
THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Pour l’obtention du titre de

Docteur en Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Developpements d’outils d’aide au diagnostic en contexte
incertain

Présenté par : Ahmed MABROUK

devant le jury composé de :

M. Philippe LERAY Rapporteur
Professeur des universités, Université de Nantes
M. Simon DE GIVRY Rapporteur
Chercheur à l’INRA, MIAT de Toulouse
M. Pierre MARQUIS Examinateur
Professeur des universités, Université d’Artois
M. Patrice PERNY Examinateur
Professeur des universités, Université de Paris VI
M. Christophe GONZALES Directeur de Thèse
Professeur des universités, Université de Paris VI
Mme. Karine CHEVALIER-JABET Directrice de Thèse
Ingénieur de recherche, IRSN, Cadarache



i

Remerciements

En premier lieu, je tiens à exprimer toute ma gratitude à mes directeurs de thèse,

Christophe Gonzales et Karine Chevalier-Jabet de la confiance qu’ils m’ont accordée

en acceptant ma candidature, de leurs conseils précieux et de l’encadrement qui était à

la fois rigoureux et enthousiaste tout au long de ce travail doctoral. J’aimerais également

leur exprimer à quel point j’ai apprécié leur disponibilité, leurs critiques pertinentes ainsi

que leurs qualités humaines exceptionnelles, lesquelles m’ont été d’une très grande utilité

durant ces trois ans.

Je remercie sincèrement mon tuteur Eric Chojnacki d’avoir accepté d’assurer le suivi de

mes travaux de recherches. Sa large expérience dans le domaine de la statistique ainsi

que ses encouragements incessants m’ont été d’une aide précieuse.

Je désire encore exprimer ma très vive reconnaissance à notre responsable de laboratoire

Joëlle Fleurot, d’avoir suivi et coordonné l’avancement de mes travaux de recherches.

Je tiens à remercier les examinateurs Patrice Perny et Pierre Marquis pour l’honneur

qu’ils m’ont fait d’être dans mon jury, et pour le temps qu’ils ont consacré pour juger

mes travaux de thèse.

Je remercie également Philippe Leray et Simon De Givry pour avoir accepté de participer

à mon jury en qualité de rapporteur de thèse, et pour les remarques et les améliorations

judicieuses qu’ils m’ont faites.

Je tiens aussi à remercier mes collègues que j’ai cotoyés tout au long de ces trois années,

à Cadarache, au LIP6, ..., qui m’ont témoigné leur bienveillance et leur gentillesse.

Enfin, je remercie ma famille et tous mes proches de leur soutien et sympathie, entre

autres mes parents Habib et Naima qui, grâce à leur inlassable soutien et leurs sacrifices,

m’ont permis de réussir toutes mes études et de concrétiser la plupart de mes objectifs.

Merci infiniment!



Contents

Contents ii

1 General introduction 1

I State of the art 7

2 Bayesian networks 8
2.1 Definition of Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Graphical properties of Bayesian networks . . . . . . . . . . . . . . . . . . 11

2.2.1 d-separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 I-map, D-map and P-map properties . . . . . . . . . . . . . . . . . 18
2.2.3 Markov blanket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Markov equivalence class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Probabilistic inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Reasoning with BN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Conditional probability query (CP) . . . . . . . . . . . . . . . . . . 25
2.5.2 Most probable explanation (MPE) . . . . . . . . . . . . . . . . . . 26
2.5.3 Maximum a posteriori (MAP) . . . . . . . . . . . . . . . . . . . . . 27

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Learning Bayesian networks 29
3.1 Parameters learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Structure learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Assumptions made by Bayes net structure learning algorithms . . . 38
3.2.2 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Constraint-based approaches . . . . . . . . . . . . . . . . . . . . . 39

3.2.3.1 Statistical tests for conditional independence . . . . . . . 40
3.2.3.2 PC and IC algorithms . . . . . . . . . . . . . . . . . . . . 42
3.2.3.3 Problem of variable ordering dependence . . . . . . . . . 46
3.2.3.4 PC-stable . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3.5 Variations on the PC Algorithm . . . . . . . . . . . . . . 48
3.2.3.6 MMPC approach . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3.7 Fast-IAMB approach . . . . . . . . . . . . . . . . . . . . 52

3.2.4 Score-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4.1 Possible search spaces . . . . . . . . . . . . . . . . . . . . 54
3.2.4.2 The scoring functions . . . . . . . . . . . . . . . . . . . . 57

ii



Contents iii

3.2.4.3 Heuristics search approaches . . . . . . . . . . . . . . . . 61
3.2.5 Hybrid approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Bayes Net structure learning in the absence of faithfulness 67
4.1 The causes of unfaithfulness . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Deterministic relationships . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 Information equivalence . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Equivalent partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Absence of faithfulness when learning the Bayes Net structure . . . . . . . 72
4.2.1 When learning the skeleton . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 When orienting the skeleton . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

II Contributions 79

5 An efficient Bayes Net structure learning in the presence of determin-
istic relations 80
5.1 A concrete case of unfaithfulness in the nuclear field . . . . . . . . . . . . 82
5.2 A new learning algorithm suited for deterministic relations . . . . . . . . . 85

5.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Deterministic nodes detection with an entropy function . . . . . . 86
5.2.3 First phase: learning the BN’s skeleton . . . . . . . . . . . . . . . . 88

5.2.3.1 Edges deletion with deterministic nodes . . . . . . . . . . 91
5.2.3.2 Reducing the sizes of the conditioning sets during G2 tests 94

5.2.4 Second phase: orientation and refinement . . . . . . . . . . . . . . 96
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Evaluation on Benchmark Bayesian networks 101
6.1 Principles of the benchmark evaluation . . . . . . . . . . . . . . . . . . . . 101
6.2 Using simulated datasets from synthetic Bayesian networks . . . . . . . . 102

6.2.1 The evaluation of the whole network structure . . . . . . . . . . . . 102
6.2.2 Evaluation of substructures around deterministic nodes . . . . . . 107

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Cluster-based multivariate discretization 114
7.1 Basics on BN Structure Learning and Discretization . . . . . . . . . . . . 116
7.2 A New Multivariate Discretization-Learning Algorithm . . . . . . . . . . . 118

7.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2.2 Discretization Criterion . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.3 Two proposed versions for multivariate discretization . . . . . . . . 123
7.2.4 Discretization exploiting the BN structure . . . . . . . . . . . . . . 124

7.2.4.1 EM algorithm preliminaries . . . . . . . . . . . . . . . . . 127
7.2.5 Gaussian Mixture model-based discretization . . . . . . . . . . . . 130

7.2.5.1 Parameters estimation with EM algorithm . . . . . . . . 130
7.2.5.2 Determination of the Cut Points . . . . . . . . . . . . . . 134
7.2.5.3 Score and Number of Cut Points . . . . . . . . . . . . . . 136
7.2.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



Contents iv

7.2.6 Truncated mixture Gaussian model based discretization . . . . . . 138
7.2.6.1 Truncated mixture model parameters estimating with EM 139

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8 Evaluation of the multivariate discretization algorithms 148
8.1 Evaluations on synthetic Bayesian networks . . . . . . . . . . . . . . . . . 149

8.1.1 Benchmarks on datasets generated from random BNs . . . . . . . . 150
8.1.2 Benchmarks on continuous datasets from real BNs . . . . . . . . . 155

8.2 Evaluation of the learnt BN CPTs quality . . . . . . . . . . . . . . . . . . 158
8.2.1 Prediction accuracy results . . . . . . . . . . . . . . . . . . . . . . 159

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9 Conclusion and Future Works 164
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Bibliography 169



Contents v



Chapter 1

General introduction

A severe nuclear accident is defined as an unplanned event resulting from operating errors,

equipment failures or external hazards and involving an important contamination of the

environment, persons and animals with the released radionuclide materials. According

to the International Atomic Energy Agency (IAEA) it is also defined as follows: "an

event that has led to significant consequences to people, the environment or the facility".

Given the severity of radiological consequences resulting from severe accidents, the pro-

tection against nuclear risks and the study of the effectiveness of possible mitigation

measures (that minimize risks to the public and to the environment) has been for several

decades a common research issue for all nuclear power plant operators. In particular, the

study involves identifying and modeling the physical and chemical phenomenology char-

acterizing the set of possible severe nuclear accidents; exploiting such developed models

to perform many safety analyses for nuclear reactors; and, finally propose an emergency

plan enabling to mitigate (or prevent) the dangerousness of the accident rather than wait

until its occurrence. Modeling severe nuclear accident phenomenology in nuclear power

plants is complex and for the past decades extensive experimental programs have been

conducted to gain knowledge and build computational tools to help the prediction of the

accident progression and its consequences. ASTEC (Accident Source Term Evaluation

Code) is such a tool. It is developed by the French Institute of Radioprotection and

Nuclear Safety (IRSN) and its German counterpart, the Gesellschaft für Anlagen und

Reaktorsicherheit (GRS). The ASTEC code allows to simulate the phenomena charac-

terizing the nuclear accident, starting by the initiating events until the eventual release of

radioactive materials in the environment (source term). This code has been widely used

in support to many nuclear safety applications such as the analysis of nuclear pressurized

water reactor (PWR), the evaluation of source term, and the prognosis of severe nuclear

accident scenarios.

1



Chapter 1. General introduction 2

Figure 1.1: General schema of the pressurized water reactor.

Before discussing in more details the severe accident management measures and the

main issues related to this field, we start in the following by explaining the functioning

principle of a nuclear reactor and the main phenomenology occurring during a severe

accident. Note that, in our context, we shall focus our discussion on the PWR because

all French nuclear reactors (58 reactors distributed over 19 sites) are of this type.

As shown in Figure 1.11, in the PWR, the cooling water circulating in the primary circuit

(colored in orange/red) is pumped under high pressure (ensured by the pressurizer) into

the reactor vessel where it is heated by the energy released by the fission of uranium

and/or plutonium atoms, enclosed in a thousand of protective sheaths (which form the

fuel assemblies of the core). The overheated water (between 290 and 325 ◦C) then

flows in the steam generator where it mixes the cold water circulating in the secondary

circuit (colored in blue/green). This contact converts the thermal energy produced in

the reactor core into steam. Through a set of pipes, the steam (at a pressure of 72 bars)

flows to the turbines which are then set in turn, transforming therefore the produced

steam’s energy into a mechanical one. The turbine’s mechanical energy spins an electric

generator, which generates electrical energy. The heated water of the primary circuit

passing through tubes of the steam generator then cools and is carried back into the

reactor vessel by the coolant pumps. Concerning the steam at the outlet of the turbine,

it is transformed into liquid water by the condenser and, then, it is driven by condensate

extraction pumps to the steam generator (secondary circuit).

Given the functional mechanism of the PWR, the severe nuclear accidents occur following

a more or less complete reactor core melting. Such a fusion occurs gradually in the reactor

due a to a prolonged lack of core reactor cooling with the primary circuit following a series

of hardware failures and/or human errors. A typical sequence characterizing the nuclear
1The picture has been taken from: http://chemistry.tutorvista.com/nuclear-chemistry/nuclear-chain-

reaction.html



Chapter 1. General introduction 3

accident progress follows hereafter: initially, one or several events cause the degradation

of the reactor cooling system; this then leads to the uncover of the core reactor or even the

total dewatering. During this time, the fuel sheath (inside the reactor core) are heated,

and then break, leading consequently to the escape of radioactive products which are

contained in the space between the sheath and the pellets. It should be emphasized that

above a certain temperature, of the order of 1100 ◦C, the superheated steam generated

in the reactor vessel leads to a severe oxidation of the sheath, resulting therefore in a

substantial production of hydrogen (a flammable gas) which, in case of explosion, may

lead to the failure of the containment (that is precisely what happened at Fukushima).

Once the sheath of the fuel is totally degraded, the more volatile and semi-volatile fission

products in the fuel pellets are released at first into the primary circuit and, then, into

the containment via the break. During the core melting phase, the temperature of the

fuel increases more and more; the latter is liquefied and then mixed with the molten

material structures, forming therefore a magma characterized by a high temperature

which is called "corium". At this time, the bottom of the vessel is gradually eroded and

deformed by the thermal effect of the corium. Once the phase of vessel degradation is

completed, the corium falls on the concrete slab of the reactor, and interacts with it.

This phenomenon is called ’corium-concrete interaction’. During this phase, the corium

erodes the concrete slab; at the same time, the pressure in the containment increases

more and more under the effect of the important release of gases which therefore leads to

the failure of the containment integrity and then to the release of radioactive materials

into the environment.

The task of severe nuclear accident management has attracted a lot of attention after

the accidents in the Three Mile Island Unit in 1979 and in Chernobyl in 1986. In this

context, several approaches (notably those using a probabilistic framework) have been

developed. Among them, we can mention the Probabilistic Safety Assessment (PSA)

which has been published in 1975 in Rasmussen’s report [C+75]. Besides the classical

deterministic approach, which is generally used during the reactor design phase, the PSA

performs a detailed study of scenarios for hypothetical accidents that might lead to the

core damage, and then it estimates the probability (or the frequency) of their occur-

rences. Moreover, the impact of potentially influential parameters, in such a complex

system, has been usually assessed by the traditional Monte Carlo method with a number

of independent numerical calculations, using a probabilistic framework. All developed

safety approaches are of interest not only in determining the extent of the nuclear risk or

the set of pertinent parameters explaining the latter, but also for the information they

provide about the various components (with their respective weight) characterizing the

severe accident and their ability to identify the appropriate safety rules to be established

in the reactors. However, the last severe accident that occurred in the Japanese nuclear

power plant of Fukushima at Daiichi in 2011 has showed the limitations of the state-of-

the-art methods in all that concerns the understanding of relevant phenomena occurring



Chapter 1. General introduction 4

during the severe accidents. As a matter of fact, the Fukushima accident has revealed

a number of unexpected problems and weaknesses related to a very wide spectrum of

technical fields and operators responsibilities that were not yet considered in the nuclear

safety guidelines. In this context, finding a method that allows the understanding of

both relevant phenomenology and the main causes explaining the Fukushima accident is

crucial. In other words, beyond the wish to make the integral ASTEC code simulating

the whole accident, there is also the will to perform a faster diagnosis and to provide

a detailed explanation about what happened exactly and which event configuration is

responsible for such and such observed phenomena in the accidental reactor, i.e., unlike

the simulation (or the prognosis) task addressed by the ASTEC code, the diagnosis anal-

ysis exploits the opposite implication of the accident progression. At present, none of

the used methods and tools proves to be satisfactory to address efficiently the diagnosis

since, according to the domain experts, this task requires:

i) a complex model exploiting efficiently the different interactions between the phys-

ical phenomena encoded in ASTEC code;

ii) the consideration of the domain expert’s knowledge and that of the uncertain-

ties that may arise from lack of information or imprecision when performing the

analysis;

iii) a high level reasoning engine enabling the inference of the original accident sce-

nario (which is unknown) from any set of available partial and possibly unreliable

observations.

This thesis is part of the CESAM project, WORKPACKAGE 3.2, which concerns the

development of an extension of the ASTEC code for the diagnosis inside and/or outside

the nuclear reactor. More precisely, the contribution of this work consists in developing

a surrogate model allowing to exploit the expert knowledge present in the ASTEC tool,

to improve the understanding of an observed accidental situation and, finally, to identify

the most probable scenarios.

