Rqn.

Because the design of experiments cannot be known before evaluating the
random process Y , the evaluations points px1, . . . ,xNq are considered as real-
isations of random vectors in D. (see e.g. [Bect et al., 2011, González et al.,
2016] on practical designs of experiments using SUR). However, as it does not
consider a distribution on D, the one-step-lookahead simplification is the most
straightforward SUR way to get tractable sampling criteria. With an appro-
priate choice of uncertainty function Hn`1, it encompasses several sampling
criteria as, among others, (multipoint) EI [Ginsbourger and Le Riche, 2010]
and IMSE. The idea is to select the next evaluation by minimising the expected
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Figure 2.4: Sequential design of experiments with IMSE criterion (n0 “ 8,
q “ 1, next evaluation points are represented by red triangles).
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uncertainty at the next step, i.e.,

xn`1 P argmin
xPD

E pHn`1 ppx1, y1q , . . . , pxn, ynq , px, Yxqqq . (2.34)

More generally for multipoint sampling, we define

Xn`1:n`q P argmin
x̆n`1,...,x̆n`qPD

E
`

Hn`q

`

px1, y1q , . . . , pxn, ynq ,
`

x̆n`1, Yx̆n`1

˘

, . . . ,
`

x̆n`q, Yx̆n`q
˘˘˘

. (2.35)

Some criteria developed in chapter 4 adopt this framework of one-step-lookahead
SUR. A more complete introduction on SUR strategies is given in appendix
B. For more details, see e.g. [Bect et al., 2016].

Expected improvement criterion

Adaptive design criteria have also been used for derivative-free global minimi-
sation of expensive to evaluate functions. While a number of criteria have
been proposed in the literature [O’Hagan, 1978, Sacks et al., 1989, Schonlau,
1997, Jones et al., 1998, Osborne, 2010, Srinivas et al., 2010, Snoek et al.,
2012, Jones, 2001, Frazier et al., 2008, Villemonteix et al., 2009, Srinivas et al.,
2010, Picheny et al., 2013, Contal et al., 2014, Binois et al., 2015] and refer-
ences therein, we concentrate here on the Expected Improvement (EI) criterion
[Mockus, 1989, Jones et al., 1998], and its use in batch-sequential optimisa-
tion. The expected improvement (EI) criterion and its multipoint version are
notable criteria that have an easy interpretation. Since part of this thesis
concerns EI criteria, a detailed introduction is given in appendix A.

Definition of multipoint expected improvement. Denoting by x1, . . . ,xn P
D points where f is assumed evaluated and by xn`1:n`q :“ pxn`1, . . . ,xn`qq P
Dq a batch of candidate points where to evaluate f next, the multipoint EI of
batchsize q (or for short q-EI) is defined as

EIn,qpxn`1:n`qq “ En
ˆˆ

min
i“1,...,n

Yxi ´ min
j“n`1,...,n`q

Yxj

˙

`

˙

, (2.36)

where En refers to the conditional expectation knowing the event An :“ tYx1 “

fpx1q, . . . , Yxn “ fpxnqu. One way of calculating such criterion is to rely on
Monte Carlo simulations. However, working on closed form formulas is a key
for efficiently optimising q-EI.
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Analytical derivation of expected improvement. For q “ 1, it is well
known that EI can be expressed in closed form as a function of the posterior
mean and variance mn and σn : x Ñ

a

cnpx,xq. The calculation happens to
involve a first order moment of the truncated univariate Gaussian distribution
(see eq. (2.36) in appendix A). As shown in [Chevalier and Ginsbourger, 2014.],
it turns out that eq. (2.36) can be expanded in a similar way in the multipoint
case (q ě 2) relying on moments of truncated Gaussian vectors. Given its
practical importance, the question of parallelising EI algorithms and alike by
selecting q ą 1 points per iteration has been already tackled in a number of
works including notably [Queipo et al., 2006, Taddy et al., 2009, Janusevskis
et al., 2012, Frazier, 2012, Contal et al., 2013]. In this thesis we essentially
focus in section 4.2 on approaches relying on the maximisation of eq. (2.36)
and related multipoint criteria, notably by deriving closed-form formulas and
fast approximates in section 4.2.

2.2 Focus on non-stationary GP modelling

2.2.1 Overview

Non-stationary GP models allow the injection of prior knowledge about spatial-
dependency. Let us start by presenting several ways to produce non-stationary
covariances. These methods often use a given covariance function, say k, of-
ten stationary, to create a non-stationary covariance c. Beside being a valid
covariance function on D, no further requirement is needed on k.

Vertical scaling. A first way to produce non-stationary covariance is verti-
cal (or output) scaling [MacKay, 1998]. A stationary covariance k necessarily
have a constant variance σ2 “ kpx,xq, x P D (say σ positive). One can then
create a class of non-stationary covariance c by making this variance space
dependant. More precisely, for x P D

cpx,x1q “
σpxqσpx1q

σ2 kpx,x1q, (2.37)

where xÑ σpxq is a non-negative (and non-constant) function on D.

Composite Gaussian process. In a composite Gaussian process (CGP)
model [Ba et al., 2012], the prior covariance c is a sum of two of two covariances:
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cpx,x1q “ kglobalpx,x
1
q ` σpxqσpx1qklocalpx,x

1
q (2.38)

The covariance functions kglobal and klocal are typically stationary. The idea is
to capture the trend of the data with kglobal, required to be smoother, meaning
e.g. that it has long correlation length, and klocal models the local details. As
vertical scaling, the non-negative function σ produce the non-stationarity of c.
Estimation of this model is not detailed here (see [Ba et al., 2012]).

Convolution methods. Some non-stationary covariances can be obtained
by (spatial) convolution methods [Higdon, 2002, Gibbs, 1997]. Such a function
is defined as:

cpx,x1q “

ż

Rd1
gxpuqgx1puqdu (2.39)

where pgxqxPD is a family of integrable functions on Rd1 , d1 P N‹. There is
no particular restriction on gx. For example, they can take negative values.
See [Paciorek [2003], p. 26] for a proof of the definite positiveness of c. The
key of this method is to obtain an analytical formula for c. It was initially
derived for squared exponential (or Gaussian) kernels gx : t Ñ ϕd,Σx pt´ xq,
with d1 “ d and pΣxqxPD a family of positive definite matrices of size d. The
obtained non-stationary covariance is:

cpx,x1q “ ϕd,Σx`Σx1 px´ x
1
q

“
1

b

p2πqd det pΣx ` Σx1q

exp
ˆ

´
1
2 px´ x

1
q
J
pΣx ` Σx1q

´1
px´ x1q

˙

(2.40)

We see that this covariance is closely related to the anisotropic stationary
covariance as we observe in the exponential the squared Mahalanobis distance
px´ x1qJΣ´1px´ x1q, but with a location-dependent positive definite matrix
Σ “ Σx ` Σx1 . Although the non-stationary effects are partially due to a
vertical scaling, via the space-dependant variance cpx,xq “ 1?

p2πqd2d det Σx
, it is

clear that this covariance is different from a simple vertical-scaling covariance.
Indeed, if we divide by the standard deviations (or force det Σx to be constant
on D) the obtained correlation function stays non-stationary. In particular
on can change the anisotropy by controlling the eigen decomposition of Σx

in different regions of D. Paciorek [2003], p. 30, provides a way to extend
this method to any covariance structure, showing that replacing the square
exponential function in eq. (2.40) to any isotropic correlation function positive
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Figure 2.5: Illustration of a non-stationary GP with the convolution method.
Each pair of arrows show the directions of the eigenvectors of Σx. Their lengths
are proportional to the corresponding eigenvalues.

definite on Rd keeps a valid (non-stationary) covariance. Figure 2.5 shows an
example of this convolution method with a Matérn structure, ν “ 5{2.

2.2.2 Input space warping

Warping stationary GPs for creating non-stationary GPs is a common method
(see, e.g., [Sampson and Guttorp, 1992]). In this approach, sometimes called
the non-linear map method, the non-stationary covariance function c is ob-
tained by chaining the stationary covariance with a warping γ of the input
space7.

Definition 4 (Warped stationary Gaussian process). Given a set E, a sta-
tionary GP Z “ pZxqxPE and a function γ : D Ñ E, we define the warped
stationary GP associated with Z and γ as the process Y indexed by D and
characterised by

@x P D, Yx “ Zγpxq. (2.41)

Without any restriction on γ, Y is a GP and its mean and covariance functions
are given by mpxq “ µpγpxqq and cpx,x1q “ kpγpxq,γpx1qq, where µ and k
are the mean and covariance functions of Z, respectively.

7In the literature, the words ‘warping’ and ‘deformation’ are used interchangeably to
describe distortion of an object or an image. Here we use the word ‘deformation’ for a
diffeomorphism on a open subset of Rd (a differentiable bijection, with differentiable in-
verse) and the word ‘warping’ for a chaining function, meaning that there is not necessarily
bijectivity nor same dimensionality between image and preimage.
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Figure 2.6: Effect of an input space warping. The warping is represented by
its effect on a grid of r0, 1s2. The first line correspond to an isotropic GP (no
warping). The second line corresponds to the warping of eq. (2.42)

.
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The warping γ can be considered as a function that maps the data in another
space in order to efficiently use a simpler model with covariance k. As k
is often stationary, applying γ to points of a data set is sometimes called
‘stationarisation’. Ideally, the image of γ should be a latent space in which
variations of the modelled function f are smooth. Such warping corresponds
to what is often referred to a change of time in stochastic process theory: from
a stationary GP Z of covariance k and see γ as a change of its coordinate in
order to create a non-stationary GP Yx “ Zγpxq. The dimension of k, p P N‹,
is equal to the output dimension of γ, which is not necessarily d.

Figure 2.6 shows a warping of a stationary GP and how it impacts its sample
paths. An arbitrary warping is defined for the illustration:

γ : xÑ
ˆ

x1 `
sinp4x2q

20 , x2 ` e
´x2

sin p10x1q

5

˙J

. (2.42)

We see that the reshaping of the input space affects the sample paths. For
example, when the input space is locally dilated by γ, more variations are
observed.

The estimation of the unknown warping γ is crucial. It is a difficult prob-
lem as possible warpings lay in a space of functions from D to Rp (with p
potentially unknown). A natural idea is to consider γ as a deterministic para-
metric function to estimate. For example, Calandra et al. [2016] defines γ as
a multi-layer neural networks. A consistent approach for estimating warpings
of a bivariate GP from dense evaluations of a single (warped) realisation is
provided by [Anderes and Stein, 2008]. In contrast, we consider here warping
estimation from scarce evaluations in order to build appropriate non-stationary
models for functions with arbitrary d-dimensional input space. In the follow-
ing paragraphs, we review some warping approaches in the field of (expensive)
computer experiments.

Example of a parametrised univariate warping. As an example of
univariate warping, the beta cumulative distribution function is defined for
ρ1, ρ2 ą 0 as

Iρ1,ρ2 : xÑ

$

&

%

Bpx;ρ1,ρ2q
Bp1;ρ1,ρ2q

if x P r0, 1s
0 if x ă 0
1 if x ą 1

(2.43)
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with Bp¨; ρ1, ρ2q is the incomplete beta function defined on r0, 1s:

Bp¨, ρ1, ρ2q : xÑ
x
ż

0

tρ1´1
p1´ tqρ2´1dt. (2.44)

Note that B is linked with the gamma function:

Bp1, ρ1, ρ2q “
Γpρ1qΓpρ2q

Γpρ1 ` ρ2q
. (2.45)

The choice of the function Iρ1,ρ2 as an univariate warping is motivated by the
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Figure 2.7: Different cumulative beta distribution functions Iρ1,ρ2 . Each panel
corresponds to parameters values around given ρ1, ρ2.

wide range of warping shapes possible with only two parameters ρ1, ρ2 (see
fig. 2.7). This function has been used e.g. in [Snoek et al., 2014] for defining
univariate deformations.
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Basis function parametrisation The flexibility of the non-linear map method
is challenging for the estimation of γ among the set of injections on D. A first
restriction is to consider only continuous injections. The estimation of γ is
also often simplified to a finite dimensional problem taking γ “ γρ , with ρ a
parameter vector. For example, Gibbs’ method [Gibbs, 1997] formulates γρ as
a multidimensional line integral of non-negative density functions, that ensure
its injectivity and continuity,

γρpxq “ x0 `

ˆ
ż

Px

gipuqdt
˙J

i“1,...,d
,

with Px a predefined curve between x0 and x, for example the corresponding
segment, and u : t P rb1, b2s Ñ Px, b1 ă b2, is an arbitrary bijective parametri-
sation such that upb1q and upb2q give the endpoints of Px. In Gibbs’ method,
these density functions are expressed as linear combinations of radial basis
functions. The estimation of γ is then reduced to the estimation of a finite
number of weights.

We see in fig. 2.8 how this method allows an approximation of a given warping

γ0pxq “ x` 1{10 arctanp30px2
1 ` x2 ´ 1qq. (2.46)

In this example, the basis functions were chosen as uncorrelated Gaussian
functions with centres positioned on a regular grid of size Nbasis and with
range σbasis “ 3{p5Nbasisq. The weights were computed directly with the values
of the deformation at the centres of the basis functions.
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Figure 2.8: Warping approximation with Gibbs’ method, for different number
of basis functions. An arbitrary warping (equation (2.46)), is represented on
the left by the deformation of the grid p i18 ,

j
18qi,j“0,...,18. Then we display its

approximations with different levels of precision.
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We observe a degradation of the warping approximation with decreasing num-
bers of parameters: with a grid of 16 basis functions, i.e. requiring a computa-
tion of 32 weights in dimension 2, the approximation fails despite a relatively
large number of parameters. Here about 100 basis functions are needed to cap-
ture the non-stationarity in the whole domain. This reduces the applicability
of the method in contexts with drastically limited numbers of evaluations.
Note that keeping the same level of spatial precision, say r basis functions for
each direction, the number drd of weights increases rapidly with d. Therefore
an effort has been done to reduce the number of parameters while preserving
some flexibility. e.g. with the axial warping method [Xiong et al., 2007].

Axial warping simplification In this method, it is assumed that for x P D,
γpxq “ pγipxiqq

J

i“1,...,p, with pγiqi“1,...,p continuous univariate bijections, p P N‹
(p is not necessarily equal to d). Thus we have for x,x1 P D

cpx,x1q “ k
´

pγipxiqq
J

i“1,...,p , pγipx
1
iqq
J

i“1,...,p

¯

(2.47)

The axial warpings γi, i “ 1, . . . , p, are taken as piecewise second degree
polynomials, with differentiability constraints and nodes placed along the ith
dimension. In fig. 2.9 we display the results of applying this method to the
toy function

f : x P r0, 1s2 Ñ sinp15x1q ` cosp10x2q

5 ` arctan
ˆ

20px1 ` x2q ´ 15
2

˙

. (2.48)

In some situations, warping only along canonical axis can be questioned. For
instance, if the expected, or ‘real’, warping is of the form γpxq “ x`γ1px

Juqu,
with u an arbitrary non-canonical direction in Rd, an axial warping cannot in-
corporate that orientation. Although this warping is simple, and potentially
useful in many applications, the general Gibbs’ approach needs a lot of param-
eters to approximate γ. In Xia [2008] the number of parameters is reduced
but this simplification appears to be too rigid in some applications.

2.2.3 Treed Gaussian processes

Another strategy for functions with high variation zones, which is closely re-
lated to GP models without being exactly one, is the (Bayesian) Treed Gaus-
sian Process (TGP, [Gramacy and Lee, 2008]). It is based on partitioning the
input space. Different GP models are then constructed independently in each
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partition, allowing highly heterogeneous behaviour across the input space. A
strength of this method is that partitions and their number are automatically
determined according to the data. This extends the partitioning ideas of [Chip-
man et al., 1998] from simple Bayesian constant or linear models to general
independent GP models.

For fixed the partitions P “ tP1, . . . ,PMu, M P N‹, with, for each partition, a
known covariance parameter vector tθp1q, . . . ,θpMqu “ θ, the prediction from
the data An can be written as

E pYx|An,θ,Pq “
M
ÿ

i“1
E
´

Yx|Apiqn ,θpiq
¯

1xPPi (2.49)

with Apiqn the evaluations in partition Ppiq. The discontinuity resulting from
partitioning could sound like a drawback, although it is shown that it does
not increase notably the prediction error as the model can capture smoothness
through Bayesian averaging. Indeed a prior distribution for all possible par-
titioning P is fixed using a treed partitioning method [Chipman et al., 1998].
It is a recursive method, in the sense that the overall number of partitions in-
creases by creating new sub-partitioning of existing partitions (new branches),
the leafs of the tree corresponding to the overall partitions. The prediction
(eq. (2.49) and eq. (2.4)) is averaged out by integrating over possible trees and
covariance parameters, using sampling methods (Markov chain Monte Carlo
[Richardson and Green, 1997]). Typically, the prior distribution on P is such
that a partitioning is more likely to be sampled if it is simpler (less deep tree
with less leaves) and can still explain the heterogeneity of the data set.

Figure 2.10 shows the application on the toy function obtained with the R
package ‘tgp’ [Gramacy, 2007], and [Gramacy and Taddy, 2010].
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Figure 2.10: Bayesian treed Gaussian process model. From left to right: the
objective function with an initial design; a sketch of the input space partition,
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deviation for different GP models, the prediction mean and standard deviation,
and the prediction error.

We observe that the TGP model is able to estimate a partition of the input
space in two zones. The algorithm aims at discriminating regions of different
variation behaviour. Indeed the region x2 ą 0.465 appears to have less vari-
ations than the region x2 ď 0.465. The partitions here are implemented to
be defined in terms of the canonical axes. We can expect that applying the
method after rotating the data (following a principal component analysis) or
using a single-index-based correlation structure as implemented in the package
could improve the modelling.
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Figure 2.11: Different GP models of a function f : x P r0, 1s2 Ñ
sinp15x1q`cosp10x2q

5 ` arctan
´

20px1`x2q´15
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¯

. The different models are stationary
anisotropic, Xiong’s axial approach, and treed GP. For each method, we see
the first step of the sequential design of experiments, displaying the MSE cri-
terion and the selected point for the next evaluation (blue triangle).

To conclude this section on non-stationary modeling, fig. 2.11 illustrates the
first step of a sequential sampling procedure on the toy function that exhibits a
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high variation zone in the vicinity of the line x1 ` x2 “ 3{4. The construction
procedure is based on the MSE criterion and exploits the three previously
recalled models (stationary, non-stationary with axial warping and TGP). The
proposals for next evaluations, obtained from three MSE maxima, depend on
the model for the running example function.

2.2.4 A detour through scale analysis

Before presenting in chapter 3 our results on a non-parametric approach to
warping specification and estimation, let us here focus on the interplay between
local analysis and warping, both in deterministic and stochastic settings. We
will consider situations where d “ 1 and D “ E “ r0, 1s and where γ is
continuous and increasing over r0, 1s.