For this purpose, we propose to exploit Bayesian networks (BNs). BNs, also known as

belief networks, have emerged as one of the most successful tool for diagnosis tasks and

have been applied in many real world applications (cancer diagnosis, robotics, machine

diagnosis, etc). Unlike many state-of-the-art predictive models such as neural networks,

random forests, support vector machine (SVM), BNs provide a prominent model that

enables to represent complex systems using graphical and probabilistic formalisms (easy

for human to understand). They allow to make a fast automated reasoning about a

very wide range of diagnosis queries (Most probable explanation, Maximum a posteriori,

etc.). Besides, such a model can capture the expert’s relevant knowledge and it can



Chapter 1. General introduction 5

exploit them to reproduce the expert’s problem and efficiently solve it. Such character-

istics are very useful in our case since, as discussed earlier, the study of severe nuclear

accidents is a complex task that often requires the expert’s judgments to facilitate the

understanding of many phenomena occurring during the accident. However, building a

BN is usually difficult and cannot be manually specified by the expert because it contains

a lot of numeric (and graphical) information that are essential to its proper functioning.

To handle this issue, numerous efforts have been devoted in the past twenty years to

learn both BN’s graphical structures and the parameters of their conditional probability

tables from datasets. Moreover, the different contexts on which BNs have applied have

led researchers to propose tailored learning algorithms. Unfortunately, despite all efforts

that have been made in the BN learning area, there exist important critical applications

for which no current BN learning algorithm proves to be satisfactory. Such a situation

arises in our context, notably in problems of nuclear accident scenario reconstruction

from sensors’ partial observations. In this context, the task of BN learning from datasets

is complex due to the presence of deterministic dependences between random variables

that essentially represent some phenomenology occurring in the damaged reactor’s core.

These deterministic relations present a real issue from the BN learning viewpoint since

they rule out the faithfulness property on which rely the majority of learning algorithms.

Another problem related to the BN learning task arises from the existence of both con-

tinuous and discrete variables in our dataset. In the majority of real-world application

domains, when such a situation arises, continuous variables are discretized prior to learn-

ing because this greatly simplifies the learning task and, in addition, BNs are defined

over discrete variables, not continuous ones. However such an approach is doomed to be

ineffective because the conditional dependences/arcs learnt during the learning phase are

not exploited by the discretization process, thereby leading to an important information

loss that prevents the BN learning process to be very effective.

At this stage of this thesis, we could not yet get accurate datasets providing a full

description about the possible nuclear accidents. Therefore, in this PhD thesis, we

worked only on the theoretical problems that arise in the severe nuclear accident BN

learning task. Our goal is to provide a set of algorithms that can be applied successfully

on real nuclear accidents datasets. For this purpose, we proposed a new BN learning

approach that can cope efficiently with the deterministic relations necessarily contained

in the nuclear accidents datasets. We also designed and implemented two multivariate

discretization approaches that are very effective to produce high quality BNs, i.e., BNs

whose “faithfulness” to the data does not suffer too much from the loss of information

induced by the discretization.

This document is organized as follows. In Chapter 2, we present Bayesian networks,

their main properties and we show how they can be exploited for probabilistic reasoning.

Notably we recall the main classes of algorithms used for this task. In Chapter 3, we



Chapter 1. General introduction 6

provide a non-exhaustive review of state-of-the-art algorithms dedicated to learn both

BN graphical structures and their probabilistic components (CPT parameters). In this

context, we focus our discussion on discrete BNs. In Chapter 4, we highlight the most

common sources leading to the unfaithfulness of the probability distribution and we show

how this impacts the BN structure learning task. We also discuss the most common state-

of-art approaches dedicated to establish the BN structure learning correctness when the

faithfulness property is ruled out. In Chapter 5, we propose a new approach (with new

rules) for learning the structure of BNs when some variables have deterministic relations

with others. We also provide the formal proof of correctness of our proposed rules. An

experimental comparison of our algorithm with some classical algorithms using a set of

synthetic datasets (generated from random BNs) containing deterministic nodes is carried

out in Chapter 6. In Chapter 7, we provide two versions of multivariate discretization

algorithms designed for the BN structure learning task, which take into account the set

of dependences among variables during data transformation. Experimental comparison

results of our approaches w.r.t. existing methods using synthetic and real-world datasets

are given in Chapter 8. Finally, we draw some conclusions and directions for future

researches in Chapter 9.



Part I

State of the art

7



Chapter 2

Bayesian networks

How to represent compactly the joint probability distribution P of a complex system

has received a lot of attention in probability theory. Actually, the knowledge of the joint

distribution allows to reason probabilistically about the value of one or more random

variables given observations about other variables. As a consequence, it allows to answer

a broad range of useful queries. For example, in medical diagnosis applications, the

specification of the joint distribution P of the possible diseases and symptoms that a

patient might have allows the computation of the posterior probability of any disease

given any set of symptoms, tests, etc. However, specifying the joint distribution over a

high-dimensional space of variables appears completely intractable since the size of such

distribution grows exponentially with respect to the number of variables of interest. This

problem thus induces significant issues, both from the modeling and the computational

points of view.

To cope with this problem, Graphical Probabilistic Models (PGM) provide a powerful

framework: they exploit conditional independence properties of the distribution, which

they represent by a graph, and those enable both the compact representation of complex

distributions and their fast automated reasoning. Besides the compact representation of

probability P , PGMs are also intuitively easier for a human to understand than joint

probabilities because they highlight the direct dependences between random variables

and their overall semantics is easily captured visually through their graphical part (which

is usually a sparse graph). Finally, P is usually described as the combination of local dis-

tributions, which can be assessed and interpreted by experts. These advantages explain

why PGMs are currently a very popular framework for reasoning under uncertainty and

are exploited in many real word applications in risk analysis, medicine, robotics, machine

diagnosis, data mining, handwriting recognition, etc.

This chapter introduces a kind of graphical model called a Bayesian network (BN), for

synthesizing joint probability distributions in a manner which can be both intuitive and

8



Chapter 2. Bayesian networks 9

computationally effective. Then we provide the formal definitions and the semantics of

the graphical properties of BNs. Finally, we discuss how BNs can be used to perform

probabilistic reasoning through the answering of many relevant queries.

2.1 Definition of Bayesian networks

Bayesian networks, also referred to as Belief networks, are a kind of graphical probabilis-

tic model. They were initially introduced by Judea Pearl [Pea88]. BNs offer mechanisms

to accurately represent the dependences between random variables and to perform au-

tomated reasoning under uncertainty. They are supplied with fast inference engines

that enable to answer efficiently various types of probabilistic queries (computation of

marginal, a priori, a posteriori, probabilities [Dar01, MJ99], of most probable explana-

tions [Nil98], of maximum a posteriori [PD04], etc.). In this chapter, we shall focus our

discussion on discrete Bayesian networks.

Definition 2.1. A (discrete) BN is a pair (G,Θ) where G = (X ,A) is a directed acyclic

graph (DAG), X = {X1, X2, ..., Xn} represents a set of random variables1, A is a set of

arcs, and Θ = {P (Xi|Pa(Xi))}ni=1 is the set of the conditional probability distributions

(CPT) of the variables Xi in G given their parents Pa(Xi) in G. The BN encodes the

joint probability over all the nodes as the product of conditional probabilities as follows:

P (X ) =
n∏
i=1

P (Xi|Pa(Xi)). (2.1)

Equation (2.1) is also called the chain rule or the general product rule. As a concrete

example, Figure 2.1 depicts a simple BN related to the causes of the grass of a gar-

den being wet. This BN contains four random variables that represent some physical

phenomena: cloud (C), rain (R), sprinkler (S), wet grass (W ). Each node in this

example can assume two values: TRUE (t) if the phenomenon is present and FALSE (f)

otherwise. The directed edges in this network represent probabilistic dependences (or

correlations) between nodes: node C is the parent of S and R, and both of the latter

are the parents of W . The absence of arcs between pairs (C,W ) and (S,R) implies the

absence of direct probabilistic dependences between those nodes. Given these depen-

dences/independences, we can say for instance that the presence of rain and sprinkler

dictates the state of the wet grass.

As mentioned above, in a BN, it is compulsory to quantify the relationship between each

node and its immediate predecessors (its parents). In particular, these relationships are

quantified by conditional probability tables (CPTs) for each node, which contain the set
1By abuse of notation, we use interchangeably Xi ∈ X to denote a node in the BN and its corre-

sponding random variable.



Chapter 2. Bayesian networks 10

C

S R

W

Figure 2.1: Example of a classical BN.

of conditional probabilities of each of its values given all the possible combinations of

values for its parents, as shown in Figure 2.2. In our example, we thus need to specify for

instance the conditional probability P (W |R,S) that grass has a particular value (wet or

not), given the presence or absence of rain, and the operational state of the sprinkler. For

example, the CPT of node W in Figure 2.2 tells us that P (W = t|S = t, R = t) = 0.99,

i.e., the grass is almost assuredly wet when it rains and the sprinkler is operational.

Concerning variable C in our example, we can notice that this one has no parent (it is a

root node), hence we cannot talk about conditional probability. In such a case, a prior

(or unconditional) probability for C, i.e., P (C), needs to be specified. As can be seen

in Figure 2.2, we assumed that the prior probability for C is represented by a uniform

distribution.

P (C)

C

t f

0.5 0.5

P (R|C)

R

C t f

t 0.5 0.5
f 0.1 0.9

P (S|C)

S

C t f

t 0.8 0.2
f 0.2 0.8

P (W |S,R)

W

S R t f

f f 0 1
f t 0.9 0.1
t f 0.9 0.1
t t 0.99 0.01

Figure 2.2: CPTs for nodes C, S, R, W .

The network structure represented by a DAG and the CPTs of the BN together define

the joint distribution over all the random variables. In our example, the distribution

over the four variables C, R, S, and W can thus be decomposed as follows:

P (C,R, S,W ) = P (C)P (R|C)P (S|C)P (W |S,R).



Chapter 2. Bayesian networks 11

C R S W P (X )

f f f f 36%
f f f t 0%
f f t f 0.9%
f f t t 8.1%
... ... ... ... ...
t f t t 18%
t t f f 0.5%
t t f t 4.5%
t t t t 19.8%

Table 2.1: The joint probability distribution of the wet grass example.

It should be noted that the joint probability distribution can be visualized through the

enumeration of all the possible combinations of assignments of the variables. Table 2.1

lists an excerpt of such assignments with their corresponding probabilities.

As can be seen, the size (i.e., the number of entries) of the joint probability distribu-

tion grows exponentially with respect to the number of random variables. In contrast,

BNs alleviate this issue by representing the joint distribution with a set of local (condi-

tional) distributions, as shown in Figure 2.2. Note that its CPTs are relatively compact

compared to the whole specification of the joint distribution. But they enable the recon-

struction of the latter simply by the computation of their product. Through product,

division and summation operations, they also enable the determination of any condi-

tional probability of the form P (W = w|V = v) , where W and V are sets of variables

and w and v are one of their instantiations. Similarly, any marginal probability of the

form P (W = w) can be computed. For example, the probability P (R = t) in the above

BN example can be calculated as follows:

P (R = t) = P (R = t|C = t)× P (C = t) + P (R = t|C = f)× P (C = f)

= 0.5× 0.5 + 0.1× 0.5

= 0.3

Note that, computing conditional probabilities and answering probabilistic queries by

means of a BN will be detailed in Section 2.4.

2.2 Graphical properties of Bayesian networks

In the preceding section we only introduced the relationship between a BN and its joint

probability distribution. It should be noted that the semantics of the graphical repre-

sentation of a BN is much more powerful than just representing the presence/absence of

direct dependences through the existence/lack of an arc between pairs of nodes. Actually,

the BN’s DAG can encode more complicated properties about conditional independences



Chapter 2. Bayesian networks 12

that characterize the underlying probability distribution. To facilitate the understanding

of the syntax and the semantics of BNs, we start this section by introducing some formal

definitions of conditional independences [Daw79] and by recalling some graph theoretic

notions.

Definition 2.2. (Conditional independences) Let X, Y, Z ⊂ X be three disjoint

sets of variables, and let P be a probability distribution defined on X . We say that X and

Y are conditionally independent given Z, which is denoted by X ⊥P Y|Z, if and only if:

P (X|Y,Z) = P (X|Z).

The set of all the (conditional) independence assertions present in a given probability

distribution will be subsequently denoted by I(P ).

When Z = ∅, the conditional independence of X and Y given Z is called an (uncondi-

tional) independence. It is denoted by X ⊥P Y and is equivalent to P (X|Y) = P (X).

In other words, a conditional independence between two sets of variables X and Y given

a set of variables Z implies that learning some knowledge on Y does not make any

difference on our belief in X given our knowledge about Z (and conversely).

As mentioned above, the graphical structure of the BN can be interpreted as a repre-

sentation of the conditional independence properties of a given probability distribution.

Before explaining how conditional independences can be graphically encoded in a BN, let

us start this section by recalling some useful graph theoretic notions. In Definition 2.1,

we mentioned that a BN is represented by a DAG G = (X ,A) composed by a set of

nodes X representing random variables and a set of oriented edges (or arcs) A between

those nodes. When there exists an arc connecting two nodes X and Y of X , we say that

X and Y are adjacent in G. The set of all the nodes adjacent to X in G is denoted

by Adj(X)G or, simply, Adj(X) when there is no ambiguity about which graph G is

concerned. Of course, if Y is adjacent to X, X is also adjacent to Y . Given a DAG

G = (X ,A) and two nodes X and Y in X , node X is referred to as a parent of Y if and

only if there exists an arc from X to Y (X → Y ) in G. In such a case, Y is referred to

as a child of X. The set of parents of a node X is denoted by Pa(X)G and, when there

is no ambiguity about G, by Pa(X). To generalize these notions, an ancestor (resp. a

descendant) of a given node X is any node Y such that there exists a directed path in

G from Y to X (resp. from X to Y ): a directed path from Y to X (resp. from X to Y )

consists of a sequence of nodes {Xi1 , Xi2 , . . . , Xik} such that i) for all j ∈ {1, . . . , k− 1},
G contains the arc Xij → Xij+1 , and ii) Xi1 = Y and Xik = X (resp. Xi1 = X and

Xik = Y ). Figure 2.3 shows an example of a directed path from node X to node V .

In this example, X, Y , Z, W represent the ancestors of V and Y , Z, W , V are the

descendants of X. Finally, a trail between two nodes X and Y is a sequence of nodes



Chapter 2. Bayesian networks 13

{Xi1 = X,Xi2 , . . . , Xik = Y } such that, for all j ∈ {1, . . . , k − 1}, G contains either the

arc Xij → Xij+1 or the arc Xij+1 → Xij . A trail is thus similar to a directed path except

that we do not take into account the direction of the arcs.

X Y Z W V

Figure 2.3: Example of directed path from node X to node V .

Given the definition of a directed path, the DAG of the BN must guarantee that there

is no node that can be at the same time an ancestor and a descendant of itself, i.e., the

graphical structure of a BN contains no directed path which is also a loop (Xik = Xi1).

By taking into account all these notions, we can now state the definition of the local

Markov property:

Definition 2.3. (Local Markov property) Let B = (G,Θ) be a BN, where G = (X ,A)

is a DAG, X represents a set of random variables and Θ is a set of CPTs whose product

is equal to a joint distribution P . Let ND(Xi) denote the set of variables that are non-

descendants (Xi and its parents excluded) of Xi in G, then B encodes the following set

of conditional independences:

∀Xi ∈ X , {Xi} ⊥P ND(Xi)|Pa(Xi). (2.2)

For root nodes Xi (the nodes without parents), the Local Markov Property states that

{Xi} ⊥P ND(Xi)|∅ or, in other words, that {Xi} ⊥P ND(Xi). For instance, in Fig-

ure 2.4, the Local Markov Property states that {F} ⊥P {D,C, I, A,B}|{E} and that

{E} ⊥P {A,B}.

A E

B D F

C

I J

Figure 2.4: The Markov Local property applied to node F .

Note that the conditional independences entailed by the Local Markov property are not

the only ones satisfied by distribution P . Additional independences can be inferred

from the distribution using a set of properties called the graphoid axioms [PP86] which

contain: Symmetry, Decomposition, Weak union, Contraction and Intersection. Except

Intersection, all the other axioms are known to hold for any probability distribution.

We start by introducing the formal definitions of these axioms, then we define a graphical

criterion called d-separation [Pea88] that will be used for retrieving all independences



Chapter 2. Bayesian networks 14

from the graph (those entailed by the Local Markov property and the graphoid axioms).

Note that in the series of DAGs shown in Figures 2.5, 2.6, 2.7 and 2.9 below, which

illustrate conditional independences of the type X ⊥P Y|Z, nodes X at the left of the

⊥P independence sign are represented by double circles, nodes Y on the right of the ⊥P
sign are represented by dotted circles and nodes Z at the right of the conditioning bar

are represented by shaded circles.

• Symmetry. Let X, Y, Z ⊆ X be disjoint sets of random variables, then:

X ⊥P Y|Z⇔ Y ⊥P X|Z.

As can be seen in Figure 2.5, if learning information on X does not influence our

belief in Y given information about Z, then the reverse also holds.

• Decomposition. Let X, Y, Z, W ⊆ X be disjoint sets of random variables, then:

X ⊥P (Y ∪W)|Z⇒ (X ⊥P Y|Z) ∧ (X ⊥P W|Z).

This property states that if learning new information on both Y and W does not

influence our belief in X given information about Z, then those new information

are also irrelevant separately. An example of decomposition property is shown in

Figure 2.6.

• Weak union. Let X, Y, Z, W ⊆ X be disjoint sets of random variables, then:

X ⊥P (Y ∪W)|Z⇒ X ⊥P Y|(Z ∪W).

This property states that if W and Y are irrelevant for X given Z, then partial

information on Y is also necessarily irrelevant given Z ∪W. Figure 2.7 illustrates

this property.

In particular, for any W ⊂ ND(Xi), by settingND(Xi) = Y∪W andPa(Xi) = Z,

the application of the weak union axiom on Equation (2.2) of Definition 2.3 implies

that:

∀Xi ∈ X , {Xi} ⊥P (ND(Xi) \W)|(Pa(Xi) ∪W).

• Contraction. Let X, Y, Z, W ⊆ X be disjoint sets of random variables, then:

(X ⊥P Y|Z) ∧ (X ⊥P W|(Z ∪Y))⇒ X ⊥P (Y ∪W)|Z.

The contraction axiom is illustrated in Figure 2.8.

• Intersection. Let X, Y, Z, W ⊆ X be disjoint sets of random variables, then:

(X ⊥P Y|(Z ∪W)) ∧ (X ⊥P W|(Z ∪Y))⇒ X ⊥P (Y ∪W)|Z.



Chapter 2. Bayesian networks 15

One example of application of the Intersection axiom can be seen in the DAG

shown in Figure 2.9: first, the conditional independence {X} ⊥P {Y }|{Z,W} is

directly deduced from the combination of the local Markov property applied on

Y and W (see Definition 2.3) with the Decomposition and Weak union axioms.

{X} ⊥P {W}|{Z, Y } can be inferred in a similar way. Then, by using Intersec-

tion, we can infer that independence {X} ⊥P {Y,W}|{Z} holds in probability

distribution P .

It must be noted that the intersection property is known to hold only for strictly

positive probability distributions2.

Y

Z

X

⇔ Y

Z

X

Figure 2.5: Symmetry

Y W

Z

X

⇒ Y W

Z

X

∧ Y W

Z

X

Figure 2.6: Decomposition

Y W

Z

X

⇒ Y W

Z

X

Figure 2.7: Weak union

2.2.1 d-separation

We have discussed above how the DAG of a BN can be considered as a map of inde-

pendence statements. We have seen also how the local Markov property can be used to
2A probability distribution P is strictly positive if for any assignment x of X , P (X = x) > 0.



Chapter 2. Bayesian networks 16

Y W

Z

X

∧ Y W

Z

X

⇒ Y W

Z

X

Figure 2.8: Contraction

Y W

Z

X

∧ Y W

Z

X

⇒ Y W

Z

X

Figure 2.9: Intersection

identify a first set of conditional independences between random variables and how the

latter can be completed using the set of graphoid axioms. In fact, conditional indepen-

dence statements derived from these axioms or from the local Markov property can also

be read from the DAG of the BN using a graphical criterion called d-separation [Pea88].

The purpose of the d-separation criterion is to provide one simple graphical criterion to

assert whether some sets of nodes X are independent of some nodes Y given some nodes

Z. By only relying on the graphical structure of the BN rather than on the probability

distribution P , d-separation can reveal fewer conditional independences than the whole

set related to distribution P . This explains why we will distinguish hereafter the con-

ditional independences detectable by d-separation, which we will denote by X ⊥G Y|Z,

from those detectable from the probability distribution P , i.e., X ⊥P Y|Z. The main

advantage of using d-separation is that it is much easier and faster to handle than us-

ing the above axioms. Essentially, d-separation consists of computing whether the trails

linking nodes of X and nodes of Y are “blocked” by Z:

Definition 2.4. (Blocked trail) Let G = (X ,A) be a directed acyclic graph (DAG) and

let X and Y be two nodes of X . Finally, let Z ⊂ X be a set of nodes. Then a trail

{Xi1 = X, . . . ,Xik = Y } is said to be blocked by Z if and only if there exists a node

Xij , j ∈ {2, . . . , k − 1}, on the trail such that one of the following conditions holds:

• Xij has converging arcs on the trail, i.e., the trail contains Xij−1 → Xij ← Xij+1,

and neither Xij nor any of its descendants are in Z,



Chapter 2. Bayesian networks 17

• Xij does not have converging arcs on the trail, i.e., the trail contains sequences

Xij−1 → Xij → Xij+1 or Xij−1 ← Xij ← Xij+1 or Xij−1 ← Xij → Xij+1 , and

Xij ∈ Z.

Definition 2.5. (d-separation) Let G = (X ,A) be a directed acyclic graph (DAG). Let

X,Y,Z be three disjoint sets of nodes in G. X and Y are said to be d-separated by Z,

which is denoted by X ⊥G Y|Z, if all the trails between each node in X and each node

in Y are blocked by Z. When Z = ∅, X ⊥G Y|Z is also denoted as X ⊥G Y. The set of

d-separation properties X ⊥G Y|Z of a given graph G is denoted by I(G).

It should be emphasized that if X and Y are d-separated by Z in G, then the conditional

independence X ⊥P Y|Z between X and Y given Z holds in probability distribution P

(but the converse may not hold). An example of blocking trails between two single nodes

X and Y are shown in Figures 2.10 and 2.11, where conditioning nodes in Z are shaded:

• In Figure 2.10, trail {X,U,Z, V, Y } is blocked by Z = {Z} because the arcs incident
to Z are not converging and Z belongs to Z. As this is the only trail between X

and Y , this implies that {X} ⊥G {Y }|Z.

• In Figure 2.11, trail {X,U,Z, V, Y } is blocked by Z = ∅ because neither Z nor its

descendant Q belong to Z and the arcs incident to Z on the trail are converging

(this is also called a v-structure). As this is the only trail between X and Y , this

implies that {X} ⊥G {Y }|∅ or, equivalently, that {X} ⊥G {Y }.

X U

Z

V Y

Figure 2.10: The trail between X and Y is blocked by Z = {Z}.

X U

Z

Q

V Y

Figure 2.11: Blocked trail between X and Y .

X U

Z

Q

V Y

Figure 2.12: Unblocked trail between X and Y .



Chapter 2. Bayesian networks 18

When two variables X and Y are not d-separated by Z ⊂ G, they are said to be d-

connected:

Definition 2.6. (d-connection) Let G = (X ,A) be a directed acyclic graph (DAG).

Let X,Y,Z be three disjoint sets of variables in G. X and Y are said to be d-connected

by Z, which is denoted by X 6⊥G Y|Z, if there is exists a trail between a node of X and

a node of Y which is not blocked by Z.

Figure 2.12 provides an example of two variables X and Y d-connected by Z = {Q}:
actually, trail {X,U,Z, V, Y } is not blocked since the nodes without converging arcs

(nodes U and V ) do not belong to Z and node Z, with converging arcs, has a descendant

in Z.

Due to the notions of blocked/unblocked trails used by the d-separation criterion, prob-

abilistic independence relationships defined previously can be represented now by means

of graphs. All these definitions will be used later in this chapter to derive more formal

definitions about BNs and they will be exploited later to explain in more details our

proposed approaches.

2.2.2 I-map, D-map and P-map properties

In this section we will use the d-separation criterion to describe notions about the rela-

tionships between the conditional independences encoded by a DAG G and those encoded

by a probability distribution P . In particular, we will provide the definition of the fol-

lowing notions: Independence map (I-map), Dependence map (D-map) and Perfect map

(P-map).

Definition 2.7. (I-map) We say that a DAG G is an Independence map of a probability

distribution P , which is referred to as an I-map, if every conditional independence cap-

tured from G (e.g., using the d-separation criterion) is also valid in the joint probability

distribution P . More formally, given three disjoint sets of variables X, Y, Z, we have

that, if G is an I-map, then:

X ⊥G Y|Z⇒ X ⊥P Y|Z. (2.3)

By abuse of notation, the I-map property can also be denoted by I(G) ⊆ I(P ). From

the I-map definition, we can obviously conclude that distribution P can contain more

independences than those entailed by G but all those that can be read from G are assured

to also belong to P . G is considered as a minimum I-map if and only if deleting any

arc of G makes it no longer an I-map of distribution P . Remind that the implication

of equation (2.3) does not go in both directions. This means that if two nodes are d-

connected (i.e. they are not d-separated) in G, they are not necessarily dependent in



Chapter 2. Bayesian networks 19

the joint probability distribution P . Therefore, a complete connected DAG (given a

topological ordering) is always an I-map of any probability distribution P .

Definition 2.8. (D-map) We say that a DAG G is a Dependence map of P , which is

also referred to as a D-map, if every conditional independence encoded by distribution P

can also be derived from graph G. More formally, given three disjoint sets of variables

X, Y, Z, we have that, if G is a D-map, then:

X ⊥P Y|Z⇒ X ⊥G Y|Z.

The D-map property can also be denoted by I(P ) ⊆ I(G). We say that G is a minimal

D-map if and only if adding any new arc to G makes it no longer a D-map. Obviously,

a BN with no arc is necessarily a D-map. A D-map G thus encodes more independences

than those existing in P .

Definition 2.9. (P-map) A DAG G is a perfect map (P-map) if it captures all the

independences/dependences in distribution P . More formally, given three disjoint sets of

variables X, Y, Z, we have that, if G is a P-map, then:

X ⊥P Y|Z⇔ Y ⊥G X|Z.

In other words, graph G is considered as a P-map if and only if it is in the same time

an I-map and a D-map of P . Hence, this leads to I(G) = I(P). Therefore, a P-map is

unique for a given distribution P up to DAG equivalence (details about DAG equivalence

will be illustrated in the next section). Given the definition of a P-map, one important

question may arise: is there a P-map for any given P since our purpose is to precisely

represent all independences of P? As it turns out, the answer is generally negative. It

can be proved that strictly positive distributions can be represented by perfect maps but,

in most practical situations, probability distributions are not strictly positive and, in this

case, perfect maps do not often exist. The problems induced by P not being possibly

represented by a P-map is a serious issue for learning BNs from databases. This will be

discussed in the third chapter of this thesis because, in some sense, it is at the core of

our research.

2.2.3 Markov blanket

Given a Bayesian network, the posterior probability P (X|Z = z) of a given node X is

usually altered whenever a set of nodes Z are instantiated (Z = z). However, due to the

notion of conditional independences previously defined, it turns out that there exists a

set of nodes MB(X), called the Markov blanket of node X, such that X is guaranteed to

be unaffected by any instantiation of the nodes in Z \MB(X) given MB(X). To put it



Chapter 2. Bayesian networks 20

X

Y

Z

W

A

B

C

D

E

F

G

H

I

J

K

L

X

Y

Z

W

A

B

C

D

E

F

G

H

I

J

K

L

(a) (b)

Figure 2.13: (a) The Markov blanket of node C. (b) DAG resulting from the deletion
of the arcs outgoing from the nodes of MB(C)

differently, the Markov blanket of a node X is the smallest set of nodes that completely

determines our beliefs on X, whatever any additional knowledge we may have on the

other nodes of the BN.

Definition 2.10. (Markov blanket) For any distribution P decomposable w.r.t. DAG

G = (X ,A), the Markov blanket of a node X ∈ X , which is denoted by MB(X), is the

smallest set of nodes in X \ {X} such that, given MB(X), X is independent from all

the other variables of the network. Formally, MB(X) is defined as follows:

∀X ∈ X ,MB(X) = Argmin
|Y|

{Y : {X} ⊥P (X \ ({X} ∪Y))|Y}.

In a BN, the Markov blanket of a given node X can be easily identified from G: it consists
of the union of the set of its parents (Pa(X)), of the set of its children (Ch(X)) and of

its spouses (the parents of the children of X, except X itself).

Consider the example of BN given in Figure 2.13.a. By Definition 2.10, it is easy to see

that the Markov blanket of node C is equal to {W,D,H,Z, Y,B, F,K}, i.e., the set of

shaded nodes. As it is shown in Figure 2.13.b, when deleting all the arcs outgoing from

the nodes of the Markov blanket, we obtain a node X disconnected from all the nodes

in G except from its children, hence X is disconnected from all the nodes not belonging

to its Markov blanket.

2.3 Markov equivalence class

Several DAGs can represent the same set of conditional independences. As an example,

a DAG G1 composed by two nodes X and Y and one arc X → Y represents a world in

which X and Y are dependent. The same world can be represented by DAG G2 composed

by the same nodes X and Y and one arc Y → X. We consider that two graphs belong

to the same Markov equivalence class if they encode precisely the same set of conditional

independence assertions:



Chapter 2. Bayesian networks 21

Definition 2.11. (Markov equivalence class) Let G1 = (X ,A1) and G2 = (X ,A2) be

two DAGs containing the same set of random variables X . Graphs G1 and G2 belong to

the same Markov equivalence class if and only if each d-separation statement between any

two disjoint set of variables X and Y given a set Z in G1 implies the same d-separation

statement in G2, and conversely. That is:

X ⊥G1 Y|Z⇔ X ⊥G2 Y|Z.

By abuse of notation, the Markov equivalence between G1 and G2 can be denoted by

I(G1) ≡ I(G2).

For more details about the definition of Markov equivalence, we consider four examples of

BNs represented in Figure 2.14. All of these BNs encode the same set of conditional in-

dependence assertions: for instance, {Y } ⊥G {Z}|{W} and {A} ⊥G {Y,Z}|{W}. There-
fore, any distribution P that can be factorized w.r.t. one of these DAGs can also be

factorized w.r.t. the other three.

X

Y Z

W

A

X

Y Z

W

A

(G1) (G2)

X

Y Z

W

A

X

Y Z

W

A

(G3) (G4)

Figure 2.14: Four DAGs encoding the same set of independence assertions.