One of the advantages of the wavelet transform is the possibility of simply
representing in the wavelet space the actions of some operators. Denote by Dγ

the composition operator associated with γ, then we obtain, for instance with
the affine warping γpxq “ ax` b (pa, bq P R‹` ˆ R):

@pτ, sq P R2, WDγZpτ, sq “
1
?
a
WZpaτ ` b, s` logqpaqq, (2.50)

where logq stands for the base-q logarithm. If γ is differentiable, it can be
formulated in the neighbourhood of τ using its tangent, γpxq “ γpτq`γ1pτqpx´
τq ` op|x´ τ |q. Then we get, using Equation (2.50),

WDγZpτ, sq “
1

a

γ1pτq
WZpγpτq, s` logqpγ1pτqqq ` εWpτ, sq,

with εW an error quantity. As expected, the error level depends on the quality
of the local approximation of γ by its tangent. It can be proven that under
fast decay assumption for the wavelet, εW vanishes when s Ñ ´8[Omer and
Torresani, 2016].

This important property of translation in wavelet space has been exploited
in several works to estimate the warping function in the framework of signal
analysis [Clerc and Mallat, 2003, Omer and Torresani, 2016]. A way to do so
is to compute the local scale (as e.g. in [Flandrin, 1993]). For a deterministic
function, the local scale gives the evolution of the average scale weighted by
the square of the wavelet coefficients at fixed positions. For a stochastic pro-
cess this definition is extended using the second order moment of the wavelet
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transform. More precisely, the local scale associated with a GP Y is given by:

GY pτq “

ş

R h
´sE p|WY pτ, sq|

2q ds
ş

R E p|WY pτ, sq|2q ds . (2.51)

The following proposition shows a link between the local scale of a warped GP
and its associated warping.

Proposition 4. If pYxqxPR is stationary, GY is constant. Moreover, if pYxqxPR
is such that @x P R, Yx “ Zγpxq with γpxq “ ax ` b, pa, bq P R2, and pZxqxPR
stationary, then GY pτq “ aGZp0q.

This property is common knowledge due to the simplicity of the proof. But we
could not find a published proof, and for self-containedness with section 3.4,
we give a proof below.

Proof. If pYxqxPR is stationary, changing the integration order for E p|WY pτ, sq|
2q

gives

E
`

|WY pτ, sq|
2˘
“

1
hs

ż

R

ż

R
E pYxYx1qψ

´x´ τ

hs

¯

ψ

ˆ

x1 ´ τ

hs

˙

dxdx1,

which does not depend on τ by change of variable u “ x´ τ and u1 “ x1 ´ τ ,
concluding the first part of the proof. As for the second assertion, assuming
that @x P R, Yx “ Zγpxq with γpxq “ ax ` b and pZxqxPR stationary, Equa-
tion (2.50) leads to:

GY pτq “

ş

R h
´sE

`

|WZpaτ ` b, s` logqpaqq|2
˘

ds
ş

R E
`

|WZpaτ ` b, s` logqpaqq|2
˘

ds
,

“ a

ş

R h
´uE p|WZpaτ ` b, uq|

2q du
ş

R E p|WZpaτ ` b, uq|2q du ,

“ aGZp0q, (2.52)

since GZ is constant.

This property gives access to the slope of the affine warping. In section 3.4,
we use this property for approximating the derivative of γ at a given point τ ,
assuming that due to the decay of the basis function, the derivative of γ is
reasonably approximated by the local scale .
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Chapter 3

Contributions in warped
Gaussian process modelling

Let us now focus on the modelling of non-stationary GPs. The main develop-
ments concern the introduction in section 3.1 of a novel family of prior covari-
ances for WaMI-GP based on input space warping. In sections 3.2 and 3.3,
we present its main properties and we highlight its potential on a synthetic
test case. In 3.4 a different approach based on warping approximation using
wavelets is provided.

3.1 Formulation of the WaMI-GP model

In the context of GP modelling with expensive evaluations, an important lim-
itation of warping methods of non-stationary covariances is the estimation of
the warping function γ. For example, we have seen in section 2.2.2 that the
number of weights for parametrising γ as an integral of linearly combined basis
functions is dNd

basis, with Nbasis the number of basis functions in one canonical
direction. In order to adress this issue, Xiong et al. [2007] formulated γ as a
tensor product of univariate functions pγiqi“1,...,d , for x P D,

γpxq “

¨

˚

˝

γ1px1q
...

γdpxdq

˛

‹

‚

(3.1)

(see section 2.2.2 for details). Thus, the non-stationary structure is simplified
by assuming that the heterogeneity in any single canonical direction does not

43
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depend on the coordinates in other canonical directions. Whereas this simpli-
fication drastically eases estimation of γ, we would like our model to be able
to detect or reproduce heterogeneity in any direction. To do so, we chain γ
with a linear transformation xÑ Ax:

γpAxq “

¨

˚

˝

γ1pa
J
1 xq
...

γd1pa
J
d1xq

˛

‹

‚

. (3.2)

where A is a matrix with d1 rows aJ1 , . . . ,aJd1 P Rd, d1 P N‹. We will call GP
models based on this warping ‘Warped Multiple Index GP model’ or WaMI-
GP model. These models rely on a prior covariance function computed from
eq. (3.2) defined below.

Definition 5 (WaMI covariance family). Let d1 P N‹, A “ ra1, . . . ,ad1s
J P

Rd1ˆd, γip¨,ρiq : R ÞÑ R be functions parametrised by real-valued vectors ρi
(i “ 1, . . . , d1, pρ1, . . . ,ρd1q P Rp1 ˆ . . . ˆ Rpd1 , p1, . . . , pd1 P N‹) and kb be
a positive definite kernel on Rd1 parametrised by b P Rr, for some r P N‹.
Assuming that the parametric form of the γi’s is given and denoting by θ a
vector of parameters containing A, the ρi’s and b, we define the associated
WaMI (Warped Multiple Index) kernel on D by

cθ : px,x1q P D2
Ñ cθpx,x

1
q “ kb

´

`

γipa
J
i x;ρiqq

˘

i“1,...,d1 ,
`

γipa
J
i x

1;ρiq
˘

i“1,...,d1

¯

.

(3.3)

Two interpretation viewpoints. Let us first highlight a link between
WaMI-GP models and the multi index model introduced in section 2.1.1. If
a warped Y is defined as Y “ Z ˝γ ˝A where Z is a GP on Rd1 with covari-
ance kb (and arbitrary mean function), then its covariance function is given
by eq. (3.3)1. When Y is formulated as Y “ Y p1q˝A, with Y p1q “ Z ˝γ, the
equality corresponds in term of covariance to the MIM model (as in eq. (2.17)),
for x,x1 P D,

cpx,x1q “ cp1qpAx, Ax1q (3.4)

with cp1q “ cov
`

Zγpxq, Zγpx1q
˘

the covariance function of Y p1q. From this
MIM perspective, a WaMI-GP introduces non-stationarity into the covari-
ance by applying non-linear deformations to the result of each scalar product
`

aJi x
˘

i“1,...,d1 .

1Here A represents the linear map yield by the matrix with same notation.
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From another perspective, let us assume first that A is invertible and, for all
u,u1 P ImApDq, that Zp1qu “ YA´1u. Then we get the formulation of the axial
warping model (as in eq. (2.47)),

kp1qpu,u1q “ k
´

pγipuiqq
J

i“1,...,d1 , pγipu
1
iqq
J

i“1,...,d1

¯

(3.5)

with kp1q the covariance function of Zp1q. In this set-up WaMI-GP models
allow non-canonical directions for orientation of the univariate deformations
by acting on the input space via a linear map with matrix A.

In summary the WaMI-GP family of models corresponds to an extension of two
formulations: it combines axial deformations (subcase A “ Idn) and multiple
index modelling (subcase γi : xÑ x for all i “ 1, . . . , d1).

Reduction or inflation of dimension. The covariance kernel introduced
in eq. (3.3) accomodates dimension reduction (thus reducing the number of
axial warpings) when d1 ă d. The rectangular matrix A P Rd1ˆd maps the
input space to an image space of lower dimension. As we will see in what
follows, the reverse case d1 ą d is useful for modelling function f with more
complex spatial heterogeneity.

It is possible to take identity γi’s for one to several dimensions, hence reducing
the number of deformations and covariance parameters. Besides this, the class
can be generalised to cases where the warpings pγjqj“1,...,r are not univariate
but rather defined on subspaces

´

Rd1j

¯

j“1,...,r
, with r ď d1, d11, . . . , d1r P N‹ and

r
ř

j“1
d1j “ d1. This extension requires parametrisation of multivariate warpings

and is not developed in this thesis.

Standard parametrisation. In a general manner, the total number of pa-
rameters of the WaMI covariance is d1d`#b`

řd1

i“1 #ρi. The implementation
of a WaMI covariance from definition 5, requires choices about:

• the kernel family for kb,

• the family of parametrised functions for each γi,

• the value of d1.

In this paragraph we propose a standard parametrisation appropriate for a
wide range of applications. Without any specification, these settings will be
implicitly used in the rest of the thesis, although there are many other suitable
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choices. We choose kb as a stationary, radial, Matérn kernel with ν “ 5{2,
see equation (2.6). As discussed in section 2.1, in the absence of explicit
prior knowledge on high order of differentiability, this covariance structure
is commonly used in machine learning for its compromises between having
short analytical formula (vs. e.g. cases of ν ě 7{2, ν ă 8, where some
formulas are still algebraic but longer), generating smooth realisations (vs. e.g.
cases ν ď 3{2), and avoiding numerical singularities at conditioning (vs. e.g.
Gaussian kernel case). Since geometric anisotropy can be seen as a result of
warping a isotropic GP (see section 2.1.1), kb is fixed isotropic and anisotropical
effects will be included in γ˝A. So we write for x,x1 P Rp

kbpx,x
1
q “ k‘5{2’

ˆ

||x´ x1||

b

˙

. (3.6)
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Figure 3.1: Example of warping densities taken from the beta distribution
I 1ρi,1,ρi,2

For the choice of γi’s, we propose to use a class of transformations: the cu-
mulative distribution functions of beta distributions Iρi,1,ρi,2 , ρi,1, ρi,2 ą 0 see
section 2.2.2. This class combines practical properties, such as bijectivity and
differentiability, is capable of expressing a fair range of warping shapes and pro-
vides a lean parametrisation with only two shape parameters. When it is not
U-shaped, the density of the beta distribution is unimodal meaning that the
warpings of the axes are either successive contraction-dilatation-contraction or
dilatation-contraction-dilatation of three partitioning intervals (see fig. 3.1).
Moreover in cases of a middle dilatation (higher density inside s0, 1r, i.e. ρi,1,
ρi,2 ą 1), the density goes to zero at endpoints 0 and 1. This very low value
implies a very strong contraction (low density) of r0, 1s at its endpoints, no
matter the value of the parameters ρ1, ρ2 ą 1. To relax this strong assumption,
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the warping is combined with a linear function:

γip¨;ρiq : xÑ 1
1` ρi,3

ˆ

ρi,3

ˆ

x`
1
2

˙

` Iρi,1,ρi,2

ˆ

x`
1
2

˙˙

´
1
2 (3.7)

with ρi,3 ě 0. The shifts of 1{2 and the normalisation term are for conserving
the same image of γipr´1{2, 1{2s;ρiq “ r´1{2, 1{2s. The new parameter ρi,3
will be often empirically set to 1. Restrictiveness of this class of warpings
comes from the desire to limit the number of parameters. For large designs,
it is possible to increase model flexibility, by considering more complicated
parametrised warpings (as we illustrate later with a warping for modelling two
high variation zones) or using basis functions for warping estimation (as in e.g.
Xiong et al. [2007]).

Ideally, d1 is inferred from data, as opposed to being set arbitrarily. A natural
idea is to start with d1 low compared to d and increment it progressively while
monitoring the prediction performance of the model (for example by cross
validation see section 2.1.1).

A last detail of the model parametrisation is to set the origin of the linear map
to a reference point u0 P Rd, i.e. replace the linear map A by a corresponding
affine map Au0 : xÑ Apx´u0q with u0 P Rd. This insures, if u0 is in D, that
their exists a subset of D whose image by γi is included in r´1{2, 1{2sd1 , the
region in Rd1 actually warped (an not only linearly transformed). Although
the point u0 can be seen as an additional parameter, we always set for our
applications u0 “

1
21d, the centre of D “ r0, 1sd.

Illustrations. The flexibility of the WaMI-GP as a generative model is de-
picted in here with various examples.

Stationary subcase. Let us first illustrate the case where all univariate de-
formations are the identity. In fig. 3.2 we illustrate the warped space (here
the overall warping amounts to A), the WaMI kernel and corresponding GP
sample paths with

A “

ˆ

5 10
7.5 2.5

˙

. (3.8)
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Figure 3.2: WaMI-GP model in the case of a stationary base kernel and no
axial deformation. From left to right: warping represented by mapping of the
grid p i10 ,

j
10qi,j“0,...,10, the covariance function cp¨, p0, 0qJq, and two realisations

sample from a centred GP with this covariance.

This case corresponds to the geometric anisotropic stationary covariance (sec-
tion 2.1.1, Rasmussen and Williams [2006]). If kb is an isotropic covariance on
Rd, cθ is a geometric anisotropic version with symmetric semi-definite matrix
AAJ. In particular, if AAJ is definite, the distance in D is changed to the
Mahalanobis distance of matrix AAJ. The first eigenvectors of AAJ, ordered
increasingly by their eigenvalues, give the directions of high variations appear-
ing in the sample paths. This simple property can be used in a step-by-step
parameter estimation procedure for choosing directions in which it is a priority
to unlock non-stationarity.

Axial warping subcase. Before combining the effect of a linear transformation
and a tensorial warping, we illustrate the case of axial deformations alone in
fig. 3.3. We select A as the identity matrix, γ1 as the identity function, i.e.
ρ1,1 “ ρ1,2 “ 1, but γ2 is non-linear with ρ2,1 “ ρ2,2 “ 5 (see eq. (3.7), with
ρi,3 always set to 1). Except for the way to parametrise of the axial warpings,
this case corresponds to eq. (3.1) in Xiong et al. [2007]. In this thesis observe
that this covariance setting allows high variations in the vertical direction, at
x2 “ 1{2 where the density of the axial warping is the highest.

A first non-axial warping with d1 “ d. In this example, we combine the two
previous cases with a matrix rotation and one axial warping (fig. 3.4):

A “
1
?

2

ˆ

cospπ{4q ´ sinpπ{4q
sinpπ{4q cospπ{4q

˙

, and γ1 : xÑ x` Ipx; 30, 30q. (3.9)

We observe that this covariance setting allows high variations at x1 ` x2 “ 1.

Example of non-canonical orientation and two high variation zones. Having a
neutral parametrisation towards canonical axes is the key idea for estimating
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Figure 3.3: WaMI-GP with axial deformations. From left to right: den-
sity function of the deformations in each direction, warping of the grid
p i10 ,

j
10qi,j“0,...,10, the covariance function cp¨,x1qq for different values of x1, and

three corresponding WaMI-GP realisations.
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10qi,j“0,...,10, the covariance function cp¨,x1qq for different values of x1, and

three realisations sample from with this covariance.
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arbitrary directions of heterogeneous variations. We now take

A “

ˆ

cospπ{12q ´ sinpπ{12q
sinpπ{12q cospπ{12q

˙

. (3.10)

In addition, we take here γ2 with two ridges,

γ2 : xÑ x` Ip2x; 15, 15q ` I
ˆ

2
ˆ

x´
1
2

˙

; 15, 15
˙

. (3.11)

As sample paths resulting from this covariance function have two high variation
zones, fig. 3.5 shows the links between GP realisations and the corresponding
overall warping.
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Figure 3.5: Example of a WaMI-GP with two regions of high variations. From
left to right: density functions of the deformations in each direction after
the linear transformation, warping of the grid p i10 ,

j
10qi,j“0,...,10, the covariance

function cp¨,x1qq for different values of x1, and three corresponding WaMI-GP
realisations.

Two examples with d1 ą d. In the last two examples we experiment d1 ą d,
with d “ 2 and d1 “ 3. In fig. 3.6 we consider

A “

¨

˝

1 0
0 1

1{2 1{2

˛

‚, (3.12)
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and the warping functions
γ1 “ γ2 “ γ3 : xÑ x` Ipx; 30, 30q. (3.13)
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Figure 3.6: Example of a WaMI-GP with d1 ą d. High variations are concen-
trated in the center.
We see that the input space is warped in three dimensions. The two warpings
γ1 and respectively γ2 dilate the space around x1 “ 1{2 and respectively x2 “

1{2 without rotations, in the manner the previous example of axial warpings.
However a third dilatation not aligned with a canonical direction, along the
line x1 ` x2 “ 0, is added using an axial warping in the third dimension.

We give a similar example, displayed in fig. 3.7, with:

A “

?
2

2

¨

˝

1 ´1 0
1 1 0
0 0 1

˛

‚

¨

˝

1 0
0 1
1 0

˛

‚“

?
2

2

¨

˝

1 ´1
1 1
1 0

˛

‚. (3.14)

and the warping functions

γ1 : xÑ x`
2`

?
2

4 ` Ipx`
2`

?
2

4 ; 30, 30q (3.15)

γ2 : xÑ x`
2´

?
2

4 ` Ipx`
2´

?
2

4 ; 30, 30q (3.16)

γ3 : xÑ x` Ipx; 30, 30q. (3.17)
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Figure 3.7: Example of a WaMI-GP with d1 ą d. We observe three directions
of high variations.

This warping example in 3 dimensions creates high variations zones for the
realisations organised in a triangle in the left part of the domain.

3.2 Properties of WaMI-GP

In this section, we investigate the properties of the WaMI-GP kernel and its
associated (centred) WaMI-GP. We first show when the kernel is strict positive-
definite. Although strict definiteness is not necessary for a covariance function,
this property is useful for avoiding singularity issues with covariance matri-
ces, in particular in the conditioning formulas of eq. (2.8), the matrix C may
not be invertible without strict definiteness. Then we link the smoothness of
the kernel with the differentiability of the GP. Differentiability of GP, and in
particular mean-square differentiability is used for sampling strategies. For
example in section 4.1 we use mean-square differentiability when sampling the
heterogeneous function or in section 4.2 for global optimisation. Finally, the
Jacobian determinant of the warping is calculated. The Jacobian determinant
is a useful tool in the analysis of heterogeneity of the model, as it reflects the
local contraction or dilatation of the input space.
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3.2.1 Strict positive-definiteness

Let us first define conditions on kb, A, and γi’s, under which the WaMI kernel
is strictly positive definite.

Proposition 5 (Positive definiteness). Assume that kb is strictly positive def-
inite, that the γip¨;ρiq are injective and that the rank of A is equal to d. Then
the WaMI kernel of eq. (3.3) is strictly positive definite.

Proof. Assuming the existence of z, z1 P D, with γpzq “ γpz1q, gives @i “
1, . . . , d1, γipzi;ρiq “ γipz

1
i;ρiq and thus z “ z1 by injectivity of each function

γi. Moreover, as A is full column rank, the linear map is injective. So the
composition of these two maps g “

´

Âd1

i“1 γi

¯

˝A (
Â

refers to tensor product)
is also injective. Finally, for all distinct x1, . . . ,xN P D, N P N‹, the points
g1 “ gpx1q, . . . , gN “ gpxNq are distinct; therefore by exploiting the positive
definiteness of kb we have for all α1, . . . , αN P R, x1, . . . ,xN P D distinct,
N P N‹,

N
ÿ

i,j“1
αiαjcθpxi,xjq “

N
ÿ

i,j“1
αiαjkbpgi, gjq

“ 0 if and only if α1, . . . , αN “ 0. (3.18)

3.2.2 Jacobian determinant

We have seen that the Jacobian (or derivatives) of the warping γ˝A plays a
role in the regularity of the process. Dilatation (resp. contraction) zones are
areas where the warped GP has high (resp. low) variation. Here we compute
the determinant of the Jacobian of the warping to analyse the location of high
variation zones according to the parameters of the warping.