Given Definition 2.11, it is straightforward to see that the d-separation criterion enables to

check whether some DAGs are Markov equivalent or not. In addition to the d-separation

criterion, another graphical technique can be used to identify whether a set of BNs are

equivalent: as we can observe in the example of Figure 2.14, all the DAGs share a

common skeleton, i.e., they have the same graphical structure if the arcs are substituted

by (undirected) edges. This implies that the set of trails between any two nodes X

and Y are the same in both G1 and G2. By definition of d-separation, it is clearly a

requirement for G1 and G2 to be Markov equivalent. Actually, if the DAGs did not share

the same skeleton, there would exist at least one trail in one DAG that would not belong



Chapter 2. Bayesian networks 22

to the other DAG, which would in turn imply that both DAGs do not have the same

set of conditional independences. But sharing the same skeletons is not sufficient to

prove the Markov equivalence. A counterexample can be found in Figure 2.15 in which

all the networks share the same skeleton but {X} ⊥G {Z}|{Y } in graph (a) whereas

{X} 6⊥G {Z}|{Y } in graph (b) (see the d-separation criterion). As can be noticed, the

only difference between these two DAGs is the existence of a v-structure (converging arcs

structure) at node Y in the second graph. This is precisely the additional information

needed to assess Markov equivalence:

Definition 2.12 (v-structure). Let X,Y, Z be three nodes in a DAG G. Then, in triple

(X,Y, Z), Y is a v-structure if and only if the arcs X → Y and Y ← Z belong to G but

not arc X → Z nor arc Z → X.

In Figure 2.15.(b), node Y is thus a v-structure for triple (X,Y, Z), but W is not a

v-structure for triple (Y,W,Z) because the graph contains arc Z → Y . Now, we can

present the Markov equivalence criterion:

Theorem 2.1. Two DAGs G1 and G2 are Markov equivalent if they share the same

skeleton and the same set of v-structures.

Referring to Theorem 2.1, the Markov equivalence class of a set of BNs can then be

represented with a partially directed graph (PDAG) in which all the arcs not being part

of any v-structure are substituted by (undirected) edges. The resulting partially directed

graph can be completed by orienting the edges compelled to a specific direction (to

avoid creating new v-structures). The resulting graph is then called a completed partially

directed acyclic graph (CPDAG). It should be noted that the CPDAG of an equivalence

Markov class is unique. Figure 2.16 depicts an example of a CPDAG for the networks

mentioned in Figure 2.14: the orientation of edges meeting at X is compelled since it

corresponds to a v-structure while the rest of edges can be freely oriented.

X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

(a) (b) (c)

Figure 2.15: Two DAGs (a) and (b), and their skeleton (c).

If we go back to Subsection 2.2.2 and make the relation with the notion of Markov

equivalence class, we can deduce that all graphs Gi that are P-map of a distribution P

are necessarily Markov equivalent.

Theorem 2.2. All P-map for a given distribution P , if they exist, belong to the same

Markov equivalence class.



Chapter 2. Bayesian networks 23

X

Y Z

W

A

Figure 2.16: The Markov equivalence class of DAGs of figure 2.14

2.4 Probabilistic inference

In this section, we discuss how to perform inference (or belief propagation) in a BN. As

discussed earlier, BNs allow a compact and expressive representation of joint probability

distribution P . Through the specification of P , we are able to answer a large range of

probabilistic queries which, as we shall see, enables us to perform many useful reasoning

patterns, e.g., prediction, diagnosis, etc. All of the probabilistic reasoning performed

with BNs somehow involve computing some conditional probability distribution of the

form P (Q|E = e), where Q denotes a set of query (or target) variables and E denotes

the set of evidence variables on which observations e are available. By abuse of notation,

this distribution is often denoted by P (Q|e). By definition, it can be computed as:

P (Q|E = e) =
P (Q,E = e)

P (E = e)
. (2.4)

As can be seen from this equation, it relies on the calculation of two joint probabilities,

P (Q,E = e) and P (E = e). The former can be computed from P by summing out all

the irrelevant variables W = X \ (Q ∪E). That is:

P (Q,E = e) =
∑

w∈W

P (Q,W = w,E = e).

Probability P (E = e) can be computed similarly from the above equation:

P (E = e) =
∑
q∈Q

P (Q = q,E = e).

In principle, by performing summations over irrelevant variables on the joint probabil-

ity distribution P , it is possible to answer many probabilistic queries. However, this

approach is not always tractable since the size of probability distribution P grows expo-

nentially with respect to the number of variables n (O(2n) if all the variables are assumed

to be Boolean). Hence, summing over the joint distribution P is very time consuming,

and, actually, the inference task (i.e., answering queries of the above type) is known to

be a NP-hard problem.



Chapter 2. Bayesian networks 24

In the rest of this section, we will discuss exact and approximate state-of-the-art inference

algorithms that have been proposed to cope with the complexity of answering probabilis-

tic queries with BNs. Among the exact methods, we can cite the Variable Elimination

algorithm [Dec99]: the key idea of this algorithm consists in marginalizing out W one

variable at a time from the joint distribution until the desired conditional probability

P (Q, e) is computed. To be efficient, however, the joint distribution is never used as is.

Instead, the algorithm starts from the pool of CPTs whose product is equal to the joint

distribution P . Then, each time a variable needs to be marginalized out, the set of CPTs

that contain this variable are removed from the pool, their product is computed and

the CPT resulting from the marginalization of the variable from this product is inserted

back into the pool. When no more variable needs to be marginalized out, the product

of the CPTs remaining in the pool corresponds to probability P (Q, e). Depending on

the query at hand, this algorithm tries to find the best elimination order of variables,

i.e., the one which results in the lowest complexity of this process. This problem is also

NP-hard and, in practice, heuristics are exploited.

In [Pea88], aMessage passing algorithm propagating information within the BN structure

is proposed, but it produces mathematically correct results only in tree or polytree BN

structures. To cope with more general BNs, i.e., BNs possibly containing undirected

cycles, Pearl proposed a cutset conditioning algorithm. Essentially, the idea consists of

instantiating a set of random variables (the cutset variables) in order to remove all the

cycles: when a variable/node is instantiated, its outgoing arcs are actually not useful

anymore and can thus be discarded. To produce correct results, it is needed to perform

the message passing algorithm for each possible instantiation of the set of cutset variables.

Unfortunately, this tends to increase exponentially the number of computations with the

number of cutset variables, hence also with the number of cycles. There were attempts

to reduce this increase, notably using local cutset conditioning [Die96, FJ00], but this

kind of inference algorithm remains very time consuming. Tree clustering, also known as

the junction tree algorithm [JOL89], is another exact method which derives a clique tree

structure from the original graph G in order to be used to control the process of variable

eliminations. This kind of algorithm has received a lot of attention because, in practice,

it is very efficient. Different messages have been proposed, for instance in [JLO90], all

messages represent (small) joint probability distributions whereas, in [Sha96, She97],

messages represent conditional probabilities and, in [MJ99], messages correspond to sets

of probabilities.

To summarize, the purpose of exact algorithms consists in reducing the amount of cal-

culations required by the inference process by treating each variable in a local way or

by grouping them into some “small” clusters. However, it should be noted that the com-

plexity of exact methods increases exponentially w.r.t. the number of intertwined cycles

in the BN, hence they reach their limit when the BN structure becomes too complex.



Chapter 2. Bayesian networks 25

In this context, approximate inference algorithms can be considered as an efficient al-

ternative because they are much less sensitive to the topology of BN. Since the results

returned by this class of methods are not exact, their main issue is related to the quality

of the obtained results which, in general, depend on the number of iterations budgeted

by the algorithm. Among the most common approximate inference approaches, we can

find those based on Markov Chain Monte Carlo (MCMC) [CC90, Pea87]. Their principle

can be described as follows: they start with a random sample q0 for the set of query

(target) variables Q, which is consistent with evidence E = e. Then, iteratively, they

create new samples qi from qi−1 which tend to better represent distribution P (Q|e).

They stop when the samples represent the stationary distribution P (Q|e). Such popular

MCMC methods include Gibbs sampling and Metropolis-Hastings. Other methods such

as likelihood weighting [SP90], self importance sampling [SP90], particle filter [KKR13]

could also be used to perform an approximate inference.

Before ending this section, it should be noted that the above list of inference algorithms

is not exhaustive. There also exist algorithms based on recursive conditioning [AD03],

on weighted model counting [BDTP03, SBK05, CD08], etc. The reader can also refer to

[Pea88, KF09] for additional techniques.

2.5 Reasoning with BN

Once the BN is built, it can be used as a powerful tool for reasoning about beliefs in

complex systems and for answering a large range of probabilistic queries. Next, we thus

describe some of the most common types of queries used in real-world problems. Those

include the computation of conditional probabilities (CP), of most probable explanations

(MPE) and maximum a posteriori (MAP).

2.5.1 Conditional probability query (CP)

It is considered as the most simple and usual query. Given instantiations of some evidence

variables E = e, the question asked in this query is the following: what is the distribution

P (Q|E = e), for some set of target variables Q? Usually, Q is limited to a singleton,

i.e., only one target random variable is of interest. This type of query is useful in many

real-world applications stemming from many different domains. Take a medical diagnosis

system as an example. In such a system, the doctor can be interested in calculating the

probability distribution that a patient may have a cancer (or not) given some of his

symptoms and/or some information about him, e.g., P (Cancer|Smoker=yes,Age=35).

Here, E = {Smoker,Age} and Q = {Cancer}. Such a query can be answered using

the algorithms mentioned in the preceding section. This kind of query allows for two



Chapter 2. Bayesian networks 26

Q

Y Z

W

E

E

Y Z

W

Q

(a) Diagnosis (b) Prognosis

Figure 2.17: Example of flow propagation in diagnosis and prognosis reasonings.

relevant reasoning patterns: diagnosis and prognosis. Figure 2.17 depicts the principles

of diagnosis and prognosis propagations in the BN framework. In this example, evidence

(E) and query variables (Q) are represented respectively with shaded circles and with

double circles respectively. Diagnosis performs reasoning from consequences to causes

(usually the opposite direction of the arcs in the BN). For example, in the nuclear field,

observations about post nuclear accident variables (amount of iodine in the environment,

containment state, etc.) can be used to update the expert’s belief about the values of

some other physical variables. Prognosis (or predictive) reasoning is performed from new

information about causes to the new beliefs about consequences. Note that this reasoning

usually occurs in the same direction as the arcs of the BN (the opposite of the diagnosis

principle). For example, observations coming from reactor sensors about temperature

and pressure may be used to update the expert’s belief about the containment state

(before being assessed).

2.5.2 Most probable explanation (MPE)

Unlike the preceding subsection, in the most probable explanation query, the goal is not to

compute a posterior probability distribution P (Q|e) but to determine an instantiation q̂

of variables Q = X \E with the highest posterior probability. In other words, computing

the answer to this query amounts to determine:

q̂ = Argmax
q∈Q

P (Q = q,E = e).

In [Nil98], an efficient algorithm based on the junction tree algorithm is provided to

answer this query, and even a more general one: finding the k most probable explanations,

i.e., the k instantiations of Q with the highest posterior probabilities.

This class of query can be applied in many real-world applications. For example, it can

be used to facilitate the diagnosis in the medical domain by allowing to find the most

probable diseases given clinical tests’ observations: the latter is considered as the set

of evidence E, while the former corresponds to the set of query variables Q. Since a



Chapter 2. Bayesian networks 27

patient may suffer simultaneously from several diseases, the MPE query in such a case

gives more relevant results than CP, since it exploits the compound effects of multiple

diseases.

2.5.3 Maximum a posteriori (MAP)

Maximum a posteriori queries are a generalization of MPE in which Q is not necessarily

equal to X \E anymore but it can be a subset of X \E [PD04]. So, if W = X \ (Q∪E),

then MAP consists in computing:

q̂ = Argmax
q∈Q

P (Q = q|E = e) = Argmax
q∈Q

∑
w∈W

P (Q = q,W = w|E = e).

As maximizations and summations cannot commute, this type of query has a higher

complexity than MPE because it adds constraints to the variables’ elimination ordering.

2.6 Conclusion

In this chapter, we have introduced Bayesian networks and we have shown how they

allow the compact description of large joint probability distributions. To achieve this

result, Bayesian networks rely on conditional independence properties that can be read

from their graphical structure. Therefore, we have presented the relationships between

probabilistic conditional independence statements (those that actually hold in the joint

probability distribution) and graphical conditional independence statements (those that

can be derived from the BN graphical structure). Notably, the notions of I-maps, D-

maps and Perfect maps and the semi-graphoid and graphoid axioms have been presented.

Finally, we have introduced the d-separation criterion, which is the graphical conditional

independence property actually represented by BNs.

Based on this criterion, we could introduce the notion of Markov blanket, the set of nodes

that make another node independent from the rest of the BN. Markov blankets will prove

to be important for learning the structure of BNs from datasets. We observed that several

BNs can represent precisely the same set of conditional independence statements, so we

presented the notion of Markov equivalence class: all the graphs that belong to the same

class represent exactly the same set of conditional independence statements. We also

discussed a simple criterion to determine whether different graphs belong to the same

class (this is the case when they share the same skeleton and the same set of v-structures).

Markov equivalence classes can also prove very useful for local search BN structure

learning algorithms because they can allow them to avoid searching neighborhoods that

belong to the same class, i.e., that do not improve the quality of the learnt BNs.



Chapter 2. Bayesian networks 28

Finally, we discussed how BNs can be exploited for probabilistic reasoning. We there-

fore showed which probabilistic queries were of interest in practical applications and we

presented the main classes of algorithms used to answer these queries.



Chapter 3

Learning Bayesian networks

Until now, we have discussed the main theoretical properties of BNs by assuming that

their graphical component (DAG) as well as their parameters (CPTs) are completely

specified. In this chapter, we study how BNs can be constructed. Two main possi-

ble approaches exist in the literature to perform such a task. The first one consists in

hand-constructing the model, typically by exploiting some expert knowledge of the do-

main. Unfortunately, eliciting BNs from experts is not a trivial task since it becomes

extremely laborious and time consuming when the size of the network becomes large. To

alleviate this issue, a second alternative has been proposed, which consists in automati-

cally learning BNs from data without needing the knowledge of the experts. In the past

twenty years, numerous efforts have been devoted to learn automatically BNs —both

their graphical structure and the parameters of their conditional probability tables—

from datasets [CH92a, Hec95, HGC95, Pea88, SGS01, TBA06]. The advantage of these

approaches results from their ability to construct BNs that precisely capture the prop-

erties of the distribution P that generated the data, even when it is high-dimensional.

It must be emphasized that the learning process is governed by two features. The first

one is related to the amount of data available from which the model will be constructed

as well as from the features of those data (the presence or lack of continuous variables or

of deterministic relationships among random variables, the a priori over the parameters

of the random variables or over the possible DAG structures, etc.). The performance

metric by which the quality of the model is evaluated is usually chosen on the basis of

this dimension. This metric induces the objective function that is optimized throughout

the learning process. The second dimension concerns the goal for which the BN is

learnt from dataset D, i.e., whether it will be used to subsequently perform probabilistic

inference or for a classification task for instance. This actually impacts on what needs

be learnt: do we really need to learn a full BN or just the part related to a single target

variable (the class). Given these two dimensions, several interesting questions emerge.

The most common questions are related to the quality of the returned BN given the

29



Chapter 3. Learning Bayesian networks 30

chosen objective function and to the set of assumptions under which the BN learning

task remains both feasible and efficient. Actually, the learning process is not always

tractable in practice as we shall see, notably in the next chapter.