Proposition 6 (Jacobian of the multiple index warping). Assume that d1 “ d
and γip¨;ρiq is differentiable on R, for i “ 1, . . . , d, and denote with γ1ip¨;ρiq
its derivative. Then for x P D, the determinant of the warping γ˝A is

det pγpAxqq “ detpAq
d
ź

i“1
γ1i
`

aJi x;ρi
˘

. (3.19)
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Proof. The proof is straightforward from the chain rule with Jacobian matrices
and the basic properties of the determinant.

This property shows that high variation zones are directly linked with the high
univariate derivatives of γi. In particular, with A invertible, if γi is increasingly
monotonic with an unique inflection point at xi “ ci, ci P R, for all i “ 1, . . . , d,
the point of highest absolute value of determinant, i.e. the point of highest
dilatation, is x “ A´1c, c “ pciqJi“1,...,d.

3.2.3 Mean square differentiability

Let us now focus on differentiability questions. We give conditions for ob-
taining mean square differentiability (see section section 2.1.1). The random
vector ∇Yx “

´

Y
p1q
i , . . . , Y

p1q
d

¯J

, the gradient of a given Gaussian process Y
at x, will be used later in chapter 4 for the definition of new sampling criteria.

Proposition 7 (Mean-squared differentiability). Let Y be a centred Gaussian
process with the covariance c defined in (3.3). If

• for all i P t1, . . . , d1u, γip¨;ρiq P C1pRq,

• for all j, j1 P t1, . . . , d1u and u P Rd1, B2kbpv,v
1q

BvjBv1j1

ˇ

ˇ

ˇ

ˇ

pu,uq

exists and is finite,

then Y is mean-squared differentiable (i.e. has mean-squared derivatives in all
canonical directions).

Proof. The tensor product T of the γip¨;ρiq functions is of class C1 on Rd.
Using the regularity of kb and T , and the chain rule applied to eq. (3.3) we
obtain that @x P D, @i P t1, . . . , d1u, Bcpu,u1q

BuiBu1i

ˇ

ˇ

ˇ

px,xq
exists. This property of c is

equivalent to mean square differentiability (for centered GP, see e.g. Paciorek
[2003] p. 49).

3.2.4 Sample path differentiability

Another relevant property when defining a covariance function is the almost
sure differentiability of sample paths of the associated GP.
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Proposition 8 (Sample path differentiability). Consider the same assump-
tions as in proposition 7, and further assume that D is compact and there exist
C0, η0, ε0 ą 0 such that @j, j1 P t1, . . . , d1u, and @u,u1 P Rd1, ||u´u1|| ă ε0, we
have
B2kbpv,v

1q

BvjBv1j1

ˇ

ˇ

ˇ

ˇ

pu,uq

`
B2kbpv,v

1q

BvjBv1j1

ˇ

ˇ

ˇ

ˇ

pu1,u1q

´ 2 B2kbpv,v
1q

BvjBv1j1

ˇ

ˇ

ˇ

ˇ

pu,u1q

ď C0
|ln ||u´u1|||1`η0 . Then the co-

variance c gives rise to a centred Gaussian Process possessing a version with
differentiable sample paths.

Proof. Let us take C, η ą 0 and 0 ă ε ď 1{Cγ (with Cγ a Lipschitz constant
of xÑ γpAxq) such that:

1. C “ C0
q
ř

j“1

q
ř

j1“1
aj1aj11 supxPD

`

γ1j
`

aJ1 x
˘˘

supxPD
`

γ1j1
`

aJ1 x
1
˘˘

,

2. @x,x1 P D, ||x´x1|| ă ε implies ||γpAxq ´ γpAx1q|| ă ε0 (by continuity
of γ),

3. @x,x1 P D, ||x ´ x1|| ă ε implies 1
|lnpCγ ||x´x1||q|1`η0 ď

1
|ln ||x´x1|||1`η (by

existence of the limit limhÑ0

´

ln | ln |h||
ln | lnpCγq`ln |h||p1` η0q ´ 1

¯

“ η0 ą 0).

Then we have for all x,x1 P D, ||x´ x1|| ă ε,

B2cpu,u1q
Bu1Bu11

ˇ

ˇ

ˇ

px,xq
`

B2cpu,u1q
Bu1Bu11

ˇ

ˇ

ˇ

px1,x1q
´ 2 B2cpu,u1q

Bu1Bu11

ˇ

ˇ

ˇ

px,x1q

“

q
ÿ

j“1

q
ÿ

j1“1
aj1aj11γ

1
j

`

aJ1 x
˘

γ1j1
`

aJ1 x
1
˘

¨

˝

B2kbpv,v
1q

BvjBv1j1

ˇ

ˇ

ˇ

ˇ

pγpAx1q,

γpAx1qq

`
B2kbpv,v

1q

BvjBv1j1

ˇ

ˇ

ˇ

ˇ

pγpAxq,
γpAxqq

´ 2 B2kbpv,v
1q

BvjBv1j1

ˇ

ˇ

ˇ

ˇ

pγpAxq,
γpAx1qq

˛

‚

ď
C

|ln ||γpAxq ´ γpAx1q|||1`η0
ď

C

|ln ||x´ x1|||1`η
. (3.20)

Using the theorem of sample path continuity for GP derivatives (see e.g.
Scheuerer [2009] p. 55), we get the sample path continuity for the GP BY {Bx1
and thus ∇Y by generalising to all components.

Remark 1. These properties can be extended to higher order of differentiation
with equivalent hypotheses on higher order of differentiability for the γip¨;ρiq’s
and kb.
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3.3 Examples of function approximation with
WaMI-GP

In this section, we compare the performances of the WaMI-GP model in fixed
design settings as well as in sequential design settings on an example function.
The GP model by ordinary kriging as well as the maximum likelihood esti-
mation (MLE) is computed in the R programming language with the package
‘kergp’ [Deville et al., 2015]. The gradient ascent method calculating the MLE
is the L-BFGS-B algorithm implemented in R (function ‘optim’). Note that,
as we use the WaMI covariance within a standard form of GP modelling, the
training cost has Opn3q complexity (due to an inversion of the matrix C in
eq. (2.8)). TGP [Gramacy, 2007, Gramacy and Taddy, 2010] is an exception,
where the division of the data set leads generally to a much faster parameter
estimation. Significant efforts have been done to reduce computing efforts for
standard GP models (see e.g. [Quiñonero-Candela and Rasmussen, 2005] and
references therein), and this aspect was not a priority during our developments
as we targeted applications with expensive-to-evaluate functions.

We first apply the WaMI-GP model to the synthetic data coming from the
function in eq. (1.1) and we compare it with other models previously intro-
duced: stationary anisotropic GP, axial warping GP, Treed GP. The prediction
and posterior variance of the estimated models are shown in fig. 3.8. We ob-
serve that the estimated warping of the WaMI-GP dilated the input space in
the high variation region, localised around the line of equation 2x1`x2 “ 7{150
(for the cliff).

We look now at the results of an MSE-driven sequential design of experiments
under the WaMI-GP model (in standard setting) compared to three competi-
tor models covered in the last chapter: stationary GP, GP with axial warping,
and TGP. In fig. 3.9, sequential design are represented and in fig. 3.10 we dis-
play the absolute difference between the real function (example of eq. (2.48))
and predictions from the four models after 10 sequential design steps based
on the MSE criterion. Looking at the points selected along the four compet-
ing sequential designs, we see that the MSE design relying on the WaMI-GP
model allocates more evaluations in the high variation region (around the line
of equation 0.75 “ x1 ` x2) and less evaluations in the flat regions (upper
right). For the other models, prediction errors tend to occur in the high vari-
ation region. Hence our model, by detecting the high variation region (see the
estimated warping in fig. 3.11) and also associating a higher MSE there, en-
ables to comparatively achieve enhanced prediction performance as illustrated
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Figure 3.8: Application of different models on a synthetic data set (eq. (1.1)).
The models are stationary anisotropic, axial warping, TGP and WaMI-GP.
The predictions are represented in the first column of images. The second
column is for the posterior standard deviation. The third column represents
features of the models. For axial warping and WaMI-GP models, the overall
warping is represented using the warping of a 9ˆ 9 regular grid. For the TGP
model, we show the partition of the space, the standard deviations and ranges.
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Figure 3.9: Model-based sequential design of experiments of a function f :
x P r0, 1s2 Ñ sinp15x1q`cosp10x2q

5 `arctan
´

20px1`x2q´15
2

¯

. The different models are
stationary anisotropic, axial warping, TGP and WaMI-GP. For each method,
we see the first 5 steps and last step. The point for the next evaluation (blue
triangle) is MSE optimal.
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Figure 3.10: Prediction errors of four competing models on the running exam-
ple function. The different models are a stationary anisotropic GP, an axial
warping GP, Treed GP and WaMI-GP. For each method, we see the tenth step
of a sequential design driven by the MSE criterion (shared initial design).

in fig. 3.12.

Overall warping estimation
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Figure 3.11: Estimated warping from the WaMI-GP model at step 20 of a
MSE driven design of experiments.

These numerical results illustrate that WaMI-GP is able to account for het-
erogeneous regions in a semi-automated way. Here all parameters including
axes are estimated by maximum likelihood but the initial kernel kβ and the
number of warping dimensions is fixed in advance. Hence WaMI-GP improves
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Figure 3.12: Prediction error of the running example function by the four
considered models at each step of MSE-driven sequential designs.

the performance of variance-based sequential design provided that some prior
knowledge is available regarding the heterogeneities of the unknown function.
In contrast, it might be the case that users do not feel confident to appeal to
models where the number of parameters is inflated compared to the standard
stationary situation, all the more so when the amount of available information
on the objective function is drastically limited and the number of evaluations
in the initial design is scarce. For those reasons we explore in the next chap-
ter an alternative approach where the prior covariance is arbitrary (it may
be a stationary one, a WaMI or any other kind of kernel) and the empha-
sis is put on infill sampling criteria rather than on the covariance structure.
The goal is then to explore derivative-based criteria for the exploration of
high-variation regions under any GP model. Later on in chapter 5 the two
approaches of working on kernels and/or on the sampling criteria for learning
functions with heterogeneous variations will be combined and compared in a
benchmark study.
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3.4 Non-parametric warping estimation using
local scale analysis

The objective is to exploit the local scale (section 2.2.4) provided by a wavelet
transform of a GP model to approach an input space warping. In a typi-
cal Computer Experiments framework, one of the difficulties for computing
(2.51) stands in having a scarce design which is generally not a regular grid.
To circumvent this limitation, we propose an original warping approximation
algorithm that is tractable when considering scattered data. The starting
point is local scale estimation (section 2.2.4) relying on a Gaussian process
Y conditioned on the available evaluation results, represented by the event
An “ tYx1 “ fpx1q, . . . , Yxn “ fpxnqu. A clear advantage of this approach is
that it allows local estimation without any constraint on the evaluation design
while also benefiting from the versatility and the tractability of GP models
Roustant et al. [2012]. Here the probabilistic nature of the model is exploited
when performing local scale estimation, as the expectations coming into play
in section 2.2.4 are estimated by Monte Carlo simulations relying on the pos-
terior GP distribution. Our proposed approach consists of stationarising the
GP model by successive index transformations relying on this local scale esti-
mation scheme. The proposed approach is summarised by the Algorithm 3.4
below:

Algorithm
Inputs: fixed number of steps Nstop, number of Monte Carlo samples p, a
prior distribution for the GP Y (stationary, by default) and the current set of
evaluation results An.
Start.
– Build a GP model by conditioning Y to the data An using the kriging
equations. Set Y p0q “ Y .
– For i “ 0, . . . , Nstop:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

‚ Sample p realisations typiqn un“1,...,p of Y piq conditional on An,
‚ Apply the wavelet transform to evaluate tW

y
piq
n
pτ, squn“1,...,p

and estimate E p|WY piqpτ, sq|
2q,

‚ Compute the local scale (section 2.2.4) to get
`

γpiq
˘1
pτq “ GY piqpτq and

thus γpiqpτq by numerical integration,
‚ ‘Stationarise’ Y piq, i.e. consider a new process Y pi`1q “ Dγpiq´1Y i

obtained by warping Y piq using γpiq´1.

End.
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The estimated overall warping function γ is the chaining of the warpings com-
puted step by step,

γ “ γpNstopq˝. . .˝γp0q. (3.21)

In an attempt to give an interpretation of this algorithm, let us consider
its first iteration. It leads to a warping function satisfying, for any τ P R,
`

γp0q
˘1
pτq “ GY p0qpτq. Let us assume that the inverse warping operator in the

vicinity of τ can be replaced by its tangent at τ due to narrow localisation of
the wavelet. Neglecting the errors associated to the estimation of the mathe-
matical expectation and of the local scale and replacing the slope coefficient a
in section 2.2.4 by the slope of the tangent of γp0q´1 at τ delivers

`

γp1q
˘1
pτq “ GD

pγp0qq
´1Y 0pτq «

`

γp0q´1˘1
pτq ˆ γp0q

1 `

γp0q´1
pτq

˘

“ 1.

This idealised settings yields convergence of the algorithm after only one it-
eration (we have τ P R, i ě 1, pγpiqq1pτq “ 1). As we neglect error terms
in the approximation of γpiq´1pxq, the algorithm does not actually converge
in one iteration. The last equation is rather to be considered as a colloquial
explanation of the numerical observation that local scale estimates get closer
to a constant over iterations, corresponding to a stepwise stationarisation of
the GP. Numerical investigations about the behaviour of the algorithm are
presented in section 5.3.
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Chapter 4

Sampling criteria for adaptive
designs of experiments

We describe in this chapter two contributions in adaptive sampling, related to
prediction of functions with heterogeneous variations (section 4.1) and to global
optimisation (section 4.2). For each of these issues, we use the derivatives of
a GP conditioned on evaluations. First, as detailed earlier in section 4.1,
the GP derivatives are a key tool for the detection of high-variation zones.
Second, GP derivatives are involved in the calculation of the gradient of a
sampling criteria, the multipoint expected improvement (see appendix A for a
detailed introduction on the multipoint EI criterion). We first recall that under
sufficient regularity conditions, the gradient∇Y fi p∇YxqxPD is a vector-valued
Gaussian Process. The conditional distribution knowing n evaluations An is
driven by derivatives of mn and cn (see the properties on GP differentiation
introduced in section 2.1.1). In the following section, the distribution of ∇Yx
is used for building sampling criteria dedicated to the exploration of functions
with heterogeneous variations.

4.1 Learning heterogeneous functions

4.1.1 Core idea

We look for sampling criteria answering the following problem: how to dis-
tribute a limited evaluation budget in order to reduce the prediction error of
a function with heterogeneous variations. In particular, we are interested in

65
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algorithms which would automatically detect regions with higher variations in
order to allocate a larger proportion of budget to these regions.

In chapters 2 and 3, we approximated some functions by diverse GP-related
methods and concluded that exploring high-variation regions was key to quickly
reducing the overall approximation error, hence explaining the good perfor-
mances of WaMI-GP both in static conditions and in MSE-based sequential
settings. Now, let us change the perspective by assuming that a prior covari-
ance kernel is given (that may be thought of as a stationary kernel without
loss of generality) and putting the focus on infill sampling criteria dedicated
to space exploration with an intensification on high-variation regions. With
such a goal, it is legitimate to aim at investing evaluation credit in regions
where the data show more local variability. A problem however with variance-
based criteria such as considered so far is that they are homoscedastic in the
observations, or in other words, they depend solely on the geometry of the
experimental design and not on the response values. Hence trying to locate
high-variation regions with variance-based criteria does not make much sense,
unless the model accounts for heterogeneities through estimated parameters
that reflect them, such as with WaMI-GP. Our approach here is to rely in-
stead on the gradient of the GP in order to add points in unexplored regions
with potentially high slopes.

Different scalar indicators quantifying local variations and related uncertainties
could be defined. We chose to focus essentially on variance-based criteria
for (exponentiated) gradient norms. Toward this means, let us consider the
squared gradient norm process pQxqxPD defined by

Qx “ ||∇Yx||2Rd “ ∇Y Jx ∇Yx. (4.1)

Although the squared gradient norm is obtained by applying a simple operation
(taking the squared Euclidean norm) to a vector-valued Gaussian process,
working out its distribution is not straightforward. This problem involves the
probability distribution of quadratic forms in arbitrary Gaussian variables.
Yet, as we develop next, some (fractional) moments of Qx can be calculated in
closed form or computed efficiently, leading to practical infill sampling criteria.

4.1.2 Definitions and calculations of gradient-based in-
fill criteria

We propose several infill criteria based on the gradient norm process and pro-
vide calculus elements for their fast computation. Let us consider the MSE
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and IMSE criteria applied to the exponentiated gradient norm.

Definition 6 (Gradient Norm Variance criterion and generalisations). Given
n function evaluation results An and x P D, we define the Gradient Norm
Variance (GNV) criterion as

JGNV
n pxq “ var p ||∇Yx|| |Anq “ var

´

a

Qx

ˇ

ˇ

ˇ
An

¯

(4.2)

JGNV
n can be straightforwardly generalized by elevating the norm to some power
η ą 0, leading to

JGNV,η
n pxq “ var p ||∇Yx||η |Anq “ var

`

Qη{2
x

ˇ

ˇAn
˘

. (4.3)

This class of criteria can also be generalized in the same way as IMSE gener-
alizes MSE, by integration. Indeed, as mentioned in section 2.1.2, the IMSE
value at x P D is the integral of the expected variance if the next evaluation is
x. Similarly, we define the IGNV criterion by

J IGNV,η
n pxq “

ż

uPD

E
`

var
`

Qη{2
u

ˇ

ˇAn, Yx
˘ˇ

ˇAn
˘

du. (4.4)

While the transformed norm loses its homogeneity because of the exponent,
we still refer to this criterion as a norm variance: “GNV with exponent η”
or “GNVpηq”. GNVp1q is hence the previous GNV, and we will also pay a
particular attention to GNVp2q in what follows.

The following property gives a closed form formula for GNV in the case η “ 2
and semi-analytical in the η “ 1 case, followed by integral formulae for the
corresponding IGNV criteria.

Proposition 9. Let x P D and denote by pλipxqq1ďiďd the eigenvalues of
∇b∇Jcnpx,xq. Then, the GNVp2q criterion can be written as follows:

JGNV,η“2
n pxq “ 4 ∇mnpxq

J∇b∇Jcnpx,xq∇mnpxq ` 2
d
ÿ

i“1
λipxq

2. (4.5)

Furthermore, the GNVp1q criterion can be expanded as follows:

JGNV,η“1
n pxq “ ||∇mnpxq||

2
` tr

`

∇b∇Jcnpx,xq
˘

´ E
´

a

Qx|An
¯2
. (4.6)
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Finally, the corresponding integral criterion with η “ 1 writes

J IGNV,η“1
n pxq “

ż

D

ˆ

||∇mnpuq||
2
`

1
cnpx,xq

κnpu,xq
Jκnpu,xq

˙

du

`

ż

D

ˆ

tr
`

∇b∇Jcn,xpu,uq
˘

´ E
ˆ

E
´

a

Qu|An, Yx
¯2
ˇ

ˇ

ˇ

ˇ

An
˙˙

du.

(4.7)

In the case η “ 2, we have

J IGNV,η“2
n pxq “

ż

uPD

˜

4∇mnpuq
J∇b∇Jcn,xpu,uq∇mnpuq ` 2

d
ÿ

i“1
λi,xpuq

2

¸

du

`
4

var pYx|Anq

ż

uPD

κnpu,xq
J∇b∇Jcn,xpu,uqκnpu,xq du

(4.8)

where λi,xpuq are the eigenvalues of ∇b∇Jcn,xpu,uq “ cov p∇Yu|An, Yxq and
κnpu,xq is the vector of covariances between the components of ∇Yu and Yx
given An.

Proof of proposition 9. Let us first address the case η “ 1 using the notation
Zc
x “ Zx ´mx with mx “ ∇mnpxq. The first step is to expand the criterion

as follows:

var
`

||Zx||
2˘
“ var

`

ZJxZx

˘

“ var
`

2mJ
xZ

c
x `Z

c
x
JZc

x

˘

“ 4 var
`

mJ
xZ

c
x

˘

` 2 cov
`

mJ
xZ

c
x,Z

c
x
JZc

x

˘

loooooooooooooomoooooooooooooon

“0 (nullity of 3rd order momentsq

` var
`

Zc
x
JZc

x

˘

.

The term var
`

Zc
x
JZc

x

˘

can be further expanded as Zc
x “ UxD

1
2
xN with Ux an

orthogonal matrix, Dx the diagonal matrix of eigenvalues and N a standard
Gaussian vector:

var
`

ZcJ
xZ

c
x

˘

“ var
`

pUxN q
JDxpUxN q

˘

“

d
ÿ

i“1
λipxq

2 var
`

N2
i

˘

looomooon

“2

.
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For η “ 1, considering the variance of ||Zx|| in terms of raw moments gives:

var p||Zx||q “ E
`

ZJxZx

˘

´ E
ˆ

b

ZJxZx

˙2

“mJ
xmx ` 2mJ

xE pZx ´mxq
loooooooooomoooooooooon

“0

`

d
ÿ

i“1
var prZxsiq ´ E

´

a

Qx

¯2
.

(4.9)

For the proof of IGNVη“1,2, we focus on the integrand. We formulate the case
η “ 2 by applying on eq. (4.5) the operation “E p ¨|Anq”, i.e.

E pvar pQu |An, Yxq|Anq “ (4.10)

4E
´

E p∇Yu|An, YxqJ∇b∇Jcn,xpu,uqE p∇Yu|An, Yxq
ˇ

ˇ

ˇ
An

¯

` 2
ÿ

λi,xpuq
2.

The second term does not get affected as the covariance matrix∇b∇Jcn,xpu,uq
is deterministic. Then we get the result with the following formula derived from
a Gaussian vector conditioning

E p∇Yu|An, Yxq “ ∇mnpuq `
Yx ´mnpxq

cn px,xq
κnpu,xq. (4.11)

For η “ 1, using the result of eq. (4.9), we obtain

E
´

var
´

a

Qu

ˇ

ˇ

ˇ
An, Yx

¯
ˇ

ˇ

ˇ
An

¯

“ E
`

||E p∇Yu|An, Yxq ||2
ˇ

ˇAn
˘

` tr
`

∇b∇Jcn,xpu,uq
˘

´ E
ˆ

E
´

a

Qu|An, Yx
¯2
ˇ

ˇ

ˇ

ˇ

An
˙

. (4.12)

Finally, replacing E p∇Yu|An, Yxq by its analytic formula gives the result.

The expectation terms in eqs. (4.6) and (4.7) can be approximated by quadra-
ture formulas of univariate or bivariate integrals: for u, x in D,

E
´

a

Qx

¯

“

ż

R

?
tfQ

`

t;∇mnpxq,∇b∇Jcnpx,xq
˘

dt (4.13)

E
ˆ

E
´

a

Qu|An, Yx
¯2
ˇ

ˇ

ˇ

ˇ

An
˙

“

ż

R

ˆ
ż

R

?
tfQ pt;µnpy;u,xq,Γnpu,xqq dt

˙2

ϕ1,cnpx,xqpy ´mnpxqqdy, (4.14)
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where µnpy;u,xq “ ∇mnpuq `
y´mnpxq
cnpx,xq

κnpu,xq, Γnpu,xq “ ∇b∇Jcn,xpu,uq
and ϕ1,cnpx,xqp¨´mnpxqq is the normal probability density function of Yx (mean
mnpxq and variance cnpx,xq). Different methods for computing the distribu-
tion fQp¨;µ,Γq of the quadratic form Q “ ZJZ, Z „ N pµ,Γq are summed-
up, compared in [Duchesne and De Micheaux, 2010] and implemented in a R
package CompQuadForm [Duchesne and De Micheaux, 2010]. The most recent
method is based on approximating with a distribution of a central quadratic
form, tuned for egalizing the three first moments [Pearson, 1959] (equal skew-
ness). The method of [Liu et al., 2009] is closely related to this, and provides
error bounds. There also exist methods for which the error can be made arbi-
trarily small, that use numerical inversion of the characteristic function [Imhof,
1961] or an infinite series formulation [Farebrother, 1984].

4.1.3 Observations on examples

y

x1

0 1

0
1 f

evaluations

Figure 4.1: Objective function and evaluations for the univariate example.

We compute and display the proposed criteria for two synthetic test cases in
dimension one and two.

The univariate test case is a first simple illustration with D “ r0, 1s. We con-
struct two models from four arbitrary evaluation pointsX1:4 “ p0.1, 0.4, 0.6, 0.98qJ.
Evaluation values y1:4 “ p0.225, 0.22, 0.7501, 0.75qJ are taken from a IRSN test
case, with a steep slope in the middle of D (see fig. 4.1, with contextual details



4.1. LEARNING HETEROGENEOUS FUNCTIONS 71

0.0

1.0

0 1

0
0.

04
6

● ●

● ●

pr
ed

ic
ti

on
 v

ar
ia

nc
e

x1

Mean Squared Error (MSE)MSE Grandient−based MSE (G−MSE)

0.0

1.0

0 1
0

57
.5

89

● ●

● ●

G
−

M
S

E

x1

GNV(2) Gradient Norm Variance (GNV)

0.0

1.0

0 1

0.
5
04

2.
13

3

● ●

● ●

G
N

V

x1

GNV(1) 

Integrated Mean Squared Error (IMSE)

0.0

1.0

0 1

−
1.

3
33

−
0.

76
9

● ●

● ●

IM
S

E

x1

IMSE Gradient−based IMSE (G−IMSE)

0.0

1.0

0 1

−
22

67
.4

2
7

−
6.

08
5

● ●

● ●

G
−

IM
S

E

x1

IGNV(2) Integrated Gradient Norm Variance (IGNV)

0.0

1.0

0 1
−

1.
0
43

−
0.

90
6

● ●

● ●

IG
N

V

x1

IGNV(1) 

0.0

1.0

0 1

0
0.

11
9

● ●

● ●

pr
ed

ic
ti

on
 v

ar
ia

nc
e

x1

Mean Squared Error (MSE)MSE Grandient−based MSE (G−MSE)

0.0

1.0

0 1

0
63

8
.9

7
4

● ●

● ●

G
−

M
S

E

x1

GNV(2) 

0.0

1.0

0 1

0
6.

77
4

● ●

● ●

G
N

V

x1

Gradient Norm Variance (GNV)GNV(1) 

Integrated Mean Squared Error (IMSE)

0.0

1.0

0 1

−
1.

07
4

−
0.

71
2

● ●

● ●

IM
S

E

x1

IMSE Gradient−based IMSE (G−IMSE)

0.0

1.0

0 1

−
42

76
.2

3
1

−
0.

71
2

● ●

● ●

G
−

IM
S

E

x1

IGNV(2) 

0.0

1.0

0 1

−
0.

39
−

0.
27

5

● ●

● ●

IG
N

V

x1

Integrated Gradient Norm Variance (IGNV)IGNV(1) 

Figure 4.2: Criteria values (orange) on D. The criteria are applied on two
Gaussian process models, with mean and standard deviation represented in
the background. Plain grey shows stationary model and crosshatched grey
shows non-stationary.
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in section 5.1). As the criteria values depend on the model, and in particular
on the covariance function, we build two models for this data set via ordinary
kriging. The first model has a stationary covariance, with Matérn structure
(smoothness parameter ν “ 5{2 and correlation length θ “ 2{10). The second
model is identical, but with a non-stationary covariance obtained by chaining
the the first covariance with a warping γ as in section 2.2.2, with γ defined as
follows:

γ : xÑ x1r0,4.5rpxq`p10x´4.5`0.45q1r4.5,5.5rpxq`p0.1px´0.55q`1.45q1r5.5,1spxq.
(4.15)

This warping correspond to a contraction of r0, 1s in its right side and a dilata-
tion in its middle. Figure 4.2 displays the values of six criteria, MSE, IMSE,
GNV and IGNV for η “ 1, 2 for the stationary and the non-stationary models.

The bivariate example approximates the test function of eq. (2.48) displayed
in fig. 2.9 with the GP model stationary isotropic of Matérn covariance (sec-
tion 2.1) from a LHS design of size 8 optimised with the maximin distance.
Figure 4.3 display the values of the MSE, IMSE GNV and IGNV for η “ 1, 2.

We observe for both uni- and bivariate cases that despite their higher com-
putational costs, integrated criteria (IMSE, IGNV) can be preferred for their
generally smoother variations, and also lower values at the edges of the input
space compared to MSE and GNV. As expected, variance-based criteria do
not provide a higher criterion value for the high variation region in the bottom
left corner of the input space. On the contrary, we notice that gradient-based
criteria provide higher values where f has high variations.

Like MSE and IMSE, integrated gradient-based criteria insure that new eval-
uation points are not in regions surrounding points already evaluated, as they
take the least optimal values in these region. These figures suggest that inte-
grated gradient-based criteria could be useful as a compromise between global
uncertainty reduction and focus on high variations. The univariate case also
shows the impact of the model on the criterion value. Here the difference
between the models is an input space warping. We observe, for the non-
stationary model, that the contraction in the right sides of r0, 1s (respectively
the dilatation in the middle) lowers (respectively raises) the criterion value.
These figures suggest that fitting a non-stationary warped model to a func-
tion with high variation regions will also make the criteria evaluate more in
these regions, especially for the gradient-based criteria. These points will be
investigated in the next chapter, where the different approaches developed
throughout the thesis are tested and compared based engineering test cases.
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4.2 Contributions in parallel Bayesian optimi-
sation

We focus now on the multipoint expected improvement criterion (see ap-
pendix A for a detailed introduction). Our aim is to present a set of novel
analytical and numerical results related to the calculation, the computation,
and the maximisation of the multipoint EI criterion. As most of these results
apply to a broader class of criteria, we present first in section 4.2.1 a gener-
alisation of the multipoint EI that allows accounting for noise in conditioning
observations and also exponentiating the improvement. This generalised cri-
terion is calculated using moments of truncated Gaussian vectors in the flavor
of [Chevalier and Ginsbourger, 2014.]. Thus in section 4.2.1 we give a cal-
culus method for the derivation of these moments at any order. After this
preliminary result, the generalised multipoint EI is calculated in section 4.2.1.
The obtained formula is then revisited in the standard case (noise-free with
an exponent set to 1), leading in section 4.2.2 to a numerical approximation of
the multipoint EI with arbitrary precision and very significantly reduced com-
putation time. Next, the pqdq-dimensional maximisation of the multipoint EI
criterion is discussed in section 4.2.2, where the differentiability of the gener-
alised criterion is studied and its analytical gradient is calculated. A numerical
approach for fast gradient approximations with controllable accuracy is pre-
sented in section 4.2.2. Finally, section 4.2.2 discusses the computational gain
of the proposed approaches.

4.2.1 Analytic results for generalised multipoint expected
improvement

Generalisation of the multipoint expected improvement criterion

Throughout this section the objective function f may be observed noise-free
or with noise, meaning that at some arbitrary iteration i the observed value
may be fpxiq or fpxiq ` εi where εi is a realisation of a zero mean Gaussian
random variable with known (or estimated and plugged-in, see explanations
on empirical Bayes approach in section 2.1.1) variance. We recall that f is
assumed to be one realisation of a GP Y conditionally to evaluation events
An fi tYx1 “ fpx1q, . . . , Yxn “ fpx1qu (with conditioning on Yxi ` εi in the
noisy case). In noisy cases the εi’s are generally assumed to be independent
(although the case of εi’s forming a Gaussian vector is tractable), but more
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essentially they are assumed independent of Y .

In batch-sequential Bayesian methods, in particular for optimisation, we are
interested in computing sampling criteria Jn depending on q ě 1 new points
xn`1:n`q “ pxn`1, . . . ,xn`qq P Dq. At any step of corresponding (synchronous)
parallel algorithms, the next batch of q points x‹n`1:n`q is then defined by
maximizing Jn over all possible batches.

Values of such criteria typically depend on xn`1:n`q through the conditional
distribution of Yx1:n`q knowing An, which in noiseless setting simplifies to
Yxn`1:n`q (as without noise, Yx1:n is deterministic knowing An). Conditional
mean and covariance functions are analytically formulated via the Kriging
equations, see section 2.1.1. Working out these criteria thus generally boils
down to Gaussian vector calculus, which may become intricate and quite cum-
bersome to implement as q (or n ` q, in noisy settings) increases. Our gen-
eralised version of the multipoint expected improvement criterion (or ‘q-EI’,
when the evaluation batch has size q), that allows accounting for a Gaussian
noise in the conditioning observations and also for an exponentiation in the
definition of the improvement, is defined as:

EInpxn`1:n`qq “ En
ˆˆ

min
`“1,...,n

Yx` ´ min
r“1,...,q

Yxn`r

˙α

`

˙

, (4.16)

where α P N‹, Enp¨q “ Ep¨|Anq and p¨q` fi maxp0, ¨q. This form gathers
several sampling criteria notably including q-EI, both in noiseless and noisy
settings, and also a multipoint version of the generalised EI of [Schonlau, 1997].
In addition, the obtained results apply to batch-sequential versions of the
Expected Quantile Improvement [Picheny et al., 2013] (EQI) and variations
thereof, by a simply change of process from Y to the quantile process. We
will show in proposition 11 that such generalised multipoint EI criteria can be
formulated as a sum of moments of truncated Gaussian vectors. In the next
subsection, in order to get a closed form for the generalised EI we first define
these moments and derive some first analytical formulas, that might also be
of relevance in further contexts.

Preliminary calculations on moments of truncated Gaussian distri-
bution

We fix α P N‹ and p “ n` q in noisy settings or p “ q in noiseless settings.
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Definition 7. Let Z be a Gaussian vector with mean m P Rp and covariance
matrix Σ P Sp``, where Sp`` is the cone of positive definite matrices of Rpˆp.
For any positive integer r ď p, we define the functionMr,α on Rp ˆ Sp`` by

Mr,α : pm,Σq ÞÑMr,αpm,Σq “ En pZα
r 1Zď0q , (4.17)

where the inequality Z ď 0 is to be interpreted component-wise.

Note that the term ‘moments of a truncated Gaussian distribution’ is techni-
cally reserved for 1

C0
Mr,α, with C0 “ PpZ ď 0q, but for simplicity we use it

here for justMr,α.

If Z is composed of values of a GP at a batch of q locations xn`1:n`q, we use
the notation Mr,αpZxn`1:n`qq fi Mr,αpmpxn`1:n`qq,Σpxn`1:n`qqq. We obtain
the moments Mr,αpm,Σq of a truncated Gaussian distribution by an exten-
sion of Tallis’ technique [Tallis, 1961] to any order, presented in the following
proposition:

Proposition 10. The function G : Rp ˆ Rp ˆ Sp`` Ñ R defined by

Gpt,m,Σq “ e
1
2

´

pt`Σ´1mq
J

Σpt`Σ´1mq´mJΣ´1m
¯

Φp,Σ p´m´ Σtq , (4.18)

where Φp,Σp¨q is the cumulative distribution function of the centred p-variate
normal distribution, is infinitely differentiable, and the moments Mr,α are
given by:

Mr,αpm,Σq “ BαGp¨,m,Σq
Btαr

ˇ

ˇ

ˇ

ˇ

t“0
. (4.19)

The proof of this proposition is given in appendix A and relies on calculating
the moment generating function tÑ E

`

exp
`

tJZ
˘

1Zď0
˘

. Even if an analyti-
cal formula can be obtained at any order of differentiation α, the complexity
of derivatives in eq. (4.19) increases rapidly. We give below the results for α
equals 1 and 2.

Case α “ 1. Differentiating G with respect to t yields:
BG
Bt
pt,m,Σq “ exp

ˆ

1
2

´

`

t` Σ´1m
˘J Σ

`

t` Σ´1m
˘

´mJΣ´1m
¯

˙

ˆ

`

Σ
`

t` Σ´1m
˘

Φp,Σ p´m´ Σtq ´ Σ∇Φp,Σ p´m´ Σtq
˘

where ∇Φp,Σ is the gradient of Φp,Σ (see appendix A for an analytical deriva-
tion). Taking t “ 0 in the previous equation gives

Mr,1pm,Σq “ mrΦp,Σp´mq ´ΣJ
r∇Φp,Σp´mq (4.20)
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where Σr is the rth column of Σ. It is shown in appendix A that computing each
of the p components of ∇Φp,Σ requires evaluating the CDF of a p ´ 1 variate
normal distribution. The number of calls to this function for computing the
first moment of the truncated Gaussian distribution is thus of Oppq.

Case α “ 2. Similarly, differentiating G twice with respect to t yields

Mr,2pm,Σq “ pΣrr `m
2
rqΦp,Σp´mq `ΣJ

r ∇∇JΦp,Σp´mqΣr

` 2mrMr,1pm,Σq.
(4.21)

For readability, the detailed formula of ∇∇JΦp,Σ, the Hessian matrix of Φp,Σ,
is sent to appendix A. The number of calls to the multivariate normal CDF is
of Opp2q.

Calculation of generalised q-EI

The previous results obtained for the moments of the truncated normal distri-
bution turn out to be of interest for computing the generalised q-EI introduced
in eq. (4.16), as shown by the following proposition.

Proposition 11. For xn`1:n`q P Dq, the criterion EIn defined by eq. (4.16)
exists for all α and can be written as a sum of moments of truncated normal
distributions

EInpxn`1:n`qq “

n
ÿ

`“1

q
ÿ

r“1
Mn`r´1,α

´

Zp`,rqpxn`1:n`qq
¯

, (4.22)

with Zp`,rqpxn`1:n`qq a vector of size n` q ´ 1 defined by

Z
p`,rq
i “

$

’

’

&

’

’

%

Y` ´ Yi if 1 ď i ď `´ 1,
Y` ´ Yi`1 if ` ď i ď n´ 1,
Yr ´ Yi`1 if n ď i ď n` q ´ 1 and i ‰ n` r ´ 1,
Yr ´ Y` if i “ n` r ´ 1,

noting Yi fi Yxi.