In this chapter, we shall focus our discussion on the problem of learning the parameters

and the structure of a BN from discrete data (i.e., the data were generated from

a multivariate distribution over discrete random variables). We will discuss for each

learning process (parameters and/or structure) the set of assumptions that must be

satisfied before performing each of them. Then, we will mention the most common

state-of-the-art algorithms dedicated to BN learning.

3.1 Parameters learning

3.1.1 Preliminary definitions

Consider a BN B = (G,Θ), where G = (X ,A) is the BN’s DAG structure. For every

variable Xi ∈ X , let ri and qi denote the domain sizes of Xi and of its parents in the BN

respectively (by abuse of notation, qi = 1 when Pa(Xi) = ∅). Let xi,j denote jth value

of the domain of Xi, i.e., the jth value that Xi can take. Similarly, let pa(Xi)j denote

the jth value of the domain of the set of random variables Pa(Xi).

The set of parameters Θ of the BN can be decomposed as follows:

Θ = {θi}ni=1

θi = {θi,j}qij=1, i = 1, ..., n

θi,j = {θi,j,k}rik=1, j = 1, ..., qi, i = 1, ..., n

(3.1)

In these decompositions, θi denotes the CPT P (Xi|Pa(Xi)) assigned to node Xi, i.e., it

is the set of parameters that describe the probability distribution of Xi given its parents

in G. Parameter θi,j specifies the distribution of Xi conditioned on the jth value pa(Xi)j

taken by its set of parents, i.e., P (Xi|Pa(Xi) = pa(Xi)j). Finally, the parameter θi,j,k
denotes the probability P (Xi = xi,k|Pa(Xi) = pa(Xi)j), i.e., the probability that Xi

has taken its kth value given that its set of parents has taken its jth value.

In the following, we will discuss the problem of parameter estimation for BNs whose

structures are known a priori. We assume that data under which parameters will be

estimated are fully observed. Given a structure G and dataset D, the goal here consists

in identifying the optimal set of parameter values Θ = {θ1, θ2, ..., θn} of the network.

Usually, this is done by approximating Θ as accurately as possible to the optimal set of

parameters Θ̂. To do this, the different values that Θ may take are usually evaluated us-

ing a specific objective function. In the literature, different objective functions have been

proposed, depending on some hypotheses done and the approaches followed (maximum



Chapter 3. Learning Bayesian networks 31

likelihood estimation, maximum a posteriori estimation, Bayesian approaches). Before

listing the principles of these methods, we introduce the set of assumptions under which

they are supposed to work effectively.

1. Samples independence: the elements of dataset D are assumed to be mutually

independent and identically distributed (i.i.d. hypothesis). Mutual independence

means that no subset of records in D can provide any information on any other dis-

joint subset. Identical distribution means that all the records in D were generated

from the same probability distribution.

2. Parameters independence: this assumption can be decomposed into two levels:

global and local parameters independence. Parameters Θ are said to satisfy global

independence if they can be expressed as follows:

π(Θ) =

n∏
i=1

π(θi), (3.2)

where π represents the a priori distribution over all the possible parameter sets

Θ. In other words, the parameters θi of random variable Xi are independent

from those (θj) of any other random variable Xj . Regarding the local parameters

independences, the following expression holds:

π(θi) =

qi∏
j=1

π(θi,j). (3.3)

In other words, the parameters θi,j for the jth value ofXi’s parents are independent

from the parameters θi,k for the other values of Xi’s parents.

3. Parameters modularity: for two given graphs G1 and G2, parameters modu-

larity states that if a node Xi has the same parents in both networks, then the

conditional probability distribution P (Xi|Pa(Xi)) of this node shall be identical

in both networks.

4. Dirichlet prior: priors about θi,j values are expressed by a Dirichlet density

function. Given a Dirichlet distribution specified by a set of ri hyperparameters

(α1, ..., αri), the prior π(θi,j) is defined by the following density function:

Dirichlet(θi,j |α1, ..., αri) =
Γ(
∑ri

k=1 αk)∏ri
k=1 αk

ri∏
k=1

θαk−1
i,j,k (3.4)

where Γ(·) represents the Gamma function.



Chapter 3. Learning Bayesian networks 32

3.1.2 Maximum likelihood estimation

This approach relies on the use of the likelihood function as an evaluation criterion to

identify the best set of parameters’ values w.r.t. dataset D:

Θ̂ = Argmax
Θ

L(D|Θ) (3.5)

where L(·|·) denotes the likelihood function.

For a better understanding of the principle of this approach, we consider an example of

thumbtack tossing experiment inspired from [KF09].

Example 3.1. After flipping a thumbtack in the air, it comes to land as either head

(H) or tail (T ). The thumbtack experiment is repeated several times in order to obtain a

dataset containing the observations (H or T ) resulting from many flippings. Given the

resulting dataset D, the purpose of the parameters learning process consists in finding a

good approximation of Θ that describes accurately the probability of obtaining H or T ,

hereafter denoted respectively by θH and θT . Suppose that after tossing 100 times the

thumbtack, 47 came up heads and the rest were tails. In such a case, it is natural to

suggest that the best estimation of θH is 0.47 and θT = 1 − 0.47 = 0.53. If we decided

to set for instance θH to 0.01, then the chance of obtaining 47 heads in this experiment

would have been very low, hence far from reality. Maximum likelihood estimation would

have resulted in θH being equal to 0.47.

One important question may arise about the choice of the Θ values in the previous

experiment: how can we evaluate whether Θ is a good predictor of the given thumbtack

tossing data? To answer this question, a possible approach is to score the different values

of parameters Θ with the likelihood of obtaining dataset D given Θ. In this context, it

is natural to select the parameter set Θ that maximizes the likelihood of the data. Such

an approach is called Maximum Likelihood Estimation (MLE). Assuming that dataset D
contains N records representing the realizations of a variable X, which are supposed to

be i.i.d., the likelihood of D given Θ is calculated as follows:

L(D|Θ) = P (D|Θ) =

N∏
m=1

P (x(m)|Θ) (3.6)

where x(m) represents the observed value of X in the mth record of D.

Since the probability distribution of the thumbtack flipping example corresponds to a

binomial distribution, the likelihood of the dataset D given Θ is:

L(D|Θ) = θ47
H (1− θH)100−47. (3.7)



Chapter 3. Learning Bayesian networks 33

It must be emphasized that the parameter values returned by MLE must be "legal", that

is, they should represent a probability distribution. This means that, in Equation (3.5),

only the Θ’s that correspond to a probability distribution are taken into account.

Given the principle of the MLE technique, we can now generalize it to the context of

parameters estimation in a BN. It may be pointed out that the principle of parameters

estimation in BNs remains the same as for a single variable since it tries to find the set

of parameters’ values of the BN that maximize the overall likelihood of dataset D. The

only difference is that instead of determining the parameters’ values for one variable, we

calculate them for every CPT that corresponds to every node Xi given its parents in G,
i.e., P (Xi = xi,k|Pa(Xi) = pa(Xi)j) = θi,j,k. Given a BN, the likelihood for a set of

parameters Θ is calculated as follows:

L(D|Θ) =
N∏
m=1

P (X (m)|Θ)

=
n∏
i=1

N∏
m=1

P (Xi = xi,k(m)|Pa(Xi) = pa(Xi)j(m),Θ)

=

n∏
i=1

N∏
m=1

θi,j(m),k(m)

(3.8)

where xi,k(m) and pa(Xi)j(m) represent the values of Xi and of its parents in the mth

record of D respectively, and where θi,j(m),k(m) represents the corresponding parameter

in CPT P (Xi|Pa(Xi)).

LetNi,j,k denote the number of records with configuration (Xi = xi,k,Pa(Xi) = pa(Xi)j)

in D. Then the likelihood given by the above expression can be rewritten as follows:

L(D|Θ) =
n∏
i=1

qi∏
j=1

ri∏
k=1

(θi,j,k)
Ni,j,k . (3.9)

The logarithm of Equation (3.9) is therefore:

LL(D|Θ) =
n∑
i=1

qi∑
j=1

ri∑
k=1

Ni,j,k log θi,j,k. (3.10)

As the logarithm is a strictly increasing function, the solution Θ̂ = {θ̂1, . . . , θ̂n} of

Equation (3.5) also maximizes the above log-likelihood. In addition, by global parameter

independence, each θi can be optimized separately from the other θj ’s. Therefore:

θ̂i = Argmax
θi

qi∑
j=1

ri∑
k=1

Ni,j,k log θi,j,k, for all i ∈ {1, . . . , n}.



Chapter 3. Learning Bayesian networks 34

Remember that θi = {θi,1, . . . , θi,j , . . . , θi,qi}. Now, by local parameter independence, we

have that each set of parameters θi,j is independent of the other sets θi,j′ , j′ 6= j. As a

consequence, we also have that:

θ̂i,j = Argmax
θi,j

ri∑
k=1

Ni,j,k log θi,j,k, for all i ∈ {1, . . . , n}, j ∈ {1, . . . , qi}. (3.11)

So, all these quantities can be optimized separately: they are actually independent sub-

problems. Finally, note that θi,j = {θi,j,k}rik=1 are the parameters of a probability distri-

bution over random variable Xi. This imposes the following constraints on θi,j,k: i) all

the θi,j,k are non-negative; and ii)
∑ri

k=1 θi,j,k = 1. The second constraint can be equiv-

alently expressed as θi,j,ri = 1−
∑ri−1

k=1 θi,j,k. After substituting θi,j,ri by this expression

in Equation (3.11), we get:

θ̂i,j = Argmax
θi,j

[(
ri−1∑
k=1

Ni,j,k log θi,j,k

)
+Ni,j,ri log

(
1−

ri−1∑
k=1

θi,j,k

)]
.

If we denote by LLi,j(D|θi,j) the function inside square brackets in the above equation,

then, the optimal solution θ̂i,j is obtained when:

∂LLi,j(D|θi,j)
∂θi,j,k

=
∂LL(D|Θ)

∂θi,j,k
= 0, for all k ∈ {1, . . . , ri}.

Now, it is easy to see that:

∂LLi,j(D|θi,j)
∂θi,j,k

=
Ni,j,k

θi,j,k
− Ni,j,ri(

1−
∑ri−1

k′=1 θi,j,k′
)

=
Ni,j,k

θi,j,k
− Ni,j,ri

θi,j,ri
.

(3.12)

From this result, we can immediately conclude that Equation (3.12) is equal to 0 when

θi,j,k verifies:
Ni,j,k

θi,j,k
=
Ni,j,ri

θi,j,ri
,∀k ∈ {1, ..., ri − 1}. (3.13)

Therefore:
Ni,j,1

θi,j,1
=
Ni,j,2

θi,j,2
= · · · = Ni,j,ri

θi,j,ri
=

∑ri
k=1Ni,j,k∑ri
k=1 θi,j,k

=

ri∑
k=1

Ni,j,k.

Substituting this result into Equation (3.12), we get:

θ̂MLE
i,j,k =

Ni,j,k∑ri
k′=1Ni,j,k′

.

Exploiting the above equations, the maximum likelihood parameters values can be found

by simply counting how many times each configuration of each Xi and Pa(Xi) occurs

in dataset D. To guarantee the correctness of this approach, a large dataset is however

needed, else the estimation might be very approximate.



Chapter 3. Learning Bayesian networks 35

3.1.3 Bayesian estimation

In this approach, it is assumed that there exists a joint probability distribution P over

all the possible pairs (D,Θ), i.e., over all the possible datasets and all the possible sets

of parameters Θ. A consequence of this assumption is that there also exists a prior

distribution π(Θ) = P (Θ) =
∑
D P (D,Θ) over the possible values of Θ. This prior and

the dataset D together are used to assign a posterior probability to the different values

of Θ using a probabilistic reasoning based on Bayes rule:

P (Θ|D) =
P (D|Θ)π(Θ)

P (D)
∝ P (D|Θ)π(Θ). (3.14)

Unlike the MLE approach, in the Bayesian approach Θ is treated as a random vari-

able over which we maintain a probability distribution π(Θ). In Equation (3.14), fac-

tor P (D|Θ) corresponds to the likelihood function (discussed earlier). Factor π(Θ)

is the a priori distribution over the different parameter values Θ. The denomina-

tor is a normalizing factor which corresponds to the marginal likelihood of the data

P (D) =

∫
Θ
P (D|Θ)π(Θ)dΘ. But this term can be discarded from our search of the

best Θ since it is a constant (it is independent of Θ). In other words, the Bayesian

estimation approach can be seen as a kind of belief π(Θ) updated after we have ob-

served dataset D. Since the posterior distribution of parameters’ values Θ is a product

of the likelihood P (D|Θ) and of the prior π(Θ), it would be logical that both of them

have the same form. Recall that the corresponding likelihood function for a multinomial

distribution is given by the following expression:

P (D|Θ) =

n∏
i=1

qi∏
j=1

ri∏
k=1

(θi,j,k)
Ni,j,k . (3.15)

Given the previous equation, it turns out that the Dirichlet distribution prior has a

compatible form with this likelihood expression (it is a conjugate prior). For the set of

random variables X in the BN, the prior distribution over the possible BN parameters

Θ values using the Dirichlet distribution (with hyperparameters αi,j,k + 1) is expressed

as follows:

π(Θ) ∝
n∏
i=1

qi∏
j=1

ri∏
k=1

(θi,j,k)
αi,j,k , (3.16)

where αi,j,k > −1. As a result, the posterior probability P (Θ|D) is also Dirichlet:

P (Θ|D) ∝ P (D|Θ)π(Θ)

∝
n∏
i=1

qi∏
j=1

ri∏
k=1

(θi,j,k)
Ni,j,k+αi,j,k .

(3.17)

Note that Equation (3.17) is equivalent to the likelihood function if and only if the prior

π(Θ) is uniform (we can interpret such a prior as an uninformative one).



Chapter 3. Learning Bayesian networks 36

Similarly to the MLE approach, differentiating the log of P (Θ|D) in Equation (3.17)

w.r.t. θi,j,k results in:

∂ logP (Θ|D)

∂θi,j,k
=

(
Ni,j,k + αi,j,k

θi,j,k

)
−

(
Ni,j,ri + αi,j,ri

1−
∑ri−1

k′=1 θi,j,k′

)
=

(
Ni,j,k + αi,j,k

θi,j,k

)
−
(
Ni,j,ri + αi,j,ri

θi,j,ri

)
.

(3.18)

By following the same computation principle as in the MLE approach, we obtain:

θ̂MAP
i,j,k =

Ni,j,k + αi,j,k∑ri
k′=1Ni,j,k′ + αi,j,k′

. (3.19)

Another alternative to make a Bayesian estimation of θi,j,k consists in computing the

expectation w.r.t. the posterior probability EP (Θ|D)[Θ] instead of its maximum:

θ̂MAP
i,j,k = EP (Θ|D)[Θ] =

∫
Θ

ΘP (Θ|D)dΘ

=
Ni,j,k + αi,j,k + 1∑ri

k′=1Ni,j,k′ + αi,j,k′ + 1
.

(3.20)

To summarize, Table 3.1 provides the main differences between theMLE and the Bayesian

approaches.

Criteria Maximum likelihood Bayesian approach

Estimation Maximization of P (D|Θ) Maximization of P (Θ|D)
Complexity Solved analytically Solved analytically

Prior Without prior With prior

Table 3.1: Main differences between the MLE and the Bayesian approaches.