Moreover, in the noiseless case the random vector pYx1 , . . . , Yxnq becomes de-
terministic given An. Denoting by `0 the (smallest) index of the minimal
observation, i.e. Y`0 “ min`“1,...,n Y`, and writing Zprqpxn`1:n`qq the vector of
the q last components of Zp`0,rqpxn`1:n`qq, Equation eq. (4.22) is simplified to:

EInpxn`1:n`qq “

q
ÿ

r“1
Mr,α

´

Zprqpxn`1:n`qq
¯

. (4.23)
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Remark 2. In this thesis we also use the following compact notation for the
pn` q ´ 1q´dimensional vector Zp`,rqpxn`1:n`qq:

Zp`,rqpxn`1:n`qq “ Ap`,rq
`

Yx1 , . . . , Yxn`q
˘J
, (4.24)

where Ap`,rq is a matrix implicitly defined by Zp`,rqi of proposition 11.

The proof of proposition 11 is relegated to appendix A for conciseness. Equa-
tion (4.22) highlights that the computation of the generalised q-EI in noisy
settings is challenging since it involves computing nq different moments, each
requiring pn`qqα calls to the multivariate normal CDF in a dimension close to
n` q. Even for α “ 1 and moderate q, linear dependence in the number of ob-
servations n makes use of this criterion challenging in application. Regarding
the noiseless criterion, the computation of q moments is more affordable, at
least for moderate q, but one has to keep in mind that the ultimate goal here is
to perform global maximisation of the considered criteria. It is thus important
to bring further calculation speed-ups in order to perform this optimisation in
a reasonable time compared to the evaluation time of the objective function
f , which is assumed to be expensive. The rest of the chapter discusses these
matters and proposes faster formulas to compute both q-EI and its gradient.

4.2.2 Speeding up the optimisation of q-EI criterion

Fast numerical estimation of first order moments and their deriva-
tives

Let us now focus on the practical implementation of the closed-form formula
eq. (4.22). We take α “ 1 and note p “ n ` q in noisy settings and p “ q
in noiseless settings. As mentioned before, the computation of the noisy or
noiseless q-EI (see eqs. (4.22) and (4.23)) requires calls to the CDF of the
p-variate and pp ´ 1q-variate normal distribution, Φp and Φp´1. These CDFs
are here computed using the Fortran algorithms of [Genz, 1992] wrapped in
the mnormt R package [Azzalini and Genz, 2014]. A quick look at eqs. (4.20)
and (4.22) suggests that the noisy q-EI requires nq evaluations of Φp and nq2

evaluations of Φp´1. For the noiseless case, the number of calls are divided by
n. In both cases, a slight improvement can be obtained by noticing a symmetry
which reduces the number of Φp´1 calls from nq2 (resp. q2 in the noiseless case)
to nqpq ` 1q{2 (resp. qpq ` 1q{2). This symmetry is justified in appendix A.

Despite this improvement, and even in the classical noiseless case, the number
of Φp´1 calls is still proportional to q2. We now give new efficient and trust-
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worthy expansion that enables a fast and reliable approximation of first order
moments of truncated Gaussian vectorsMr,1 by reducing this number of calls
to Opqq.

Proposition 12. Let ε ą 0, and let Z be a Gaussian random vector with
mean vector and covariance matrix pm,Σq P Rp ˆ Sp``. Then we have

Mr,1pm,Σq “ 1
ε
pemrεΦp,Σp´εΣr ´mq ´ Φp,Σp´mqq `Opε

2
q. (4.25)

Proof. Let us consider the function gr : t P R Ñ emrtΦp,Σp´Σrt ´mq. This
function gr is tangent at t “ 0 with the function t P R Ñ Gpterq, where
the function G is introduced in proposition 10 and er is the rth vector of the
canonical basis. It follows from proposition 10 that

Mr,1pm,Σq “ BG
Btr
pt,m,Σq

ˇ

ˇ

ˇ

ˇ

t“0
,

and we obtain the announced result by Taylor expansion of gr.

This formula simply uses the approximation of a moment with finite differ-
ences of the moment generating function. We showed here that instead of
fully computing the moment generating function, we can expand the simpler
tangent function gr. For conciseness, we name here the use of this formula
as the “tangent moment method”. This formula thus enables approximating
the first order momentMr,1 at the cost of only two calls to Φp. Hence, from
eq. (4.23), computing a noiseless q-EI can be performed at the cost of 2q calls
to Φq. Besides, a similar approach can be applied to approximate the gradient
of q-EI through faster computations of BMr,1

Bm
and BMr,1

BΣ , as shown next:

Proposition 13. The following equations hold:

BMr,1

Bm
“ Φp,Σp´mqer ´

1
ε
pemrε∇Φp,Σp´Σrε´mq ´∇Φp,Σp´mqq `Opε

2
q

(4.26)
BMr,1

BΣ “´

ˆ

BΦp,Σ

Bxv
p´mq δu,r `

BΦp,Σ

Bxu
p´mq δv,r

˙

u,vďp

(4.27)

`
1
ε

`

emrε∇∇JΦp,Σp´Σrε´mq ´∇∇JΦp,Σp´mq
˘

`Opε2
q

where ∇∇JΦp,Σ is the Hessian matrix of Φp,Σ (see appendix A for details).
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As before, these formulas enable reducing the number of calls to the multi-
variate CDF by an order q. For the computation of q-EI this number goes
from Opq2q to Opqq. For computing its dq-dimensional gradient, it goes from
Opq4q to Opq3q. The latter complexity suggests restricting to moderate values
of q in applications. In the next section we present results that enable further
reducing of the complexity for numerically optimising the q-EI.

Optimising the multipoint Expecting improvement

General observations. Maximizing the EIn expressions given in eq. (4.22)
(noisy settings) or eq. (4.23) (noiseless settings) is difficult. These maximi-
sations are performed with respect to a batch of q points xn`1:n`q P pRdqq,
and are thus optimisation problems in dimension dq. In this space, the objec-
tive function to be maximised is not convex in general and has the interesting
property that the q points in the batch can be permuted without changing the
value of EIn; i.e. EInppxn`1, . . . ,xn`qqq “ EInppxn`σp1q, . . . ,xn`σpqqqq for any
permutation σ of t1, . . . , qu. With this property, one can reduce the measure
of the search domain by q!, e.g. by imposing that the first coordinate of the
q points in the batch are in ascending order. We use here multi-start gra-
dient based local optimisation algorithms acting on the whole input domain
Dq Ă Rdq, that do not exploit the structure of the problem but do not seem
to be affected by this, at least with the chosen settings regarding the starting
designs. We propose in section 4.2.2 a faster formula for computing the first
moments Mr,1 previously presented, as well as their derivatives. This will
yield an easier computation of both the generalised EI and its dq-dimensional
gradient whose analytical computation is performed in what follows. Besides,
a second approximate but faster formula to further reduce the calculation time
of the gradient will be introduced in section 4.2.2.

Gradient of the generalised q-EI We provide a calculation of the gradi-
ent of q-EI to the case of the generalised noisy and noise-free q-EI. Again, the
presented formulas rely on results on moments of truncated Gaussian distri-
butions.

Proposition 14. Let xn`1:n`q P Dq be a batch such that the conditional co-
variance matrix pcov pY pxn`iq , Y pxn`jq|Anqq1ďi,jďq is positive definite and
the functions E pY¨|Anq and

`

cov
`

Y¨, Yxn`j
ˇ

ˇAn
˘˘

j“1,...,q are differentiable at
each point xn`i p1 ď i ď qq. These derivatives are written m1piq P Rd and
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Σ1piq P Rqˆd respectively. In this setup, the EIn function in eq. (4.22) is differ-
entiable and its derivative with respect to the jth coordinate of the point xn`i
is

BEI
Bxij

pxn`1:n`qq “

n
ÿ

`“1

q
ÿ

r“1
m
1piq
j Åpl,rqi

JBMn`r´1,1

Bm

´

Zp`,rq
¯

` (4.28)

tr
ˆ

Apl,rqΓ1pi,jqApl,rqJBMn`r´1,1

BΣ

´

Zp`,rq
¯

˙

,

where Γ1pi,jq “
´

Σ1piqu,j δi,v ` Σ1piqv,j δi,u
¯

u,v
P Rqˆq, and δ is the Kronecker symbol.

The derivatives BMn`r´1,1
Bm

and BMn`r´1,1
BΣ are calculated in appendix A.

This expansion of the gradient of the generalised EI as a sum of derivatives of
first order moments is useful thanks to formulas presented next.

Slightly biased but fast proxy of the gradient

The key idea to obtain further computational savings is summarised in this
section. We first strategically decompose the gradient of moments as a sum of
two terms.

Proposition 15. Let us consider a Gaussian multivariate random field Z “

pZiq
J

i“1,...,p from Rd to Rp. For x P Rd, let us denote by mpxq and Σpxq the
mean and the covariance matrix of Zx. Let xa P Rd and assume that Σpxaq is
positive definite. Also, assume that the functions x Ñ mpxq, x Ñ Σpxq and
x Ñ pcovpZi,x, Zj,xaqqi,jďp are differentiable at x “ xa. Then the following
decomposition holds for r “ 1, . . . , p.

∇x rMr,α pmpxq,Σpxqqs|x“xa fi ∇x
“

E
`

Zα
r,x1Zxď0

˘‰
ˇ

ˇ

x“xa

“ ∇x
“

E
`

Zα
r,x1Zxaď0

˘‰
ˇ

ˇ

x“xa
` ∇x

“

E
`

Zα
r,xa1Zxď0

˘‰
ˇ

ˇ

x“xa
. (4.29)

Proof. Σp¨q is continuous at xa, so there exists a neightborhood Vxa of xa such
that for all x P Vxa , Σpxq is positive definite. Let us define on Vxa ˆ Vxa :

gpu,vq “ E pZα
r puq1Zvď0q .

Applying eq. (A.4) of appendix A, for all u and v, gpu,vq is a moment gener-
ated by differentiation of the following function:

Mu,v : tÑ e
1
2pΣrrpuqt

2`2tmrpuqqΦp,Σpvq

´

´mpvq ´ t pcovpZrpuq, ZjpvqqqJjďp
¯

.

(4.30)
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The analytical form of eq. (4.30) and the assumed differentiability at xa ensure
existence of partial derivatives of g “ pu,vq Ñ dαMu,v

dtα p0q at pxa,xaq. So to
conclude,

∇x rMr,α pmpxq,Σpxqqs|x“xa “ ∇x rgpx,xqs|x“xa

“
B

Bu
rgpu,xaqs

ˇ

ˇ

ˇ

ˇ

u“xa

`
B

Bv
rgpxa,vqs

ˇ

ˇ

ˇ

ˇ

v“xa

.

The latter decomposition can be interpreted as follows: infinitesimal variations
of pmpxq,Σpxqq around pmpxaq,Σpxaqqmodify the momentsMr,α pmpxq,Σpxqq
in two ways. First, it modifies the distribution of Zα

r,x, second it changes the
distribution of the truncation 1Zxď0. For the particular case of q-EI, we pro-
pose to neglect this second variation. Applying this approximation to eq. (4.23)
gives for X0 P Dq,

∇xn`jEIpxn`1:n`qq
ˇ

ˇ

xn`1:n`q“X0

“

q
ÿ

r“1
∇xn`j E

``

T ´ Yxn`r
˘α
1AprqY xn`1:n`qď0

˘
ˇ

ˇ

xn`1:n`q“X0

«

q
ÿ

r“1
∇xn`j E

´

`

T ´ Yxn`r
˘α
1AprqYX0ď0

¯
ˇ

ˇ

ˇ

xn`1:n`q“X0

“ ´∇xn`j E
´

Y α
xn`j

1ApjqYX0ď0

¯
ˇ

ˇ

ˇ

xn`1:n`q“X0

“ ´E
ˆ

∇xn`j Y α
xn`j

ˇ

ˇ

ˇ

xn`1:n`q“X0
1ApjqYX0ď0

˙

, (4.31)

where the last step is obtained by mean square differentiability of the process
xÑ Yx

α
1B, with B an event constant with respect to x, see appendix A. We

can observe that this approximation makes a summation term disappear. The
computation of this formula requires pd` 1q evaluations of q-variate Gaussian
CDF. Indeed, eq. (4.31) indicates that each component of the gradient vector
can be considered as a moment of a truncated Gaussian vector, so we can apply
the results of section 4.2.1. In particular, when α “ 1, applying proposition 12,
two Gaussian CDF calls are needed for each of the d components, leading to
2d evaluations. Besides, from eq. (4.25), the second CDF call does not depend
on r, which implies that this term is common for every dimension. Thus the
gradient of eq. (4.31) finally comes with d` 1 CDF evaluations instead of 2d.
For a full gradient with respect to all q points of the batch, we then need
qpd` 1q CDF evaluations – a substantial improvement compared to the Opq4q
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obtained in [Marmin et al., 2015] and the Opq3q obtained in the previous
section. The complexities for computing moments, q-EI and its gradients,
expressed in terms of number of calls to the Φ function, are summarised in
table 4.1. These new computational savings come at the price of a non-exact
gradient calculation. A first numerical validation is represented in fig. 4.4. On
this example, we observe small (1ˆ10´2) relative errors between the exact and
approximate gradient of dimension qˆd “ 4 (the biggest difference vector has
a norm of 0.13, compared to an exact gradient norm of 13.1). We also observe
that the relative error appears to be typically smaller with higher q-EI, which
is promising for q-EI maximisations. However, this apparently trustworthy
but non-exact calculation naturally raises the question of the impact of such
an approximation on the performance of gradient-based q-EI maximisation
algorithms. As we will see in the next section, this proxy gradient turned out to
enable quite competitive q-EI maximisation performances based on numerical
experiments.

Table 4.1: In noiseless settings, total number of calls to the CDF of the mul-
tivariate Gaussian distribution for computingMr,1, q-EI, their gradients and
their approximations, depending on q and d. For q-EI in noisy setting, replace
q by p “ n` q and multiply each number of calls by n.

Number of CDF evaluations
Φq´3 Φq´2 Φq´1 Φq Total

Mr,1 analytic q 1 Opqq
tangent moment 2 2

EI analytic `

q`1
2
˘

q Opq2q

tangent moment 2q Opqq
∇Mr,1 analytic 3

`

q
3

˘

3
`

q
2

˘

2q 1 Opq3q

tangent moment 2
`

q
2

˘

2q 2 Opq2q

proxy d` 1 Opdq
∇EI analytic 6

`

q`1
4
˘

3
`

q`1
3
˘

p3q2 ` qq{2 q Opq4q

tangent moment q2pq ´ 1q 2q2 2q Opq3q

proxy qpd` 1q Opqdq

Calculation speed

Here we illustrate the usability of the proposed gradient-based q-EI maximisa-
tion schemes and in particular the improvements brought by the fast formulas
detailed in the previous sections. The relevance of using sequential sampling
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Figure 4.4: Numerical validation of the approximation from eq. (4.31), with
α “ 1, q “ 2, d “ 2. From left to right: 1) Norm of the q-EI gradient,
with respect to the first batch point (the other point is fixed in the center of
r0, 1sd) ; 2) Norm of the difference vector between the analytical gradient and
its approximation ; 3) Relative error (norm of the difference divided by the
real norm) computed on 3000 random batches sampled uniformly in r0, 1sdˆq,
with respect to their q-EI.
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strategies based on the q-EI maximisation has already been investigated (see,
[Chevalier and Ginsbourger, 2014., Wang et al., 2015, Marmin et al., 2015])
and all these articles pointed out the importance of calculation speed which
often limits the use of q-EI based strategies to moderate q. We do not aim
again at proving the performance of q-EI based sequential strategies. Instead
we aim at illustrating the gain, in computation time, brought by the fast for-
mulas and show that using the approximate gradient obtained in eq. (4.31)
does not impair the ability to find batches with (close to) maximal q-EI.
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Figure 4.5: Computation times for q-EI or its gradient as a function of the
batch size q (logarithmic scale). We take an averaged computation time over
1000 batches (except for points marked with a ˚, averaged over 150 batches).

In chapter 5, we apply sequential strategies to minimise f . Here we look at
empirical computation times for evaluating q-EI and its gradient as a function
of the batch size q. For the computations, the so-called “analytic” method
relies on the state of the art formulas of [Chevalier and Ginsbourger, 2014.,
Marmin et al., 2015] with a number of calls to the multivariate normal CDF
of respectively Opq2q and Opq4q. The “tangent moment” method uses our
formula for moment calculation to yield q-EI and its gradient (see eqs. (4.25)
to (4.27)). Finally, for computing the gradient only, the “proxy” method relies
on eq. (4.31).

Figure 4.5 exhibits computation times averaged over 1000 batches drawn uni-
formly. The Gaussian process model is based on an initial design of n0 “ 10d “
80 points drawn from an optimum-LHS procedure [Kenny et al., 2000]. We
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use the Matérn pν “ 3{2q tensor product covariance function and estimate the
hyperparameters by maximum likelihood using the DiceKriging R package [D.
Ginsbourger and V. Picheny and O. Roustant and with contributions by C.
Chevalier and S. Marmin and T. Wagner, 2015]. Figure 4.5 shows significant
computational savings. For instance with q “ 8, one gradient computation
takes respectively 0.04s, 0.33s and 1.33s using respectively the proxy, the tan-
gent moment and analytic methods. Since the complexity for computing a
gradient with the proxy is of Opqdq against Opq3q and Opq4q for the two other
methods, the computational savings of the proxy tends to increase with q. It
should also be noted that these savings will be larger with decreasing domain
dimension d. If we look at q-EI computations, the tangent moment method is
3.3 times faster than the analytic one when q “ 8 and 6.5 times faster when
q “ 20; thanks to an Opqq complexity against Opq2q.

In this second part of the chapter, we have provided a closed-form expression
of generalised q-points Expected Improvement criterion for batch-sequential
Bayesian global optimisation. An interpretation based on moments of trun-
cated Gaussian vectors yields fast q-EI formulas with arbitrary precision. Fur-
thermore a new approximation for the gradient is shown to be even faster
while preserving ability to find batches close to maximal q-EI. As the use of
these strategies was previously considered cumbersome from a dozen of batch
points, these formulas happen to be of particular interest to run q-EI based
batch-sequential strategies for larger batch sizes. Additionally, some of the
intermediate results established here might be of interest for other research
questions involving moments of truncated Gaussian vectors and their gradi-
ents. In section 5.4, we apply these methods on a classic 8-dimensional test
case. In particular, a multistart derivative-based multipoint EI maximisation
algorithm highlighting the benefits of the considered methodological princi-
ples and the proposed fast approximations is tested and compared to baseline
strategies.



Chapter 5

Numerical experiments on
engineering applications

This chapter deals with a series of applications in engineering where special
attention is devoted to the assessment of the capabilities of the methodological
contributions developed in this thesis for the approximation of functions with
heterogeneous variations. Also, we present numerical experiments pertaining
to speed-ups in the computation of the batch-sequential generalised expected
improvement criteria and its gradient, for parallel global optimisation.

Our numerical experiments include several performance benchmarks, be it in
terms of sampling criteria (ranging from MSE, IMSE to GNV, IGNV and also
EI) or surrogate models (stationary anisotropic, TGP [Gramacy, 2007, Gra-
macy and Taddy, 2010], CGP [Ba and Joseph, 2014], WaMI-GP). In this chap-
ter, experiments are in R [R Core Team, 2015]. In all considered experiments,
initial experimental designs are based on Latin Hypercube Sampling optimised
with maximin distance (see section 2.1.2) from the package DiceDesign [Dupuy
et al., 2015].

The baseline model throughout the chapter is ordinary kriging in empirical
Bayes settings. i.e. the constant mean and the covariance function of the
underlying GP are supposed to be known, and the covariance parameters are
estimated by maximum likelihood using the ‘mle’ function of the kergp R pack-
age [Deville et al., 2015]. More generally the topic of trends is not addressed
further in the considered approaches, for simplicity. For the gradient-based
criteria, the code computing the conditioned distribution of the GP gradi-
ent is programmed in C++, embedded in R using RcppArmadillo, an algebra
package [Eddelbuettel and Sanderson, 2014].

87
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Except for optimisation, the capability assessment is achieved by focusing on
estimates of the L2 prediction error:

∆N “

¨

˝

ż

D

pmNpxq ´ fpxqq
2dx

˛

‚

1{2

, (5.1)

withmN the predictor obtained by the tested method after a total budget of N
evaluations has been spent. Experimental design strategies are replicated by
starting from different initial designs in order to account for stochastic effects.

The next section is a brief description of the context of the applications. Then,
we provide several numerical benchmarks devoted to the approximation of
functions with heterogeneous variations (Sections 5.2 and 5.3) and to global
optimisation (Section 5.4). In all the tests, the input variables are rescaled
between 0 and 1 and are denoted by x1, . . . , xd for the sake of clarity.

5.1 Presentation of case studies

From an applied perspective, the thesis is motivated by engineering problems,
and in particular by IRSN test cases in mechanical engineering for civil nu-
clear safety. The overall goal is to enable an enhanced analysis of systems with
heterogeneous variations in contexts, such as those of expensive numerical sim-
ulations, where the number of evaluations is limited. The main test cases are
taken from a mechanical simulator of cracking propagation in a material. Fur-
ther numerical comparisons are performed on a fluid dynamics test case from
NASA. For our contributions in optimisation, we exploit a well known deter-
ministic function that models waterflow through a borehole. In the following
sections we detail the context of each of these applications.

5.1.1 Cracking simulation of composite materials

The context is here the mechanical study of nuclear installations. Cracking
propagation in components due to ageing of nuclear plants is a safety issue
studied at IRSN and in particular in the Micromechanics and Structural In-
tegrity Laboratory, a joined laboratory of IRSN and the National Center for
Scientific Research (CNRS). One important goal is to understand the links
between the characteristics of the materials constituting the components and
accidental radioactive leaks. The cracking energy of a component, the smallest
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energy required to break the material apart, is a key value for risk control. It
is the output of interest in the following two applications. The cracking en-
ergy with respect to some mechanical parameters of the component (detailed
in what follows), as well as a images of different cracking propagations are
displayed in figs. 5.1 and 5.3.

The cracking is simulated using a computer program Xper [Perales et al., 2010]
(using the solving method ‘NonSmooth Contact Dynamics’ [Perales et al.,
2008]). In the simulations, components in undamaged state are submitted to
a specified force until they are entirely torn apart.

The numerical techniques for the simulation are precise but costly: the average
computation time for one evaluation is 2 to 3 days1. Depending on the inputs,
the duration can even reach one week. The goal of these applications is to
obtain a description as precise as possible of the relation between some input
parameters of the Xper code and the cracking energy in output. Because of
the limited computational budget, there is a high interest in choosing carefully
the evaluations with model-based design of experiments in order to capture
the physical behaviour.

We briefly describe now the mechanical properties of the considered material.
For a detailed version, Perales et al. [2008] describes this structure named
‘MP-CZM’. The structure consists of squares with side length 2.8 ˆ 10´2 m
periodically repeated over space in two orthogonal directions. The traction
force applied to the structure is uniform, axial and of intensity 102 s´1. A
cracking seed (determining where the propagation starts) is positioned in the
middle of the left side. The composite material has two phases: the matrix,
and inside of it, the inclusions2. Figure 5.2 displays the matrix/inclusion layout
identical in all squares.

The matrix and the inclusion are supposed to be elastic. The cohesion at a
given interface between the matrix and the inclusion is described by a ratio
wmat´incl{wincl´incl (varying here between 1.3ˆ 10´3 and 7.5ˆ 102). Referring
to [Perales et al., 2008], we mention that wmat´incl is named ‘surface energy
of the interface matrix/inclusion’ (also interface energy) and wincl´incl is the
surface energy of the interface inclusion/inclusion (also inclusion energy). The
lengths of the inclusions can have also some impact on the behaviour of the
output. They vary here between 3ˆ 10´3 and 1ˆ 10´2 m.

1Time experienced on a processor Xeon Intel with frequency 3.20 GHz and 8 GB of
RAM).

2A matrix of a composite material is a binding agent (of ceramic, plastic, metal, etc)
that holds other materials together (here named ‘inclusions’), forming a more complex solid
material overall.
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Figure 5.1: Cracking energy of an heterogeneous material depending on two
uncertain input parameters (lnpW q and L). The image on the top represents
the available dataset while the image on the bottom is a 1D-cut along the
lnpW q-axis with sketches of the cracking phenomena. According to the inputs,
the cracking propagates around or through the inclusion. These two modes
correspond respectively to high or low cracking energies. A transition zone
appears in between with a steep slope.
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Two test cases are studied depending on the number of inclusions in the matrix.
They are referred as ‘test case 1’ and ‘test case 2’.

Test case 1

In this test, the matrix contains one inclusion (at the center of the square)
(fig. 5.1) and we have two uncertain input parameters:

• the ratio W “ wmat´incl{wincl´incl,

• the length L (along the y axis).

The available dataset to evaluate the capability of each method includes 216
points corresponding to the simulation of the cracking energy on a 36ˆ6 grid,
see fig. 5.1. One can see that a high variation zone located along a straight
line, slightly non-aligned with the canonical axes. We also show on this fig-
ure a unidimensional cut of the cracking energy with respect to lnpW q. We
observe a region where a small variation of the inputs impacts drastically the
output. This can be is attributed to the competition between different physical
phenomena that control the trajectory of the cracking (it can go through the
inclusion or around it).

Test case 2

In this test, the matrix has two inclusions (fig. 5.2) and we have four uncertain
input parameters :

• for the first inclusion, the ratio W1 “ wmat´incl{wincl´incl,

• this same ratio W2 for the second interface,

• the length L1 (in the y axis, see fig. 5.2),

• this same length for the second inclusion L2.

Figure 5.3 shows a bidimensional slice of the cracking energy with respect to
the interface ratios W1 and W2, with fixed inclusion lengths L1 “ 1 ˆ 10´2

m and L2 “ 6 ˆ 10´3 m. Similar to the first test case, the plot exhibits
several zones where the output has high variations. However, these transition
zones are more complex and therefore more difficult to capture by the tested
methods.
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Figure 5.2: Scheme of the structure of the composite material for the IRSN
test case 2.

The numerical comparisons are performed on the bivariate case of fig. 5.3. The
data set includes 289 evaluations, enabling a computation of the prediction er-
ror ∆N . The evaluations were designed with Latin hypercube sampling (LHS)
optimised with the maximin criterion (see section 2.1.2).

5.1.2 Langley Glide-Back Booster simulation

The Langley Glide-Back Booster is a rocket booster developed at NASA. Its
behaviour is studied via numerical simulations. More details on the system be-
haviour and purpose are provided in Rogers et al. [2003]. Three input variables
of the computer code controlling the trajectory of the rocket are considered:
speed (measured in Mach), angle of attack (alpha angle), and sidelip angle
(beta). The output of interest is the lift force. Available data set is displayed
in fig. 5.4. We see that variations are this time mainly directed by canonical
axes. The zone around the plane of equation x1 “ 0.1 (i.e. around mach
one) has higher variations than in the rest of the domain, where the func-
tion is smoother. This calls for a non-stationary model. Some discontinuity
is suggested by the data, which can be observed for example at the bottom
right of the first plot (region x1 « 0.5, x2 ě 0.5, x3 ď 0.5). These are due to
the complexity of the simulator whose convergence depends on a solver which
sometimes returns inaccurate values despite automatic checks [Gramacy and
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Figure 5.3: Cracking energy on a bidimensional slice of the input space (length
parameters fixed to L1 “ 1 ˆ 10´2 m and L2 “ 6 ˆ 10´3 m.), with respect to
the logarithms of the energy ratios.
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Lee, 2008]. Thus the models will be considered in noisy setting in order to
smooth out the convergence errors.
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Figure 5.4: Simple tridimensional GP interpolation of the available data on
the Langley Glide-Back Booster simulation test case (only 3 slices of the input
cube are displayed). The interpolation is made with the R package DiceKriging
[Roustant et al., 2012] with default parameters (ordinary kriging, MLE, with
tensor product Matérn kernel, smoothness ν “ 5{2).

5.1.3 Borehole function

The Borehole function [Harper and Gupta, 1983] has been previously used for
testing methods using a surrogate model [Worley, 1987, Gramacy and Lian,
2012a]. The function computes a rate of water flow, φ, through a borehole.
The problem is described by d “ 8 input variables, rw P r0.05, 0.15s, r P
r100, 50000s, Tu P r63070, 115600s, Hu P r990, 1110s, Tl P r63.1, 116s, Hl P

r700, 820s, L P r1120, 1680s, Kw P r1500, 15000s and is given below

φ “
2πTupHu ´Hlq

ln
´

r
rw

¯

ˆ

1` 2LTu
plnp r

rw
qr2
wKwq

` Tu
Tl

˙ . (5.2)

Here, the objective function f is obtained by rescaling φ on the input domain
D “ r0, 1s8. An analytical study of variations shows that there is a unique
global minimum at x˚ “ p0, 1, 0, 0, 0, 1, 1, 0qJ, with fpx˚q « 1.1918.
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5.2 Comparisons of models and sampling cri-
teria

5.2.1 Comparisons of predictions from fixed space-filling
designs

We first compare the predictive performances of stationary GP, WaMI-GP and
TGP methods.

‚ IRSN test case 1

We built 5000 space-filling designs of size 20 (a set of LHS designs optimised
with a maximin criterion see e.g. [Dupuy et al., 2015]). For each initial design,
predictions are performed with the three competing models, in a noise-free
setting. For the WaMI-GP covariance, we take for γ1 and γ2 the standard
parametrisation with cumulative distribution functions of beta distributions
described in section 3.1. The results displayed on fig. 5.5 indicate that our
approach outperforms the two other ones in terms of prediction errors.
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Figure 5.5: Comparison of L2 prediction errors on the IRSN test case between
the three candidate models: stationary anisotropic GP, TGP and WaMI-GP.
The boxplots are obtained from repetitions with 5000 different initial designs.

It is also informative to analyse the estimated (overall) warpings, as illustrated
in fig. 5.6 (we take the warping from the design giving a median prediction
error). It appears that, as expected, our model dilates the space around the
high variation region. We also display in the input space, the lines of the
of maximal distortion (where the determinant of the Jacobian matrix of the
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warping is maximal) and the lines partitioning the input space in the TGP
method. These lines are both in the same area, meaning that both methods
can somehow detect the high variation region. However, since WaMI-GP model
allows linear transformation of the input space, these lines do not have to be
aligned with canonical axes, adapting with more freedom their directions to
the shape of the actual high variation region.
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Figure 5.6: Some features of models with median prediction errors. Left: esti-
mated warping of the WaMI-GP model with median predictivity; middle: lines
of maximal distortion for 5 (most) median models; right: lines of partitioning
for 5 median TGP models.

‚ Langley Glide-Back Booster (LGBB)

In order to study the influence of the initial number of evaluations, several tests
are performed for designs including from 50 to 700 points (maximin-optimised
LHS). All experiments are repeated 50 times with a different initial designs3.
We then focus on the median and 95% quantile of the errors. Table 5.1 provides
the prediction error associated with our WaMI-GP approach versus TGP.

It turns out that for a small training dataset, WaMI-GP leads to similar pre-
dictive performance as TGP in terms of median error but with a slightly lower
95%-quantile. When increasing the number of points in the initial design,
TGP outperforms WaMI-GP. This makes sense as TGP model increases its
complexity (i.e. its number of partitions and estimated parameters) according
to the data while in its present form WaMI-GP has a fixed structure prescribed

3The differences correspond to different values of the seeds of the algorithm generating
the LHS, see [Dupuy et al., 2015].
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Table 5.1: Prediction errors of the models on the LGBB data.

N0 “ 50 N0 “ 100 N0 “ 150 N0 “ 300 N0 “ 700
q50% q95% q50% q95% q50% q95% q50% q95% q50% q95%

WaMI-GP 6.887 7.889 6.516 7.057 6.326 6.765 6.135 6.206 6.750 6.825
TGP 6.879 7.980 6.095 7.424 5.798 7.647 5.569 6.409 4.954 5.576

by the user. However in the following section, we will see that WaMI-GP may
outperform TGP when adding experiments based on the MSE criterion.

5.2.2 Comparisons of model-based sequential designs

We now investigate the capability of the proposed criteria in sequential design
settings. For different criteria (among MSE/IMSE and GNVη“1,2/IGNVη“1,2),
we repeat several steps of the sequential design: point selections coupled with
re-estimation of the model parameters. A simplified version of IGNVη“1,2 is
also considered by plug-in of the mean value in the integrand. More precisely,

J
IGNV

plug-in ,η
n pxq “

ż

uPD

var p ||∇Yu||η|An, Yx “ mnpxqq du. (5.3)

‚ IRSN test case 1

With the very high computation cost of simulation runs in mind, ten new
evaluations are added starting from a space-filling design of n “ 20 points.
The tested GP models are stationary isotropic and WaMI. The whole workflow
is replicated 100 times and the results are displayed in fig. 5.7 and table 5.2.

Let us first notice that the WaMI-GP model generally leads to the smallest
prediction errors. This can reasonably be attributed to an adaptation of the
model to the function f exhibiting a steep transition region.

When the model is stationary, the MSE and IMSE criteria do not focus on
adding points in the steep transition region (one can say these methods ex-
plore D in a space-filling way). On the contrary, the IGNVη“1 criterion detects
regions where the gradient’s norm is high, leading to a better model training
and to a 50% reduction of the number of points (and therefore of simulations
with the computer code) required to reach the same median error. When the
model is non-stationary and well-adapted to the behavior of f , the IMSE fo-
cuses naturally on the high variation zone and allows a reduction of about
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Figure 5.7: Distribution of the prediction error for the ‘IRSN test case 1’ after
different sequential design of experiments. Sampling criteria are compared in
both stationary and WaMI-GP models.

Table 5.2: For IRSN test case 1, required number of steps for achieving a me-
dian error (computed from the 100 initial designs) below a reference value of
1.405 (the value of the median error after 6 evaluations sampled with IMSE
criterion and stationary model), with respect to the choice of model and cri-
terion.

MSE IMSE GNV,
η “ 1

IGNV,
η “ 1
plugin

GNV,
η “ 2

IGNV,
η “ 2
plugin

Stationary
GP model

10 6 ą10 3 9 4

WaMI-GP
model

5 4 ą10 4 9 4
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30% of the number of simulations compared to the stationary framework. Fi-
nally, coupling WaMI-GP modelling and gradient-based criteria leads to rather
poor results on fig. 5.7 since, by construction, both aspects contribute to more
exploitation in targeted regions and their effects add up, with detrimental
consequences on the exploration side.

‚ Langley Glide-Back Booster

From initial designs of size 50 (still using LHS with optimised maximin dis-
tance), we perform 20 new evaluations chosen by MSE maximisation. Results
obtained in prediction with TGP and the WaMI-GP model are presented in
fig. 5.8. We see that the prediction errors are reduced faster using the WaMi-
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Figure 5.8: Medians (plain) and quartiles (dotted) of prediction errors dur-
ing sequential designs of experiments. Top: comparison of models TGP and
WaMI-GP with a common criterion MSE. Bottom: comparison of criterion
IMSE and IGNV, η “ 2, with a standard stationary GP model.
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GP model. Indeed, the estimated warping allows to dilate the input space
in the region of high variations (around Mach 1). It results in an increased
model variance in this area and thus a more dense exploration of it via MSE
maximisation. Note that the TGP method combined with the MSE criterion
also leads to search patterns focusing in high variation regions, as each par-
tition has a GP with different variance levels (see e.g. [Gramacy and Lee,
2009], where similar variance-based criteria, Active Learning-MacKay and Ac-
tive Learning-Cohn, are used for asynchronous batch sequential applications).
We also compare again a gradient-based criterion, IGNV, η “ 2 with a classical
criterion IMSE relying on a stationary anisotropic GP model (fig. 5.8).

We see that the IGNV(η “ 2) criterion leads to slightly lower prediction errors
than IMSE criterion based on the small budget of 20 points in dimension 3.
Even if moderate, this improvement can be attributed to a more intense sam-
pling of high variation region with the gradient-based criterion. To conclude
this experimental section, reinforcing exploration in high-variation regions ap-
pears as a sound option to improving predictivity of surrogate models such as
GPs, be it through adapted non-stationary covariances or via sampling criteria
dedicated to this goal.

5.3 Further experiments on the approximation
of functions with heterogeneous variations

We consider in this section some extensions of designs of experiments based
on input space warping, and evaluate their capability on the previous test
cases. The first extension integrates a WaMI-based multipoint strategy to add
a batch of evaluations in order to launch several simulations on a computer
cluster. The second one is the Wav-GP approach proposed in section 3.4 that
allows a non-parametric estimation of the warping of a non-stationary GP
model.

5.3.1 WaMi-GP and multipoint sampling

WaMI-GP is combined with a multipoint version of the MSE criterion de-
fined in terms of the determinant of the posterior covariance matrix (see sec-
tion 2.1.2). All the comparisons are performed on the second IRSN test case.
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Gain of using a sequential design

Since this test case has not been studied in the previous section, we first
consider the sequential approach with batchsize q “ 1 and compare with fix
space-filling designs with sizes from 10 to 40.

The sequential design starts with n0 “ 10 initial points. Here as in the rest
of the section, the experiments are repeated 50 times with initial and non-
adaptive (fixed) designs drawn randomly (optimised LHS).

We display on fig. 5.9 the median prediction error with respect to the number
of evaluations or to the evaluation time. These experiments are made twice:
once with the stationary anisotropic model and once with WaMI-GP model.

With a same non-stationary model, the sequential design leads to a more
accurate prediction than the non-adaptive LHS design. Indeed fig. 5.10 shows
that the warping has dilated the areas of higher variation, i.e. the zones
around the two lines of equations x1 “ 0 and x2 “ 0, where the function
has high variation. Thanks to the detection of zones with high variations
by the model, the sequential method evaluates more intensely in these zones,
and improves the predictions. This effect is not experienced with a stationary
model, where the sequential method does not perform better than a (simpler)
model-independent method.

Stationary and non-stationary models can be also compared in term of number
of evaluations to reach a given error. It is displayed by fig. 5.11 and shows
that using the non-stationary model saves up to 55% of evaluations.

Numerical gain of multipoint sequential design

Here we use the multipoint version of the MSE described in section 2.1.2 to
sample new evaluations.