3.2 Structure learning

In this section we shall focus our discussion on the problem of BN structure learning

from data. Here, we will not give an exhaustive list of state-of-the-art structure learning

algorithms. Instead, we will present an overview on the most prevalent algorithms in the

literature and we will focus mainly on those related to our works.

Until now, we have only seen how BNs represent joint probability distributions and allow

reasoning under uncertainty. The probability distribution is represented by means of a

structure that describes the set of dependences/independences among random variables

in a compact and efficient manner. This constitutes one of the main advantages of BNs

since the independence properties of the probability distributions can be easily read from

the graph through the graphical criterion called d-separation described in the preceding



Chapter 3. Learning Bayesian networks 37

chapter. Now, there remains to learn this structure from data. This raises issues: how

can we guarantee the correctness of the learnt graph, i.e., that it represents correctly

the dependences/independences among the random variables? This question suggests

that some graphs are better than others because they represent more or less these de-

pendences/independences. As a consequence, structure learning can be thought of as an

optimization problem: find the graph that “best” represents the dependences/indepen-

dences of the distribution that generated dataset D. Another question of interest: which

hypotheses are needed to ensure the correctness of the learning process? As we shall see,

notably in the next chapter, there exist datasets for which checking this correctness is

not easy. Even in cases where it is easy, is structure learning in general an easy task?

the literature shows that this task is NP-hard in general. This explains why most of the

algorithms are not designed to find the optimal solution but rather try to approximate it,

essentially relying on search algorithms that try to limit as much as possible the search

space (the size of the DAG structures being superexponential in the number of nodes in

the graph). As such, only local maxima are returned by such algorithms. Nevertheless,

we should remember that the quality of the learnt structure plays an important role in

the accuracy of the BN. If the dependences between variables are not well learnt, the

resulting probability distribution will be far from the correct one. This is the reason why

this task must be addressed with a very high accuracy, since a simple arc omission or a

wrong orientation can lead to a drastic change in the semantics of the BN. To illustrate

this problem, let us consider a simple example of two possible orientations of a BN with

four variables, as shown in Figure 3.1. In this example, the only difference between G1

and G2 is the orientation of edge Y −W . As can be seen, two different orientations of

the single edge Y −W leads to the disappearance of a v-structure Y →W ← Z from G1

and the creation of another one X → Y ←W in G2. By using the d-separation criterion,

the conditional independences involved in this change can be mentioned as follows:

• G1 ⇒ ({X} ⊥G {W}|{Y }) ∧ ({X,Y } ⊥G {Z}),

• G2 ⇒ ({Y } ⊥G {Z}|{W}) ∧ ({Z,W} ⊥G {X}),

X

Y Z

W

X

Y Z

W

G1 G2

Figure 3.1: The impact of a single edge orientation modification on the semantic of
the BN.

In general terms, the task of BN structure learning consists in finding the correct edges

and their respective orientations according to some evaluation metrics that depends



Chapter 3. Learning Bayesian networks 38

on the data. As mentioned in [Pea88], this task can be tackled efficiently (at least

approximately) with many algorithms that, given a set of assumptions, guarantee the

accuracy of the BN structure.

We begin this section by listing the set of assumptions made by the majority of BN

structure learning algorithms. Then, we provide an overview of the different methods

dedicated to BN structure learning from data.

3.2.1 Assumptions made by Bayes net structure learning algorithms

The main assumptions under which the BN learning task can be addressed effectively

are the following: faithfulness, causal sufficiency, and causal Markov.

1. Faithfulness: distribution P is decomposable w.r.t. a perfect map G. This as-

sumption is most useful. Actually, the graph we wish to learn shall be an I-map

because the structure of a BN is always an I-map. So all the independences present

in the graph shall also be independences in distribution P . But, when learning from

data, the latter only provide independences in P and, from them, we shall infer

independences in G, which makes G a D-map of P . As a consequence, G shall be

both an I-map and a D-map, hence a perfect map: given three disjoint sets of

variables X, Y, Z, we shall therefore have:

X ⊥G Y|Z⇐⇒ X ⊥P Y|Z. (3.21)

2. Causal sufficiency: it is also called the assumption of completeness. It states

that for each pair of variables Xi and Xj in X , there are no common unobserved

(or latent) parents in G. In other words, the variables X in a given dataset D are

sufficient to learn the overall relationships between these variables.

3. Causal Markov assumption: it is satisfied if and only if, according to the

distribution P , every node Xi ∈ X is independent of its non-descendants given its

parents in G (see Definition 2.3 in Chapter 2).

3.2.2 Preliminary definitions

Given a dataset D, the purpose of the BN structure learning task is to summarize graph-

ically the set of conditional independence relationships among the variables that hold in

distribution P . In this section, we assume that the BN learning task is performed under

the following conditions:



Chapter 3. Learning Bayesian networks 39

• we restrict ourselves to the study of discrete variables, i.e., variables whose do-

main size is finite. Therefore, local probability distributions are represented by

multidimensional tables;

• all the assumptions mentioned in Section 3.2.1 are satisfied;

• all data are fully observed, i.e., in every record of the dataset, all the variables have

been assigned some value.

In the rest of this section, we will provide an illustration of the state-of-the-art BN

structure algorithms. These algorithms can be divided into three main groups:

• constraint-based approaches: this class of algorithms relies on the use of sta-

tistical independence tests to find a DAG G for which the local Markov property

entails the existing conditional independence assertions in P [SGS01, Pea00] (and

only them under the faithfulness assumption).

• score-based approaches: using a scoring function, the problem of BN learning is

transformed into a search problem for the structure that maximizes this function.

At each iteration, the algorithms of this class examine all the possible local changes

that may be performed on the current structure and then choose the one with the

highest value of the scoring function. The process is iterated until a local optimum

is reached.

• Hybrid approaches: they try to combine the advantages and overcome the limi-

tations of the two above approaches: they start by learning a first graphical struc-

ture called a skeleton using a constraint-based approach and, then, starting from a

graph induced by this skeleton, they carry out a score-based approach to find the

best BN’s DAG [TBA06, vDvdGT03a].

3.2.3 Constraint-based approaches

Constraint-based algorithms [SGS01, Pea00] attempt to learn a BN structure that ac-

curately represents the conditional dependences/independences of the underlying prob-

ability distribution. In other words, given a distribution P , these algorithms try at each

iteration to answer the following question: “does P satisfies the independence assertion

{X} ⊥P {Y }|Z?”. The binary decision (yes/no) returned by a statistical test (which

depends on a significance level α) for this question indicates whether an edge should

exist or not between X and Y in G. Therefore, the accumulation of all of these binary

answers lead to the construction of an undirected skeleton where the undirected edge

between any pair of variables indicates a direct probabilistic dependence. Besides the

binary answers, statistical tests can provide another valuable information by means of



Chapter 3. Learning Bayesian networks 40

the separating sets composed by conditioning variables Z that d-separate two variables

X and Y . Given the independence assertion {X} ⊥P {Y }|Z, the separating set of this

example is denoted as follows:

SepSetXY = Z. (3.22)

The learnt skeleton together with the discovery of the separating sets can correctly1

recover the true Complete Partially Directed Acyclic Graph (CPDAG) [SGS01] which

represents the Markov equivalence class of the BN (as defined in Section 2.3 of the

preceding chapter). Many algorithms have been proposed in the literature to tackle

this problem. They can be defined w.r.t. three criteria: (i) the type of statistical test

used to determine conditional dependences/independences; (ii) the heuristics used to

construct and orient the skeleton; (iii) the technique used to enhance the reliability of

the statistical tests2.

In the following, we will begin by presenting the most common used statistical tests

to learn the skeleton. Then, we will introduce the basic versions of constraint-based

approaches which constitute the PC and IC algorithms [SGS01, Pea00]. At the end of

this part, we will give an overview on some extensions of constraint-based approaches

that have been proposed in the literature.

3.2.3.1 Statistical tests for conditional independence

As mentioned earlier, constraint-based algorithms rely on statistical tests to compute con-

ditional independences between random variables. In practice, there exist several types

of statistical hypothesis tests that can be used to compute dependences (or correlations)

between variables, hence allowing to learn the BN skeleton. All of these tests share a

common principle which consists in the confrontation of two hypotheses to quantify the

dependence between variables Xi and Xj given a set of variables Xk:

• H0: Xi and Xj are conditionally independent given Xk,

• H1: Xi and Xj are not conditionally independent given Xk,

Given these hypotheses —H0 and H1 are called respectively the null and the alterna-

tive hypotheses—, the statistical test enables to decide whether to accept or reject the

alternative hypothesis (H1) according to a significance level α. The most common in-

dependence tests used by constraint-based algorithms for multinomial distributions are

Chi-square (χ2) and G-square (G2) based. Both of these tests are computed from a con-

tingency table containing the number of occurrences of each instantiation of the variables
1This correctness is guaranteed under the following assumptions: faithfulness, causal sufficiency and

causal Markov.
2They can be subject to error of type II (false negative edges), especially when the size of the

conditioning set Z is large.



Chapter 3. Learning Bayesian networks 41

in the dataset. Given two discrete variables Xi and Xj , and a set Xk of other discrete

variables, the χ2 test compares the following models:

• the observed model Po = P (Xi, Xj |Xk),

• the theoretical model (assuming independence) Pt = P (Xi|Xk)× P (Xj |Xk).

IfNi,j,k, Ni,k andNk denote the number of occurrences of triples (Xi = xi, Xj = xj ,Xk =

xk), pairs (Xi = xi,Xk = xk) and singletons (Xk = xk) in the dataset respectively, then,

provided that the latter is sufficiently large, we have that:

P (Xi = xi, Xj = xj ,Xk = xk) ≈
Ni,j,k

N
,

P (Xi = xi,Xk = xk) ≈
Ni,k

N
P (Xk = xk) ≈

Nk

N
,

where N is the number of records in the database. As a consequence,

P (Xi = xi, Xj = xj |Xk = xk) ≈
Ni,j,k

Nk
,

P (Xi = xi|Xk = xk) ≈
Ni,k

Nk
P (Xj = xj |Xk = xk) ≈

Nj,k

Nk
.

The formula for calculating Chi-square is therefore given as follows:

χ2
statistics(Xi, Xj |Xk) =

ri∑
i=1

rj∑
j=1

rk∑
k=1

Nk

(
Ni,j,k
Nk
−
(
Ni,k

Nk
×
Nj,k

Nk

))2

Ni,k

Nk
×
Nj,k

Nk

,

where ri, rj , rk represent the domain sizes of Xi, Xj and Xk respectively. This is

equivalent to:

χ2
statistics(Xi, Xj |Xk) =

ri∑
i=1

rj∑
j=1

rk∑
k=1

(
Ni,j,k −

(
Ni,kNj,k

Nk

))2

Ni,kNj,k

Nk

(3.23)

Then, we can calculate the p-value which represents the probability under H0 of getting

the observed value of χ2
statistic or something even larger. This probability is a χ2 distri-

bution with (ri − 1) × (rj − 1) × rk degrees of freedom. The null hypothesis H0 under

which Xi is conditionally independent from Xj given Xk is considered to hold if and

only if the p-value ≥ α, where α is generally fixed to 0.05. If H0 is rejected, then the

edge between Xi and Xj remains in G, otherwise it is removed by the algorithm.

Another statistical test has been proposed in the literature, which relies on the likelihood

ratio G2. It also follows a χ2 distribution with df = (ri − 1) × (rj − 1) × rk degrees of



Chapter 3. Learning Bayesian networks 42

freedom:

G2
statistics(Xi, Xj |Xk) = 2

ri∑
i=1

rj∑
j=1

rk∑
k=1

Ni,j,k log

(
Ni,j,kNk

Ni,kNj,k

)
. (3.24)

Sharing the same principle as the χ2 test, the G2 can be used either to accept or reject

H0. As mentioned earlier, both χ2 and G2 require the definition of a significance level α

to decide the rejection threshold of the null hypothesis. Remind that the α value must

be chosen carefully since a high value leads to a dense skeleton (with many edges), else

to a skeleton with too few edges to accurately represent the conditional independences

of distribution P .

Algorithm 1: PC Algorithm
Input: a dataset D, significance level α
Output: a CPDAG G

1 Start with a complete undirected graph G
2 Let d = 0
3 //Skeleton learning step
4 repeat
5 while ∃X − Y with |Adj(X) \ {Y }| ≥ d do
6 repeat
7 Select a new set Z ⊆ Adj(X), where |Z| = d
8 if {X} ⊥P {Y }|Z then
9 Delete edge X − Y from G

10 SepSetXY = SepSetXY ∪ Z
11 break

12 until All Z of size d have been tested ;

13 d = d+ 1

14 until ∀X ∈ X , |Adj(X)| ≤ d;
15 //Orientation step
16 foreach unshielded triple 〈X,Z, Y 〉 do
17 if Z /∈ SepSetXY then
18 R1: substitute in G edges X − Z and Z − Y by arcs X → Z and Z ← Y

19 repeat
20 ∀{X,Y } ∈ X 2

21 if ¬(X − Y ), ∀Z ∈ X \ {X,Y }, where X → Z and Z − Y then
22 R2 : substitute in G edge Z − Y by arc Z → Y

23 if X − Y and X → ...→ Y then
24 R3 : substitute in G edge X − Y by arc X → Y

25 until No further edge can be oriented ;
26 return CPDAG G

3.2.3.2 PC and IC algorithms

BN learning structure with the PC algorithm (Algorithm 1) [SGS01] is performed in two

steps. The first one is called the adjacency search. It consists in learning the undirected



Chapter 3. Learning Bayesian networks 43

skeleton. During the second step, edges are oriented through the identification of v-

structures and the use of a set of deterministic rules [Mee95]. As defined in [Mee95],

these rules rely on the learnt skeleton and on the conditioning separating sets discovered

during the first phase of the algorithm. In the following, we provide further details on

each of these two steps.

1. Adjacency search (lines 4-13 of Algorithm 1)

This step starts with a complete undirected graph, i.e., there is an edge between every

pair of nodes. Edges are removed using statistical test {X} ⊥P {Y }|Z (using a statistical

criterion like χ2, G2, etc.) where the size of the conditioning set Z is gradually increased

until reaching a maximal fixed size called the depth of the search and denoted by d in

the algorithm. To avoid the problem of checking all combinations of conditioning sets Z

when testing the independence between any pair of variables X and Y , the PC algorithm

considers only variables Z that are adjacent to either X or Y . The correctness of such

restriction can be easily explained by the fact that if X and Y are d-separated by any

subset of X \ {X,Y } in G, then they are also d-separated either by Pa(X) or by Pa(Y )

(and both of them are adjacent to either X or Y ) [Pea88].

Let us now explain how the PC algorithm proceeds to learn the skeleton. First, it begins

by checking the marginal independence between each pair of nodesX and Y (with a depth

d = 0). If {X} ⊥P {Y } holds, the corresponding edge is removed and SepSetXY = ∅ is

recorded. After checking all marginal independences, the depth of the search is increased

by one, and the next step tries to check all conditional independences with a conditioning

set whose size is equal to d = 1. It should be noted that this adjacency step requires that

at least one of the tested nodes X or Y has a set of adjacent nodes whose size is greater

than d. Actually, conditioning set Z is such that Z ⊆ Adj(X)\{Y } or Z ⊆ Adj(Y )\{X}.
The PC algorithm performs iteratively the independence tests with sets Z, adjacent to

each X or Y , of increasing sizes until all adjacency sets become smaller than or equal to

d3.

For a better understanding of the different steps while executing the PC algorithm,

we consider the example of learning the BN depicted by Figure 3.2. The results of

the learning steps of PC algorithm are shown in Figure 3.3. As discussed earlier, the

algorithm starts with a completely connected undirected graph (a). At the first step,

the algorithm removes edge X − Y since both nodes are marginally independent (b).