Figure 5.9 also gives the prediction error with respect to the computation time
when increasing batchsize q “ 1, 5 and 10. Obviously the computation time
for outperforming a given accuracy is much shorter when q ą 1. A better
indicator of the efficiency of parallelisation is the speedup, defined as tq{t1,
with ti the computation time of the case i “ q (i.e. how many times the
computation is faster than the case q “ 1). Figure 5.12 displays this value for
different prediction error levels and batchsizes.

We observe that the speedup is higher for lower error levels. For example, in
the stationary case, and for an error of 1.95, increasing q from 1 to 10 speeds
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Figure 5.9: Prediction error with respect to the number of evaluations or the
computation time for different methods of design of experiments.
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Figure 5.10: Overall estimated warping for the test case 2 (represented by its
effect on a regular grid).

up the computation by a factor of about 9.5. As here, speedup with respect
to q is typically concave: the more an algorithm is parallelised, the smaller is
the gain of incrementing q.

We also note that the speedup given by the non-stationary model is lower than
with the stationary one, whereas the non-stationary model still gives lower
prediction error (fig. 5.9). Here the non-stationary model is the most effective
with small batchsize (q “ 1 and q “ 5). A sequential design algorithm with a
large batchsize have fewer iterations, and the locations of the evaluations are
more dependent on early, less precise models. On the contrary, there are more
iterations with a small batchsize, and a more precise model performs even
better in the long run as part of the evaluation budget is allocated according
to the model.

Another indicator of the performance of multipoint sampling is the “evaluation
efficiency” t1{pqtqq, where ti is the time required for the i-point sequential
algorithm to reach a given precision. The value qtq can be seen as a measure
of the computational resources needed for the q-point method, taking into
account the computational time tq and the number of computers q. Figure 5.13
shows the evaluation efficiency for different precision levels and batchsize. We
observe that, when we focus on the computational resource, the efficiency of
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Figure 5.11: Reduction of the number of evaluations gained using a given
method: top, reduction with the non-stationary model compared to the sta-
tionary model in sequential settings (MSE); bottom, reduction with the se-
quential multipoint MSE design (q “ 5) compared to a non-sequential opti-
mised LHS in non-stationary settings. Abscissa is the median error.
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using a sequential design is lower in the multipoint setting than when q “ 1
(this is also noticeable in the first panel of fig. 5.9 for q “ 5). However, in
addition to much shorter computation times (see the second panel of fig. 5.9),
multipoint sequential settings are shown in fig. 5.11 to nonetheless reduce the
prediction errors compared to the non-sequential optimal LHS designs.

5.3.2 Application of the Wav-GP
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Figure 5.14: Warping estimation. From left to right: 1) error step by step be-
tween the warping approximation and the real warping run for a given warped
function ; 2) progression step by step (from grey to black) of the estimated
warping with the algorithm run for a given warped function; 3) the true warp-
ing (black) and 9 warping estimations (grey) resulting from different functions
(sample paths of a Matérn kernel, ν “ 5{2) warped by the same true warping.

Empirical convergence of the warping estimation algorithm

We show in fig. 5.14 the different iterates of the warping estimation algorithm
(see 3.4) as well as the empirical convergence of the L2 error from a known
deformation of a 1D signal on a 10-point design (the underlying stationary
signal is a GP realisation such as plotted in the right panel of fig. 5.15 and the
deformation is displayed as a black curve in the central panel of fig. 5.14). It
turns out that the warping approximation error stabilises quite fast (see the
left panel of fig. 5.14, where the error stabilises from the fifth iteration, up
to minor variations presumably due to Monte Carlo fluctuations). However,
while the error appears to reduce and stabilise, it does not converge to zero,
meaning that the algorithm does not lead to the true warping. This was to
be expected as we are here attempting to recover a warping map from only
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Figure 5.15: Comparison between a real function and its estimated “stationar-
isation” after five iterations of the algorithm: 1) functions with heterogeneous
variations, assumed to be warped by γ, i.e. f ˝ γ; 2) based on 10 evaluation
points of the warped functions f ˝ γ, the warping γ˚ is estimated and the
functions are “stationarised", i.e. f ˝ γ ˝ γ˚´1 is displayed.
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10 observations of the warped function. It would be interesting however to
study the behaviour of the reconstruction error curves (after stabilisation of the
algorithm) under the GP distribution assumed for the starting signal. While
this opens perspectives for future work (be it based on theoretical analysis or
on extensive stochastic simulation benchmarking), here we rather focused on
applying the approach to a few GP realisations for illustrative purposes and
then to focus on real data, as exposed below. In brief, preliminary numerical
experiments based on GP simulations suggested that our proposed algorithm
offers promising results for stationarizing warped functions relying on scattered
evaluations. Following up on fig. 5.14, fig. 5.16 illustrates how the local scale
evolves over iterations. If we focus on the function derived after the algorithm
has stabilised, the associated local scale is close to constant, corresponding
to a mitigation of the warping-induced heterogeneous variations illustrated in
fig. 5.15.

Prediction from fixed designs

We test now the performance of the proposed approach on a unidimensional
cut (when lnpW2q “ 1.3ˆ 10´3) of the IRSN test case 2 data (see fig. 5.17).

The parameters of the estimation algorithm are Nstop “ 4 and p “ 50. The
proposed approach is compared to a prediction under a stationary GP model,
under a warped GP model with parametric warping map expressed as an
increasing continuous piecewise second degree polynomial, under a Composite
GP model [Ba et al., 2012] and under TGP. The models are run on space
filling designs of experiments of size n “ 8 or n “ 40. The whole workflow is
replicated 50 times with different designs. For each method and design size, a
median error and a standard deviation are computed (see Table 5.3). In this
test case, as expected the stationary model is the least accurate. Axial warping
model have mitigate results. CGP and TGP and our model leads to smaller
prediction errors while keeping a moderate standard deviation. Although Wav-
GP is here the most accurate, the difference between the medians of CGP, TGP
and Wav-GP are still small given the level of the standard deviations4.

4To give a particular perspective, applying Welch’s unequal variance t-test, to test if the
50 errors from the Wav-GP model have a lower mean than from TGP or CGP models (with
assumption of normality, see [Welch, 1947]), does not show statistical significance, except
for Wav-GP over TGP when n “ 40 (p-value around 3ˆ 10´4).
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Figure 5.17: Unidimensional cut (lnpW2q “ 1.3 ˆ 10´3) of the IRSN test case
2.

Table 5.3: Median error and standard deviation for different method and design
sizes (fig. 5.17).

Stat. GP Warp GP CGP TGP Wav-GP
n = 8 3.70 (0.61) 3.50 (0.68) 3.33 (0.36) 3.35 (0.53) 3.30 (0.52)
n = 40 1.21 (0.10) 1.17 (0.14) 1.11 (0.19) 1.19 (0.13) 1.09 (0.15)
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Multivariate extension

We define and apply here a heuristic extension of the univariate algorithm to
the case of a bivariate function whose sections run along an unknown direc-
tion and are supposed to present almost the same heterogeneity, calling for
an identical univariate warping. First we build a model using a GP Z condi-
tioned on An with a standard covariance, say stationary anisotropic Matérn
with smoothness parameter ν “ 5{2. Then let us denote by u, ||u|| “ 1, the
direction in input space along which the function has its (main) heterogeneous
variations. While several approaches could be envisaged to estimate u when
unprescribed, as here, in this test case it is estimated using the normed eigen-
vector corresponding to the largest eigenvalue of the positive definite matrix
of anisotropy estimated within an initially fitted GP model with a geometric
anisotropic covariance (e.g. [Rasmussen and Williams, 2006], see section 2.1.1
about the parametrisation).

We perform a transformation of the input space in the direction u:

γpxq “ Pu,x0pxq ` γpxx´ x0,uyqu (5.4)

with Pu,x0pxq “ x ´ xx ´ x0,uyu the projection of x on the hyperplane
Hu,x0 with normal vector u and containing a fixed arbitrary point x0 in the
considered two-dimensional domain (see fig. 5.18).

The univariate warping γp¨q is estimated with the algorithm of section 3.4. As
an input of the algorithm, here the initial univariate Y p0q is empirically chosen
as random sections of Z conditioned on An:

Y p0q : t ÝÑ Z pV ` tuq (5.5)

with V a random vector following a uniform distribution on a closed subset
V of the hyperplane Hu,x0 . We choose V such that the input domain belongs
to tv ` tu,v P V , t P Ru. This operation means that the realisations of Y p0q
are univariate sections of Z conditioned on An at random locations and in the
direction u. Here Y p0q is treated as an input of Algorithm 3.4. The algorithm
returns an estimation of the warping γ and the overall multivariate warping
of Z is given in eq. (5.4).

The multivariate extension is applied to the IRSN test case 1 and compared
with the stationary and CGP models. The parameters of the estimation algo-
rithm are Nstop “ 4 and p “ 50. Following the same numerical approach, we
build for each method 10000 models from random LHS designs of 20 points.
Prediction errors are displayed in fig. 5.19. We observe in terms of median
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error (and also for the two other quartile errors), the Wav-GP model is the
most efficient one on this test case. Despite an overall best performance, the
approach based on Wav-GP is less accurate than other models when focussing
on high quantiles. This can be the motivation of further investigation on the
robustness of the heuristic extension of the proposed approach.
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Figure 5.19: Prediction error resulting from three probabilistic models (me-
dian, first and third quartiles, and for the ‘whiskers’, the highest (resp. lowest)
value whose absolute difference with the third (resp. the first) quartile is less
than 2/3 of the inter quartile distance).

5.4 Global optimisation with gradient of mul-
tipoint expected improvement

The goal of this section is to illustrate the usability of the proposed gradient-
based q-EI maximisation schemes and in particular the improvements brought
by the fast formulas detailed in the previous sections. The relevance of us-
ing sequential sampling strategies based on the q-EI maximisation has already
been investigated before (see [Chevalier and Ginsbourger, 2014., Wang et al.,
2015, Marmin et al., 2015]) and all these articles pointed out the importance
of calculation speed which often limits the use of q-EI based strategies to
moderate q. We do not aim again at proving the performance of q-EI based
sequential strategies. Instead we aim at illustrating the gain, in computation
time, brought by the fast formulas and show that using the approximate gra-
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dient obtained in eq. (4.31) does not impair the ability to find batches with
(close to) maximal q-EI.

Experimental setup: sequential minimisation strategies

We now perform a total of 50 minimisations of f , each using an initial design
of experiments of n0 “ 80 points drawn from an optimum-LHS procedure with
a different seed. Three different batch-sequential strategies are investigated.

The first one – serving as a benchmark – is a variation of the “Constant Liar
Mix” heuristic [Chevalier and Ginsbourger, 2014., Wang et al., 2015] where,
at each iteration, the batch of size q is chosen among several batches obtained
from the Constant Liar heuristic [Ginsbourger et al., 2010] with different lie
levels. We use 7 lie levels fixed to the current maximum observation the current
minimum observation, and the 2.5%, 10%, 50%, 90%, 97.5% quantiles of the
conditional distribution of the point selected in the batch. A total of 7 batches
are proposed at each iteration and the CL-mix heuristic picks the one with
maximum q-EI.

The two other strategies considered here rely on pure q-EI maximisation using
a multistart BFGS algorithm with a stopping criterion of precision 2.2ˆ10´7

(parameter control$factr of the R function “optim” [R Core Team, 2015]).
The gradients involved in the optimisation are computed either with the tan-
gent moment formula or the proxy. For the gradient-based q-EI maximisation,
we use a total of 10 starting batches obtained, again, using a Constant Liar
heuristic with random lies sampled from the conditional distribution at the
selected point. Finally we use two different batch sizes. When q “ 8 we run
a total of 10 iterations and when q “ 4 we run 20 iterations. The hyper-
parameters of the GP model are re-estimated at each iteration after having
incorporated the new observations.

First q-EI maximisation

We first compare the performance, in terms of q-EI, of the multistart BFGS
algorithm when the proxy gradient and the tangent moment methods are used.
Table 5.4 compares the results at iteration 1 for these two methods and the
CL-mix strategy. The results are averaged over the 50 initial designs.

As expected, the CL-mix heuristic yields batches with lower q-EI than the
strategies directly maximizing q-EI. Also, for both q “ 4 and q “ 8, the
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Table 5.4: Average q-EI value of the optimal batches found for each of the 50
initial designs. The numbers between brackets are the average computation
times.

q “ 4 q “ 8
tangent moment 12.45 (22.6 s) 15.35 (700.2 s)
proxy 12.46 (14.3 s) 15.35 (127.0 s)
CL-mix 11.80 (7.7 s) 14.34 (15.6 s)

two q-EI based methods have the same performance, which stresses out the
relevance of the proxy method since the latter is about 1.6 times faster when
q “ 4 and 5.5 faster when q “ 8.

Several q-EI maximisation steps

We now compare the performances of the different q-EI maximisation ap-
proaches after multiple batch evaluations. Figure 5.20 displays the average
regret as a function of the iteration number (first row) and the total compu-
tation time (i.e. the time to evaluate f and find the next batch to evaluate)
assuming respectively that the computation time of f is 0 seconds (i.e. instan-
taneous), two minutes and one hour (rows 2, 3, 4 respectively). Looking at the
performances as a function of the iteration number (first row on fig. 5.20), the
CL-mix heuristic, which samples a batch with lower q-EI at each step, leads in
average to a slower convergence than the two other methods, for both q “ 4
and q “ 8. In contrast, the two strategies based on q-EI maximisation have
similar performances.

However, these conclusions do not hold when the regret is plotted as a func-
tion of the total computation time (rows 2, 3, 4 on fig. 5.20). First, when the
computation time teval of f is null (row 2) it is clear that q-EI-based sequential
strategies are not adapted since they are too expensive. In this case, the CL-
mix heuristic performs better and some other optimisation strategies which
are not metamodel-based would probably be more relevant. Second, when f is
moderately expensive (i.e. teval “ 2 minutes), the proxy method and CL-mix
have comparable performances when q “ 8, but the proxy outperforms when
q “ 4. Besides, the proxy shows a much faster convergence than the tangent
moment method when q “ 8. The use of q-EI based strategies thus becomes
relevant when teval is larger than a few minutes, if the proxy is used. Finally,
when teval is equal to one hour, the use of q-EI based strategies is particularly
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Figure 5.20: Log-scaled average regret of the three considered optimisation
strategies as a function of the iteration number (row 1) and the total compu-
tation time (rows 2, 3, 4) assuming that the computation times of f , teval, are
respectively 0 seconds, 2 minutes and 1 hour. Experiments are performed with
q “ 4 (left column) and q “ 8 (right column).
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recommended. In that case the relative improvement of the proxy compared
to the tangent moment method tends to naturally vanish because of the long
computation time of f . When f is extremely expensive to compute, using the
proxy is thus not essential. However, since it does not impair the ability to
find a batch with large q-EI we still recommend to use it, especially when q is
large.
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Conclusion

Motivated by engineering problems, in particular regarding computational
costs in some IRSN case studies, we have developed non-stationary modelling
and sampling approaches for predicting and designing experiments in a context
of function with heterogeneous variations and expensive evaluations.

The proposed WaMI-GP (Warped Multiple Index Gaussian Process) model
was introduced, showing its link with existing modelling approaches such as
Multiple Index modelling and the non-linear map method. We presented con-
ditions under which the WaMI covariance is provably strictly positive definite
and the corresponding centred GP is mean-square differentiable, or respectively
possesses differentiable sample paths almost surely. We applied the model on
toy examples and on functions from engineering case studies in dimensions 2
and 3. Although the number of parameters of WaMI-GP is kept affine rather
than an exponential in the dimension, thanks to component-by-component
univariate warpings, performances are competitive with respect to stationary
GP and Treed Gaussian Process (TGP) modelling. With bigger data sets, we
experienced better performances of the TGP model in the second engineering
test case. For smaller initial data sets, WaMI-GP and TGP obtained compara-
ble performances at the start, but WaMI-GP proved better at approximating
the response as more points where added by MSE maximisation. It is also
relevant to point that in case of a high variation zone slightly misaligned with
a canonical axis, our model is favoured in numerical tests because its linear
component can estimate an appropriate rotation of the data before the non-
linear warping. In contrast, our method directly inherits from the non-linear
map method the ability to estimate an input space warping. This change of
variables, dilating the space where there are high variations, and contract-
ing smooth areas, can be used by practitioners as a tool for working out and
visualizing “stationarisation”.

We also have introduced in this thesis wav-GP, an original coupling between
wavelets and warped GP models for approximation of function with heteroge-
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neous variations under scattered evaluations. The key ingredient is the estima-
tion of the warping map by combining the computation of the local scale and
conditional simulations. An algorithm consisting of successive local scale esti-
mations and stationarisation steps via estimated warping maps was proposed
for the univariate case and then extended towards a bivariate application. Nu-
merical tests conducted so-far for d “ 1 on Gaussian process realisations and
on the considered univariate test case have highlighted a fast stabilisation of
warping estimates, and also competitive prediction performance compared to
several state-of-the-art GP prediction methods on the mechanical test case.
The current proposal of bivariate extension, that boils down to revisiting the
univariate algorithm along random lines with a chosen direction, leads to com-
petitive median performance on our considered test-case, but at the price of an
increased variability compared to the other methods. These first experimental
results on the proposed algorithm and its extension call for additional research
like a more general multivariate extension. More generally, results obtained
here in terms of prediction performance and the highlighted links between lo-
cal scale and warping are encouraging to further investigate theoretical and
methodological connections between local analysis and non-stationary Gaus-
sian process modelling.

From a different viewpoint, we have also constructed novel criteria in sequen-
tial design of experiments for exploring function with high variation regions.
These criteria are based on the gradient norm variance (GNV) of the modelling
GP. These criteria are designed to sample preferably in high variation regions,
where prediction errors are typically higher, but still performing a global ex-
ploration of the input space. We applied them for adaptively approximating
functions arising from the two engineering case studies. Numerical results are
different according to the model. When the covariance of the GP model is
a priori stationary, some of the proposed criteria lead to a better prediction
than MSE and IMSE thanks to their focus on steep regions. When combining
the novel criteria with WaMI-GP however, the effects are somehow cumulated
and new evaluations are mostly concentrated around the high variation region
leading to predictions that are less trustful when looking at performances over
the whole domain.

Finally, we provide a closed-form expression of the generalised q-points Ex-
pected Improvement criterion for batch-sequential Bayesian global optimisa-
tion. An interpretation based on moments of truncated Gaussian vectors yields
fast q-EI formulas with arbitrary precision. Furthermore a new approximation
for the gradient is shown to be even faster while preserving ability to find
batches close to maximal q-EI. As the use of these strategies was previously
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considered cumbersome from a dozen of batch points, these formulas happen to
be of particular interest to run q-EI based batch-sequential strategies for larger
batch sizes. We show that these methods are implementable and efficient on a
classic 8-dimensional test case. Additionally, some of the intermediate results
established here might be of interest for other research questions involving
moments of truncated Gaussian vectors and their gradients. Perspectives in-
clude deriving second order derivatives of q-EI and fast numerical estimates
thereof. Also, we aim at improving the sampling of initial batches in multistart
derivative-based q-EI maximisation.

This work paves the way to further research on sequential design of experiments
for functions with heterogeneous variations, be it through the incorporation of
non-stationarity within the models themselves, through targeted sampling cri-
teria, or combinations of both. Perspectives include the definition of additional
classes of criteria, relying for instance on the Stepwise Uncertainty Reduction
paradigm or weighted IMSE approaches. In the same flavour of using the gra-
dient of the modelling GP, the curvature or the wavelet coefficients of the GP
could be used as quantities for deriving new sampling criteria. Focusing finally
on the WaMI-GP model, several directions call for additional research. This
includes notably investigations on efficient estimation algorithms for higher
dimensions beyond brute force likelihood maximisation, and also model selec-
tion versus full Bayesian approaches for inferring the number of lines of the
matrix A and further parameters, pertaining for instance to the univariate
deformations.
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Appendix A

On the multipoint expected
improvement for GP-based
optimisation

Generalities on the EI criterion

Definition of expected improvement

In recent years, optimisation based on a GP model has attracted a lot of
interest from both the computer experiments and machine learning commu-
nities. We recall that a GP Y is used for taking into account prior infor-
mation on f through a trend function m : D Ñ R and a covariance kernel
c : px,x1q : D ˆD Ñ R. Once m and c are specified, possibly up to some pa-
rameters to be inferred based on data (see 2.1), the considered GP model can
be used as an instrument to locate the next evaluation point(s) via a criteria.
While a number of Bayesian optimisation criteria have been proposed in the
literature (see, section 2.1.3 for a short review and e.g., [Jones, 2001, Frazier
et al., 2008, Villemonteix et al., 2009, Srinivas et al., 2010, Contal et al., 2014]
and references therein), we concentrate here on the Expected Improvement (EI)
criterion [Mockus, 1989, Jones et al., 1998] and on variations thereof, with a
focus on its use in batch-sequential optimisation. Denoting by x1, . . . ,xn P D
points where f is assumed evaluated and by xn`1:n`q :“ pxn`1, . . . ,xn`qq P Dq
a batch of candidate points where to evaluate f next, the multipoint EI of
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batchsize q (or for short q-EI) is defined as

EIn,qpxn`1:n`qq “ En
ˆˆ

min
i“1,...,n

Yxi ´ min
j“n`1,...,n`q

Yxj

˙

`

˙

, (A.1)

where En refers to the conditional expectation knowing the event An :“ tYx1 “

fpx1q, . . . , Yxn “ fpxnqu. One way of calculating such criterion is to rely
on Monte Carlo simulations. Figure A.1 illustrates both what the criterion
means and how to approach it by simulations, relying on three samples from
the multivariate Gaussian distribution underlying eq. (A.1).
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Figure A.1: Illustration of the principles underlying q-EI for d “ 1, n “ 4,
q “ 2. Left: Gaussian process prediction of a function f from observations
An (depicted by black crosses). The horizontal line stands for γn, the smallest
response value from An. Three conditional simulation draws are plotted in
light orange and various point symbols represent their respective values at
two unobserved locations xn`1 and xn`q. Right: distribution of the random
vector

`

Yxn`1 , Yxn`q
˘J knowing An (black contours). For each point symbol,

the length of the thick purple segment represents the improvement realised
by the corresponding sample path. The multipoint EI is the expectation of
this length, or in other words, it is the integral of the improvement (grey-
scale function) with respect to the conditional distribution of

`

Yxn`1 , Yxn`q
˘J

knowing An.
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Analytical derivation of expected improvement

Now, for q “ 1, it is well known that EI can be expressed in closed form as
a function of the posterior mean and variance mn and σn : x Ñ cnpx,xq as
follows

EIn,1pxq “
"

unpxqΦpunpxqq `σnpxq pϕpunpxq{σnpxqqq if σnpxq ‰ 0
punpxqq` otherwise

(A.2)

where unpxq “ mini“1,...,n fpxiq ´ mnpxq and Φ, ϕ are the cumulative dis-
tribution function and probability density function of the standard Gaussian
distribution, respectively.

When deriving eq. (A.2) (hence for q “ 1), eq. (A.1) happens to involve a first
order moment of the truncated univariate Gaussian distribution. As shown in
[Chevalier and Ginsbourger, 2014.], it turns out that eq. (A.1) can be expanded
in a similar way in the multipoint case (q ě 2) relying on moments of truncated
Gaussian vectors.

The applied motivation for having batch-sequential EI algorithms is strong, as
distributing evaluations of Bayesian optimisation algorithms over several com-
puting units allows significantly reducing wall-clock time and with the fast
popularization of clouds, clusters and GPUs in recent years it is becoming
always more commonplace to launch several calculations in parallel. Even at
a slightly inflated price and scripting effort, reducing the total time is often
a primary goal in order to deliver conclusions involving heavy experiments,
be they numerical or laboratory experiments, in studies subject to hard time
limitations. Obviously, given its practical importance, the question of paral-
lelizing EI algorithms and alike by selecting q ą 1 points per iteration has
been already tackled in a number of works from various disciplinary horizons
(including notably [Queipo et al., 2006, Azimi et al., 2010, Desautels et al.,
2012, Contal et al., 2013, González et al.]). In this thesis we essentially focus
on approaches relying on the maximization of eq. (A.1) and related multipoint
criteria, notably by deriving closed-form formulas and fast approximates in
section 4.2. On this topic, the multipoint EI of eq. (A.1) has been first cal-
culated in closed form for the case q “ 2 in [Ginsbourger et al., 2010]. For
the case q ě 3, a Monte Carlo scheme and some sub-optimal batch selection
strategies were proposed. Further work on Monte Carlo simulations for multi-
point EI estimation can be found in [Janusevskis et al., 2012, Girdziusas et al.,
2012]; besides this, stochastic simulation ideas have been explored in [Frazier,
2012] for maximizing this multipoint EI criterion via a stochastic gradient
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algorithm, an approach recently investigated in [Wang et al., 2015]. Mean-
while, a closed-form formula for the multipoint EI relying on combinations
of pq ´ 1q-and q-dimensional Gaussian cumulative distribution functions was
obtained in [Chevalier and Ginsbourger, 2014.], a formula which applicability
in reasonable time is however restricted to moderate q (say q ď 10) in the
current situation. Building upon [Chevalier and Ginsbourger, 2014.], [Marmin
et al., 2015] recently calculated the gradient of the multipoint EI criterion in
closed form and obtained some first experimental results on (non-stochastic)
gradient-based multipoint EI maximization.

Calculations for multipoint EI and its gradient

Differentiating multivariate Gaussian CDF

We consider the CDF dimension p ě 2. We use the convention Φ0 “ 1.

Gradient

Using the following identity, derived from conditional distributions of a Gaus-
sian vector,

@i “ 1, . . . , p, ϕp,Σ pxq “ ϕ1,Σii pxiqϕp´1,Σ|i

`

x´i ´m|i,xi

˘

,

with m|i,u “
u

ΣiiΣ´i,i and Σ|i “ Σ´i,´i ´ 1
ΣiiΣ´i,iΣJ

´i,i, we reformulate the
integral of the Gaussian CDF:

@i “ 1, . . . , p,Φp,Σ pxq “

xi
ż

´8

ϕ1,Σii puiqΦp´1,Σ|i
`

x´i ´m|i,ui

˘

dui.

Here indexed minus symbols, e.g. in Σ´i,i, refer to exclusions of a line or a
column.

Finally we have

∇Φp,Σ pxq “
`

ϕ1,Σii pxiqΦp´1,Σ|i
`

x´i ´m|i,xi

˘˘

i“1,...,p . (A.3)
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Hessian

As for the computation of the gradient, we write
@i, j “ 1, . . . , p, i ‰ j,

Φp,Σ pxq “

xi
ż

´8

xj
ż

´8

ϕ2,Σij,ij

´”

ui
uj

ı¯

Φp´2,Σ|ij
`

x´ti,ju ´m|pi,jq,pui,ujq

˘

dujdui,

withm|pi,jq,pu,u1q “ Σ´tiju,ijΣ´1
ij,ij

„

u
u1



and Σ|ij “ Σ´tiju,´tiju´Σ´tiju,ijΣ´1
ij,ijΣJ´tiju,ij.

So @i, j “ 1, . . . , p, i ‰ j,

B2Φq

BxiBxj
pxq “ ϕ2,Σij,ij

´”

xi
xj

ı¯

Φp´2,Σ|ijpx´ti,ju ´m|pi,jq,pxi,xjqq.

When i “ j, the differentiation of eq. (A.3) gives,

B2Φq

Bx2
i

pxq “ ´
1

Σii

¨

˚

˝

xi
BΦp,Σ

Bxi
pxq `

p
ÿ

j“1
j‰i

Σij
B2Φp,Σ

BxiBxj
pxq

˛

‹

‚

.

Moments of truncated multivariate Gaussian distribution

Analytical formula (propositions 10 and 15)

We see here why we can derive an analytical formula of Mr,αpm,Σq, with
r ď s P Nzt0u,m P Rs and Σ P Ss``, by differentiating G, defined in eq. (4.18).
It is known, see e.g. Cressie et al. [1981], that moments can be obtained
differentiating the moment generating function Gm,Σ,s:

Mr,αpm,Σq “ B
αGm,Σ,s
Btαr

p0q,

with, for r P t1, . . . , su, Gm,Σ,r : tÑ E
`

exp
`

tJZ
˘

1pZ1,...,ZrqJď0
˘

, Z „ N pm,Σq.
We derive now an analytical formula for Gm,Σ,r. As needed in proposition 15,
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we derive an analytical formula for any r, and not only for r “ s.

@t P Rs,

Gm,Σ,rptq “

r times
hkkikkj

0
ż

´8

...

0
ż

´8

8
ż

´8

...

8
ż

´8

exp ptJzqϕΣ pz ´mq dz1...dzs

“ ϕΣp0q
0
ż

´8

...

0
ż

´8

8
ż

´8

...

8
ż

´8

exp
ˆ

´
1
2

´

pz ´mqJ Σ´1
pz ´mq ´ 2tJz

¯

˙

dz

“ e
´ 1

2

´

´pt`Σ´1mq
J

Σpt`Σ´1mq`mJΣ´1m
¯

ϕΣp0q
0
ż

´8

...

0
ż

´8

8
ż

´8

...

8
ż

´8

e´
1
2ppz´m´ΣtqJΣ´1pz´m´ΣtqJqdz

“ e
1
2

´

pt`Σ´1mq
J

Σpt`Σ´1mq´mJΣ´1m
¯

Φr,pΣijqi,jďr

´

´m´ pΣijqiďr,jďs t
¯

.

(A.4)

In the frame of the proof of proposition 15,

• if Σrpu,vq, the covariance matrix of pZJv , ZrpuqqJ, is positive definite,
we take

Mu,v “ tÑ Gpmpvq,mrpuqq,Σrpu,vq,ppp0, . . . , 0, tqJq,

• else, as Σpvq is definite positive, there exists only one index r0 such as
Zrpuq “ Zr0pvq almost surely (for example r “ r0 when u “ v), and we
have

Mu,v “ tÑ Gpmpvqq,Σpvq,ppp0, . . . , t, . . . ,
Ò

rth
0 position

0qJq.

Equation (A.4) leads to eq. (4.30) in both cases.

Differentiation with respect to mean and covariance

We differentiate here eq. (4.20) with respect to m and Σ.

With respect to the mean m
BMr,1

Bm
pm,Σq “ Φp,Σp´mqer ´mr∇Φp,Σp´mq `∇∇JΦp,Σp´mqΣr. (A.5)
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With respect to the covariance Σ
BMr,1

BΣ pm,Σq “ mr
B

BΣΦp,Σp´mq ´
p
ÿ

i“1
ϕΣii p´miqΦp´1,Σ|ip´m|iqE

pr,iq

`Σri
B

BΣii

ϕΣii p´miqΦp´1,Σ|ip´m|iqE
pi,iq

`ΣriϕΣii p´miq
B

BΣΦp´1,Σ|ip´m|iq.

(A.6)

withm|i “m´i´
mi
ΣiiΣ´i,i and Σ|i “ Σ´i,´i´ 1

ΣiiΣ´i,iΣJ
´i,i. Writting dΣ rm|is

dΣ rΣ|is the differential of the functions Σ Ñm|i and Σ Ñ Σ|i, we have:

dΣ rm|is pHq “
mi

Σii

H´i,i (A.7)

dΣ rΣ|is pHq “ H´i,´i `
Hii

Σ2
ii

Σ´i,iΣJ
´i,i ´

2
Σii

H´i,iΣJ
´i,i (A.8)

B

BΣΦp´1,Σ|ip´m|iq “

p
ÿ

r“1

p
ÿ

s“1

`

´dΣ rm|is pE
pr,sq
q.∇Φp´1,Σ|ip´m|iq

`tr
ˆ

B

BΓΦp´1,Σ|i
`

´m|i

˘

.dΣ
“

Σ|i
‰ `

Epr,sq
˘

˙˙

Epr,sq

with:

• Epr,sq “ pδijqi,j“1,...,p,

• B

BΓΦp´1,Σ|ip´m|iq the derivative of Γ Ñ Φp´1,Γp´m|iq evaluated at Σ|i.
We use the Plackett’s differential equation, extended by Berman [1987],
to find

B

BΓΦp´1,Σ|ip´m|iq “ ∇∇JΦp´1,Σ|ip´m|iq,

∇∇JΦ is given in appendix A.

Generalized q-EI as a sum of moments

Proof. For given p`, rq in t1, . . . , nu ˆ t1, . . . , qu, we consider E`,r the event
that the random variable inside the expectation term of eq. (4.16) equals
`

Yx` ´ Yxn`r
˘α. We have

E`,r “ tYxn`r ď Yx`u X t@i ď n, i ‰ `;Yx` ď Yxiu

X
 

@j ď q, j ‰ r;Yxn`r ď Yxn`j
(
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Considering all pairs p`, r), we have:

EInpxn`1:n`qq “

n
ÿ

`“1

q
ÿ

r“1
En

``

Yx` ´ Yxn`r
˘α
1E`,r

˘

.

For each term p`, rq of the sum, the conditioning event can be rewritten
E`,r “ t Z

p`,rq
pxn`1:n`qq ď 0u, with Zp`,rq a random vector of size n ` q ´ 1,

defined by the following linear transformation of Y “
`

Yx1 , . . . , Yxn`q
˘J :

@i “ 1, . . . , n`q´1, Zp`,rqi “

$

’

’

&

’

’

%

Y` ´ Yi if 1 ď i ď `´ 1
Y` ´ Yi`1 if ` ď i ď n´ 1
Yn`r ´ Yi`1 if n ď i ď n` q ´ 1, i ‰ n` r ´ 1
Yn`r ´ Y` if i “ n` r ´ 1

Indeed, the first n´1 components ofZpl,rq ď 0 reflect t@i ď n, i ‰ `;Yx` ď Yxiu,
and the last components reflect

 

@j ď q, j ‰ r;Yxn`r ď Yxn`j
(

and tYxn`r ď
Yx`u.

Mean square differentiability of Y α
x11B

Let B be an event, Y be a mean-squared differentiable Gaussian process and
α P N. Then we have:

E

˜

ˆ

Y α
x`h ´ Y

α
x

h
1B ´

dY α

dx pxq1B
˙2

¸

ď E

˜

ˆ

Y α
x`h ´ Y

α
x

h
´

dY α

dx pxq
˙2

¸

ÝÑ
hÑ0

0

by mean-squared differentiability of Y α.

Symmetry argument

The term qpq`1q
2 comes from a symmetry occurring when summing terms with

different index but actually equal. At fixed summation index ` in eq. (4.22),
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we denote ωri the ith term in the scalar product in eq. (4.20) for eachMm`r´1,1
required for q-EI:

@i, r “ 1, . . . , q, ωri “ Σp`,rqri

“

∇Φp,Σp`,rqp´m
p`,rq
q
‰

i
.

Then the following symmetry between indices i and r occurs:

@i, r “ 1, . . . , q, ωri

Σp`,rqri ϕ1,Σp`,rqii
p´m

p`,rq
i q

“
ωir

Σp`,iqir ϕ1,Σp`,iqrr
p´m

p`,iq
r qq

Indeed, using the formula of the derivative of CDF, (appendix A), leads to:

ωri

Σp`,rqri ϕΣp`,rqii
p´m

p`,rq
i qq

“ Φ
p´1,Σp`,rq

|i

p´m
p`,rq
|i q

“ P
ˆ

Yxn`r
ď Yx`

,

Yxn`j
ď Yxn`r

,@j “ 1 . . . q, j ‰ r, j ‰ i

ˇ

ˇ

ˇ

ˇ

Yxn`i “
Yxn`r

˙

,

which is clearly symmetrical between i and r.
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Appendix B

Short introduction on Stepwise
Uncertainty Reduction (SUR)

We focus on Stepwise Uncertainty Reduction (SUR) strategies. Its aim is to
provide an optimal sequence of evaluation points, selecting each point in order
to reduce a uncertainty quantity. This approach requires a precise definition
of a uncertainty function Hn. The function Hn : pD ˆ Rqn Ñ R` gives the
remaining uncertainty after n evaluations yi “ Yxi , with pxi, yiqi“1,...,n P pD ˆ
Rqn. Thus, the main difference between SUR methods is the definition of the
uncertainty Hn that often relies on a GP model.

The SUR strategy focus on the remaining uncertainty at depletion of the avail-
able budget of N points. Because the design of experiments cannot be known
before evaluating the random process Y , the evaluations points px1, . . . ,xNq
are considered as realisations of random vectors1 pX1, . . . ,Xnq in D. In an op-
timal SUR framework, the realisations px1, . . . ,xNq as well as the realisations
py1, . . . , yNq are obtained sequentially, with for all n “ 0, . . . , N ´ 1,

xn`1 P argmin
xPD

E pHN ppX1, YX1q , . . . , pXN , YXN
qq|An Y tXn`1 “ xuq .

(B.1)

with An the event tpX1, YX1q “ px1, y1q, . . . , pXn, YXnq “ pxn, ynqu, A0 “ H.
This approach is numerically complex, as the computation of this expecta-
tion at a single x involves the distributions of X i, minimisers of entangled
stochastic processes.

1TheXi’s are in capital to emphasise that they are random and in bold font to emphasise
that they are vectors (and not matrices of batches of points).
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Some papers propose practical designs of experiments using SUR, see e.g. [Bect
et al., 2011, González et al., 2016]. The one-step-lookahead simplification is
the most straightforward way to get tractable sampling criteria. With an ap-
propriate choice of uncertainty function Hn`1, it encompasses previously cited
sampling criteria as, among others, (multipoint) EI [Ginsbourger and Le Riche,
2010] and IMSE. The idea is to select the next evaluation by minimising the
expected uncertainty at the next step, i.e. by replacing N by n`1 in eq. (B.1),

xn`1 P argmin
xPD

E pHn`1 ppx1, y1q , . . . , pxn, ynq , px, Yxqqq . (B.2)

More generally for multipoint sampling, we define

Xn`1:n`q P argmin
x̆n`1,...,x̆n`qPD

E
`

Hn`q

`

px1, y1q , . . . , pxn, ynq ,
`

x̆n`1, Yx̆n`1

˘

, . . . ,
`

x̆n`q, Yx̆n`q
˘˘˘

. (B.3)

For more details on SUR strategies see e.g. [Bect et al., 2016].
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