In the next step, the conditioning set composed by {Z} leads to the deletion of edges

X − W , Y − V , Y − W , X − V and W − V (d)(e)(f)(g). The first step of the PC

algorithm ends with an undirected graph (skeleton) in which all adjacent nodes have a

direct probabilistic dependence (g).
3We add “equal” to the inequality since when we test the conditional independence between any

variable X with Y ∈ Adj(X), we consider as conditioning set variables in Adj(X) \ {Y }.



Chapter 3. Learning Bayesian networks 44

X Y

Z

W V

Figure 3.2: Structure we want to learn

2. Orientation step (lines 16-25 of Algorithm 1)

In this step, the different edges composing the skeleton (learnt during the previous step)

are oriented by means of the following deterministic rules (R1, R2 and R3) [Mee95]:

• An unshielded triple 〈X,Z, Y 〉 is a triple of nodes such that there exist edges X−Z
and Y − Z in G but not edge X − Y .

R1: for each unshielded triple 〈X,Z, Y 〉 such that Z /∈ SepSetXY , orient X −
Y − Z as X → Z ← Y . In other words, this orientation rule is based on the

identification of possible v-structures, for which two nodes are independent, but

become dependent conditionally on the third node Z. An example of v-structure

identification can be seen in Figure 3.3.(h). In this example, edge X − Y has been

deleted at step (b) of the PC algorithm due to the marginal independence of these

nodes. Since X and Y are adjacent to Z and Z /∈ SepSetXY , in that case, both X

and Y are the causes of Z and thus the edges should be oriented toward the latter.

• R2: given X → Z, if Z and W are adjacent, and X and W are not adjacent

then convert Z −W into Z → W , since an opposite orientation would result in

a v-structure. Figure 3.3.(i) gives an example of orientation using such a rule. In

fact, the only possible orientation of Z − W and Z − V relations are Z → W ,

Z → V since the opposite orientations would lead to v-structures X → Z ← W

and X → Z ← V which are not confirmed by the independences shown at steps

(c) and (f) of Figure 3.3. The resulting BN (after using R1 and R2) corresponds

exactly to the original model shown at Figure 3.2.

• R3: if there is a directed path from X to Y , i.e., X → Z → ...→ Y , and an edge

between X and Y , then orient X − Y to X → Y . Otherwise, this would introduce

a directed cycle, which is forbidden in a DAG.

Note that the absence of sufficiently many v-structures in the first orientation step (with

R1) can lead to the impossibility of orienting some edges since there is not enough

information. In such a case, the orientations of some edges remain undecided. This

results in a PDAG representing the Markov equivalence class of the final BN graph that

is representative for the data in D.



Chapter 3. Learning Bayesian networks 45

X Y

Z

W V

X Y

Z

W V

X Y

Z

W V

(a) Complete undirected graph (b) {X} ⊥P {Y } (c) {X} ⊥P {W}|{Z}
X Y

Z

W V

X Y

Z

W V

X Y

Z

W V

(d) {Y } ⊥P {V }|{Z} (e) {Y } ⊥P {W}|{Z} (f) {X} ⊥P {V }|{Z}
X Y

Z

W V

X Y

Z

W V

X Y

Z

W V

(g) {W} ⊥P {V }|{Z} (h) v-structure X → Z ← Y (i) W ← Z → Y

Figure 3.3: An example of execution of the PC algorithm

Another constraint-based algorithm called IC (Inductive Causation) has been proposed

in [PV91a]. Instead of starting from a complete undirected graph (as in the PC algo-

rithm), the IC algorithm starts from an empty graph and tries to add edges between

each pair of variables for which a conditional dependence given every set of variables

Z ⊆ X \ {X,Y } can be proven. Therefore, at the end of its execution, the IC algorithm

obtains a minimal D-map whereas the PC algorithm looks for a minimal I-map. The

orientation step of the IC algorithm is also based on the set of deterministic rules (R1,

R2, and R3) presented earlier. It must be emphasized that the correctness of the PC

and the IC algorithms relies on the correctness of conditional independences discovered

during the learning process. However, as stated in [TBA06, SGS01, DD02], the reliability

of constraint-based algorithms is very sensitive to the size of the dataset. In addition

to the problem of the strong dependence between the resulting graph and the chosen

significance level α, the power of the hypothesis test when learning the structure is also

sensitive to the size of the conditioning set; as conditioning sizes grow, the reliability

decreases [AGM06]4. Hence, statistical tests may return results that erroneously suggest

adding or removing edges from the skeleton, especially when the dataset size is small.

Another problem concerning the classical constraint-based algorithms is related to the

order in which the random variables are considered. This order, as we shall see, can

lead to a wide range of different results, especially in high dimensional spaces (those

containing many variables) [FHJ08].
4In the rest of this section, this problem will be referred to as an error of type II.



Chapter 3. Learning Bayesian networks 46

Several approaches have been proposed in the literature to address some problems of

the classical constraint-based algorithms (PC, IC, etc.) [vDVDGT03b, TBA06, TASS03,

AGM06, CGOM08, XG08, FHJ08, DD02, Mar03]. Some algorithms aim to enhance the

reliability of constraint-based algorithms by reducing as much as possible the size of

the conditioning sets used in the statistical tests. Most of the skeleton learning-based

algorithms are variable ordering-dependent, i.e., the result they produce depends on the

order in which they processed the random variables. So, some variants have also been

proposed to overcome this problem in order to obtain a result that remains stable for all

given orders [CM14]. Before providing the details about the most common extensions of

constraint-based algorithms, we start this part by explaining how variable ordering may

impact the skeleton learning process.

3.2.3.3 Problem of variable ordering dependence

In the following, we will consider a concrete example (inspired from [CM14]) to show the

impact of variable ordering on the skeleton estimation process with the PC algorithm.

Example 3.2. Suppose we have a distribution P defined on a set of variables X =

{X1, X2, X3, X4, X5, X6}. Assume that distribution P is faithful to the DAG shown

in Figure 3.4.(a). In this example, the set of independences encoded by the graph are:

{X1} ⊥G {X2}, {X1} ⊥G {X3}, {X3} ⊥G {X2}, {X1} ⊥G {X5}|{X4}, {X2} ⊥G {X5}|{X4},
{X3} ⊥G {X5}|{X4}, {X1} ⊥G {X6}|{X4, X3}, {X2} ⊥G {X6}|{X4, X3}. We assume

that the only wrong independence statement returned by the algorithm (for a given α) is:

{X3} ⊥P {X6}|{X1, X4}. Let us now explain how the first step of the PC algorithm deter-

mines the skeleton given two different orders: ≺1= {X1 ≺ X3 ≺ X2 ≺ X5 ≺ X4 ≺ X6}
and ≺2= {X1 ≺ X6 ≺ X3 ≺ X4 ≺ X5 ≺ X2}. The resulting skeletons from ≺1 and ≺2

are shown respectively in Figures 3.4.(b) 3.4.(c). To explain the resulting skeletons, we

go through the first step of the PC algorithm for each given order to see what happened.

Let us start with ≺1. As defined in Algorithm 1, the starting point of PC is a complete

undirected graph. When d = 0, the marginal independence tests lead to the following

edge removals: X1 −X2, X1 −X3, X3 −X2. When d = 1, edges removed by conditional

independence tests are: X1 − X5, X3 − X5 and X2 − X5. When d = 2, the following

edges are removed: X1 −X6, X2 −X6 and also X3 −X6 since this latter is erroneously

deleted due to the wrong decision {X3} ⊥P {X6}|{X1, X4}.

For ≺2, the deletion process is performed as follows: when d = 0 and d = 1 the same

deletions as those made for ≺1 are performed. When d = 2, only X1−X6 and X6−X3 are

deleted. Actually, edge X2−X6 cannot be deleted given this order, since the neighbor set of

X6 has been affected by the previous deletions and therefore no longer contains X3, which

is necessary to delete this edge (see Line 5 of Algorithm 1). Therefore, independence test

“({X2} ⊥P {X6}|{X3, X4})?” is never performed and edge X2 −X6 cannot be deleted.



Chapter 3. Learning Bayesian networks 47

X1 X2 X3

X4

X5 X6

X1 X2 X3

X4

X5 X6

X1 X2 X3

X4

X5 X6

(a) True DAG (b) Skeleton learned for ≺1 (c) Skeleton learned for ≺2

Figure 3.4: The impact of variable ordering when learning the skeleton.

As can be seen in Example 3.2, at each search depth d, the prior ≺ determines the order

in which pairs of adjacent nodes are considered when computing the set of conditional

independences. For each edge removal, the skeleton G is updated, hence, the adjacency

sets of the concerned nodes typically change within one level of d. Given a level d, when

the adjacencies of some nodes are updated, the other conditional independences that have

to be checked at level d+ 1 are also affected. Since the optimal order is not necessarily

known a priori, variable order dependence becomes very problematic, especially for high-

dimensional spaces since they can lead to highly unstable results, i.e., they can produce

skeletons varying drastically from one order to the other.5.

3.2.3.4 PC-stable

In our discussion, we focus here on the first phase of the PC-stable algorithm, which

deals with the order dependence issue when learning the skeleton. As can be seen in

Algorithm 2, the main difference between PC-stable and the classic PC algorithm is

highlighted in lines 4 and 7 of Algorithm 2. At each level d, in a first stage, the algorithm

saves the current neighbor set of all the variables (Line 4). Then it searches all the

separating sets between variables, considering neighbors in the saved sets and, when

determining conditional independences, it removes edges but does not update the saved

sets. As such, the modifications in the graph are only taken into account when considering

search depth d + 1. This significantly reduces the instability problem resulting from

variable ordering (as seen in Example 3.2). Actually, wrong decisions that may occur

when using a statistical test at level d have no longer any influence on the other tests

performed at the same level. In addition, PC-stable allows parallelizing conditional

independence tests within each level d since they do not depend on each other anymore.

It should be noted that the added instructions (shown by lines 4 and 7) in Algorithm 2

do not rule out the soundness and completeness of the PC-stable algorithm if the exact

list of conditional independence relationships is known from the beginning [CM14].

Theorem 3.1. Let P be a distribution faithful to a DAG G, and assume that we have

an exact list of all the conditional independence statements that hold between every pair
5If a perfect conditional independence list is known a priori, the variable order-dependent algorithms

such as PC or IC give the same result for all orders. But, unfortunately, in practice, such a list is not
available.



Chapter 3. Learning Bayesian networks 48

of random variables, then the output of the PC-stable algorithm is exactly the CPDAG

that represents G.

If we apply PC-stable on Example 3.2, we obtain for both ≺1 and ≺2 the same skeleton

given in Figure 3.4.(b). The result for ≺2 can be explained as follows: despite the

deletion of edge X3 −X6, PC-stable performs the deletion of the edge between X2 −X6

({X2} ⊥P {X6}|{X4, X3}) since the neighborhood of X6 remains unchanged when d = 2

(see Line 4 of Algorithm 2). For more details about the proof and the orientation step

of the PC-stable algorithm, readers should refer to[CM14].

Algorithm 2: Learning the skeleton of the BN
Input: Data D, significance level α
Output: Skeleton G

1 Start with a complete undirected graph G
2 Let d = 0
3 repeat
4 ∀X ∈ X , adjX = Adj(X)
5 repeat
6 Select a new set Z ⊆ adjX , where |Z| = d
7 if {X} ⊥P {Y }|Z then
8 Delete edge X − Y
9 SepSetXY = SepSetXY ∪ Z

10 break

11 until All Z of size d have been tested ;
12 d = d+ 1

13 until ∀X ∈ X , |Adj(X)| ≤ d;
14 return undirected graph G = (X ,A)

3.2.3.5 Variations on the PC Algorithm

Many extensions of the original PC algorithm have been advocated in [AGM06]. Among

them, we can mention:

• the use of min cutset algorithms to minimize the sizes of the conditioning sets used

in the conditional independence tests.

• the handling of the problem of link ambiguities when a triangle situation holds,

i.e., when three variables X, Y and Z form a complete graph (3 links) and each

pair of variables are dependent but are also conditionally independent given the

third one.

Minimum cut set: as discussed earlier, when learning from small datasets, the use of

conditional independence tests with a large conditioning set may lead to many testing



Chapter 3. Learning Bayesian networks 49

X

P

V

U

Z Y

W

Q

R

Figure 3.5: Minimum cutset between X and Y : CutXY = {Z}.

errors. This can reduce the reliability of the skeleton recovery process. To alleviate

this problem, authors in [ST99] proposed to reduce the size of set Z when testing the

conditional independence between X and Y given Z. This reduction method consists in

restricting the set of conditioning variables to only those that appear on a path linking

X and Y in G. Another variant has been proposed in [AGM06], which aims to find a

minimum cutset CutXY , i.e., a minimal set of nodes that, when removed from G, makes

X and Y belong to two different connected components. This can be easily done by

computing a min cutset in a max-flow problem [AC96]. At each iteration of the PC

algorithm, if the size of CutXY is smaller than Z (incremented after each iteration),

we just perform χ2({X} ⊥P {Y }|CutXY ). This results in the construction of smaller

contingency tables and, as such, this increases the accuracy of the statistical tests. More-

over, the time overhead required to compute CutXY can be balanced by the number of

χ2 tests it allows to avoid. Figure 3.5 depicts an example of computation of a min cutset

when testing the conditional independence between X and Y . The first step consists in

removing the link between X and Y and then in determining the smallest set of variables

that blocks all the undirected paths between these two nodes. In this example, we can

clearly see that the min cutset is CutXY = {Z}. Instead of conditioning on a set of

three variables Z = {V,U, P} or Z = {W,Q,R}, which increases the possibility of having

a statistical error, we consider only one variable in the conditioning sets. By using the

min cutset option, the following instruction should replace instruction 7 of Algorithm 1:

“while ∃ X − Y , find Z = CutXY in G”.

Triangle resolution: Figure 3.6 depicts an example of a fully connected undirected

graph composed by 3 variables: X, Y and Z. In this example, in distribution P ,

each pair of variables are marginally dependent but they are also conditionally inde-

pendent given the third variable [AGM06]: {X} 6⊥P {Y }, {Y } 6⊥P {Z}, {X} 6⊥P {Z},
{X} ⊥P {Y }|{Z}, {Y } ⊥P {Z}|{X} and {X} ⊥P {Z}|{Y }.

X

Y Z

Figure 3.6: An example of triangle structure.



Chapter 3. Learning Bayesian networks 50

Hence, when executing the classical PC learning algorithm, the order in which variables

are considered leads to the skeletons displayed in Figure 3.7.

X

Y Z

X

Y Z

X

Y Z

G1 :≺1= {X,Y, Z} G2 :≺2= {X,Z, Y } G3 :≺3= {Z, Y,X}

Figure 3.7: The set of resulting skeletons given the orders ≺1, ≺2 and ≺3.

This ambiguous situation has been tackled by Abellan et al. [AGM06] through the dele-

tion of the link that corresponds to the weakest dependence among the three possible edge

deletions. As mentioned in [AGM06], the dependence strength of each link is calculated

by means of a statistical test such as χ2, G2, etc.

3.2.3.6 MMPC approach

Max-Min Parents Children (MMPC) [TAS03] is an order-dependent heuristics that de-

termines the skeleton over a high-dimensional space. Given a target variable denoted by

T and a dataset D, MMPC allows to perform a local discovery of the set of parents and

children of T denoted by PCT
G

6. Unlike the PC algorithm, MMPC operates in a more

depth-first search manner, considering all the possible parents-children candidates for a

given node T before moving to the next one. The set of all these candidates is denoted

by CPC (where CPC ⊆ X \ {T}). It should be noted that, for each node T , set PCT
G

is unique for all the BNs that are faithful to the same distribution [PV+91b, BHKL91].

As a constraint based algorithm, MMPC relies on the use of G2 statistical tests to decide

whether pairs of variables T and X are conditionally independent given a set S ⊆ CPC.

In this context, conditional independence assertions are used to quantify the strength

of the association between T and each X ∈ X \ (CPC ∪ {T}) given S, denoted by

Assoc(T,X − S)7, i.e., if {T} ⊥P {X}|S⇐⇒ Assoc(T,X − S)=0. Function Assoc uses

the p-value returned by G2 test: the smaller the p-value, the higher the association

between the tested variables. To check whether variable X can be added to the set of

CPC of T , the following test has to be performed:

CPC←

{
CPC if ∃S ⊆ CPC, s.t.{X} ⊥P {T}|S

CPC ∪ {X} otherwise
(3.25)

In other words, a node X can be added to the set of CPC of a target T if and only if the

minimum association (see Equation (3.26)) between X and T given a set of conditioning
6This notation shall not be confused with the PC algorithm.
7S ⊆ CPC as defined earlier.



Chapter 3. Learning Bayesian networks 51

variables S ⊆ CPC does not entail an independence between them.

MinAssoc(T,X|CPC) = min
S⊆CPC

Assoc(T,X|S). (3.26)

As shown in Algorithm 4, MMPC is composed of two phases. In the first phase, called the

“forward” phase, the algorithm starts with an empty set of CPC for the target variable

T . Then, at each iteration, a variable X is added to the list of CPC following the test

shown in Equation (3.25). The first phase stops when the minimum association of the

remaining variables reaches zero (lines 2-7). The second phase, called the “backward”

phase, consists in removing from the CPC the false positive parents-children that may

have been detected in the previous step. By false positive, we mean each variable X ∈
CPC that is independent from T given a subset S ⊆ (CPC \ {X}) (lines 9–13). Note

that if there exists a DAG G which is faithful to P , the MMPC algorithm guarantees

the learning of a correct skeleton. As explained in [TBA06], the PCT
G returned for each

target variable T are used afterward to build the skeleton of the BN as follows: X and

Y are connected by an edge in the skeleton G if and only if Y ∈ PCX
G AND X ∈ PCY

G

as shown in Algorithm 4.

To complete the orientation of the learned skeleton using the information provided by

set {PCXi
G }ni=1, the algorithm performs a greedy search over the possible DAGs to find

an optimal orientation.

Algorithm 3: MMPC

Input: Target variable T , dataset D
Output: list of CPC

1 //Forward step
2 CPC← ∅
3 repeat
4 if ∃X, s.t. ∀S ⊆ CPC, {X} 6⊥P {T}|S then
5 CPC← CPC ∪ {X}
6 end
7 until CPC does not change;
8 //Backward
9 foreach each X ∈ CPC do

10 if ∃S ⊆ CPC, s.t. {X} ⊥P {T}|S then
11 CPC← CPC \ {X}
12 end
13 end
14 return list of CPC for T



Chapter 3. Learning Bayesian networks 52

Algorithm 4: MMPC Algorithm
Input: Target variable T , dataset D
Output: list of CPC

1 CPC←MMPC(T,D)
2 foreach eachX ∈ CPC do
3 if T /∈MMPC(X,D) then
4 CPC← CPC \ {X}
5 end
6 end
7 return list of final CPC

3.2.3.7 Fast-IAMB approach

Fast-IAMB [YM05] is a constraint-based algorithm for BN skeleton learning relying on

the identification of Markov blankets. Instead of learning for each target variable T

its PCT
G (as the MMPC algorithm does), the Fast-IAMB algorithm aims to identify

only the Markov blanket of node T , i.e., the set MB(T ) such that T is is guaranteed

to be unaffected by any instantiation of the sets of nodes Z ⊆ X \ (MB(T ) ∪ {T}).
The Markov blanket is the optimal set of nodes that allows to predict the values taken

by T (as explained in [KS96]). Before giving the details of the Fast-IAMB algorithm,

it should be noted that this algorithm relies on the existence of a faithful BN for the

underlying probability distribution P . This assumption implies that only one Markov

blanket exists for each target variable T in the network. The Fast-IAMB relies on the use

of G2 statistical tests to identify the set of conditional independence assertions among

the variables. Similarly to the MMPC algorithm, the Fast-IAMB algorithm performs

the skeleton learning in two phases: the growing and shrinking steps. The growing step

starts by computing, using G2 tests, an order over the set of candidate variables S of

MB(T ) (sorted by decreasing dependence w.r.t. T ). For a given target variable T , the

set of candidate variables S are obtained as follows:

S← {X ∈ X \ {T} s.t. {X} 6⊥P {T}}. (3.27)

The purpose of making such an ordering is to enhance the reliability of the algorithm by

reducing the number of false positive nodes that may be added to MB(T ). As shown in

Algorithm 5, before adding any variable to the listMB(T ), Fast-IAMB performs an addi-

tional instruction in order to choose only variables (lines 8) that guarantee the reliability

of the statistical independence test {X} ⊥P {T}|MB(T ), i.e., those that satisfy:

N

rT · rX · rMB(T )

≥ k (3.28)

where the value of k is generally fixed to 5 and rT , rX , rMB(T ) denote respectively the

domain sizes of variables T , X andMB(T ). In other words, the aim of Equation (3.28) is



Chapter 3. Learning Bayesian networks 53

to ensure that the amount of data in each cell of the contingency tables of the statistical

tests is sufficient to perform the conditional independence test {X} ⊥P {T}|MB(T )8.

The second phase of the algorithm (called ”shrinking”) attempts to remove false positive

(or irrelevant) variables that might be added to MB(T ) during the "growing" step. It

corresponds to computing the following set:

MB(T )←

{
MB(T ) \ {X} if ∃S ⊆MB(T ), s.t.{X} ⊥P {T}|S

MB(T ) otherwise
(3.29)

The pseudocode of Fast-IAMB is given by Algorithm 5.

Algorithm 5: Fast-IAMB Algorithm
Input: Target variable T , data D, threshold k
Output: MB(T )

1 S← {X ∈ X , s.t.{X} 6⊥P {T}}
2 //Growing step
3 MB(T )← ∅
4 repeat
5 S← sort(S) according to their dependences w.r.t. T
6 sufficientD ← True
7 foreach X ∈ S do

8 if
N

rT · rX · rMB(T )
≥ k then

9 MB(T )←MB(T ) ∪ {X}
10 else
11 sufficientD ← False
12 go to line 15
13 end
14 end
15 //Shrinking phase
16 remove← False
17 foreach X ∈MB(T ) do
18 if {X} ⊥P {T}|(MB(T ) \ {X}) then
19 MB(T )← (MB(T ) \ {X})
20 remove← True

21 end
22 end
23 if remove = False AND sufficientD = False then
24 break
25 else
26 S← {X|X ∈ X \ {T,MB(T )} AND {X} 6⊥P {T}|MB(T )}
27 end
28 until S 6= ∅;
29 return MB(T )

Like the MMPC approach, the Fast-IAMB algorithm is completed by an edge orientation

step relying, for instance, on the use of a greedy search optimization approach.
8This instruction allows to alleviate the problem of errors of type II (false negative edges) since the

lack of data leads automatically to incorrect independences.



Chapter 3. Learning Bayesian networks 54

3.2.4 Score-based approaches

Score-based algorithms perform an optimization search through the set of possible DAGs

in order to find the best structure according to an evaluation criterion called the "scoring

function". These algorithms assign to each DAG a score which represents a trade-

off between the precision of the model and its complexity [Hec95, Aka70, S+78]. As

discussed earlier, when the number of variables is large, an exhaustive consideration of

all the possible structures existing in the search space is computationally unfeasible. To

make this task tractable, the only solution consists in using an approximation algorithm.

Known in the literature as the heuristic search, this class of approximation algorithms

tries to find a solution which may not be optimal but which, hopefully, may not be too

far away from the optimum.

It should be emphasized that heuristic algorithms require the definition of a search space

(from which the DAGs will be examined), the definition of a neighborhood (the algorithm

iterating moves from one graph to one of its neighbors) and a scoring function to evaluate

the goodness of fit of each DAG candidate as a representation of the input data D.

3.2.4.1 Possible search spaces

DAG-based search space For BN structures, the natural search space is the space of

all the DAGs defined over n nodes/variables. Given the DAGs space, learning algorithms

try to explore the possible structures in order to find the one that has the highest value

of the scoring function. Given a current structure G, the set of operators that must be

used to move throughout the DAGs in the neighborhood space are:

• If two nodes X and Y are not adjacent in G, add an arc between them in either

direction.

• If arc X → Y exists in G, remove it.

• If arc X → Y exists in G, reverse it.

Note that the above operators are sufficient to navigate throughout the search space,

i.e., from any DAG Gi, we can reach any other DAG Gj in the search space applying a

sequence of the above operations. It should be noted that all transformations obtained are

subject to the constraint that the resulting graph G should be acyclic (it cannot contain

any directed cycle). In theory, arc reversal operators are not absolutely necessary since

they are equivalent to a sequence of an arc deletion followed by another arc addition. In

practice, this operator is needed to avoid being stuck in local optima: it may actually be

the case that removing arc X → Y decreases the score of the graph whereas reversing it

may increase the latter. If arc reversal is considered as a sequence of two operations (arc



Chapter 3. Learning Bayesian networks 55

deletion + arc addition), some search algorithms may consider not performing it since

the first operation (deletion) would decrease the score of the graph.

Markov Equivalence classes search space: Instead of trying to determine the best

structure by searching over the DAGs space, Chickering [Chi95a, Chi02b] has suggested

searching over the space of Markov equivalence classes. In this context, the algorithm

iterate moves from one CPDAG to another in its neighborhood. Once an optimal CPDAG

is determined, it is converted into a DAG to obtain the optimal structure G∗. As discussed
in [Chi95b], searching over Markov equivalence classes allows to alleviate many problems

encountered when searching over DAGs.

The first problem is related to the convergence speed of the search process. Since several

well-known scoring functions9 (e.g., AIC, BDe, BIC) used for BN structure learning

assign the same score to equivalent structures, searching over the DAGs space can waste

significant time moving from one DAG to another in the same Markov equivalence class,

hence performing moves that do not produce better DAGs. This is especially true for

large networks. Figure 3.9 depicts an example of useless move: moving from G1 to G2

is not useful since both graphs belong to the same Markov equivalence class; the same

holds for G3 and G4. As shown in [GP01], the space of DAGs is of 3.7 times larger than

the space of Markov equivalence classes when the number of nodes n is equal to 10.

The second problem concerns the prior assigned implicitly to the DAGs. By assigning

equal priors to all DAGs when searching over the DAGs space, it turns out that the

Markov equivalence class with the largest number of DAGs receives the highest prior

probability. For example, complete CPDAGs, which do not represent any conditional

independence, contain n! DAGs (the highest prior), whereas CPDAGs without any edge

contain only one DAG (the lowest prior).

The third problem concerns the efficiency of the search algorithm. By using equivalent

scores, search algorithms usually get stuck in local maxima.

Chickering et al. [Chi02a] define a set of six operators to perform local transformations

when navigating through the space of Markov equivalence classes. Those are: InsertU,

DeleteU, InsertD, DeleteD, ReverseD and MakeV. The first two operators respec-

tively increase and reduce the number of undirected edges in the CPDAG. The third and

fourth ones respectively increase and decrease the number of directed edges. The fifth

operator maintains the same number of arcs and edges in the current CPDAG since it

only reverses the direction of an arc. The last one transforms unshielded triplesX−Z−Y
into v-structures X → Z ← Y . After each modification of the CPDAG, an operation

called PDAG-to-DAG is performed in order to guarantee the validity of the modification,
9Definitions about scoring functions will be provided in section 3.2.4.2.



Chapter 3. Learning Bayesian networks 56

X1

X2X3

X4 X5

X1

X2X3

X4 X5

Figure 3.8: Structures consistent with (X2 ≺ X3 ≺ X5 ≺ X4 ≺ X1).

i.e., if the applied operator fails to return a valid DAG structure, then the modification

cannot be carried out.

Ordering-based search space: Unlike the majority of algorithms that perform a

search over the DAGs space, the order-based approach [TK05] intends to find the best

structure by searching over a (topological) ordering space O over the random variables.

For each order “≺”, it determines the best structure consistent with this order. Given

an order ≺, if we bound the indegree of each node Xi to k parents, the set of possible

parents for each node in the network is then restricted. More formally, the possible set

of parent nodes of Xi for a given ≺ and indegree k is:

Pa(Xi)≺ = {X ⊂ X : |X| ≤ k and Xj ≺ Xi for all Xj ∈ X}. (3.30)

Figure 3.8 depicts an example of two structures compatible with the following order

≺= (X2 ≺ X3 ≺ X5 ≺ X4 ≺ X1). By exploiting the decomposability property of the

scoring function10, the optimal structure of the BN, which is denoted by G∗≺, is learnt by
constructing for each node Xi the optimal family Pa(Xi) consistent with ≺:

∀Xi ∈ X ,Pa(Xi) = Argmax
Pa(Xi)⊆Pa(Xi)≺

score(Xi|Pa(Xi)). (3.31)

Structure learning in then performed by conducting a search over ordering space O by

assigning to each order the score of the best network G∗≺ consistent with it. Therefore,

the optimal structure is then obtained from the optimal order ≺∗, which is determined

as follows:

≺∗= Argmax
≺

score(G∗≺|D). (3.32)

As shown in [TK05], searching over ≺ has many attractive properties. First, the search

space is significantly smaller (2O(n logn)) than the DAGs space. Second, for a given order,

searching the optimal structure can be addressed effectively since the set of possible

parents is restricted by ≺. Therefore, it is easier to avoid being stuck in local maxima.

Finally, the acyclicity test of each evaluated structure (which can be a costly operation,
10Properties of scoring functions will be given in section 3.2.4.2.



Chapter 3. Learning Bayesian networks 57

X1 X2

X3 X4

X1 X2

X3 X4

X1 X2

X3 X4

X1 X2

X3 X4

X1 X2

X3 X4

G0 G1 G2 G3 G4

Figure 3.9: The four neighborhood candidates of graph G0

especially for large networks) is not an issue given ≺, since a variable Xi cannot be both

a predecessor and a successor for a variable Xj ∈ X \ {Xi} in a given order ≺. Hence no

directed cycle can exist.

Navigating over ordering space O can be performed throughout several sets of operators:

among them we can cite the simplest swap operator which consists in modifying the

position of two variables in order ≺:

(Xi ≺ Xi+1 ≺ ... ≺ Xj ≺ Xj+1, ...)→ (Xi ≺ Xi+1 ≺ ... ≺ Xj+1 ≺ Xj , ...). (3.33)

Similarly to the DAG-search space, for each order ≺, all n− 1 swaps are generated, the

best network for each swap is computed and the order with the highest score is considered

as the new current order ≺. The searching process continues until a local maximum is

reached.

3.2.4.2 The scoring functions

Throughout the computation of P (G|D) a scoring function is used to evaluate how well

structure G matches the data D. More precisely, by assuming a uniform prior on all

structure P (G), we have that:

P (G|D) =
P (D|G)P (G)

P (D)
∝ P (D|G) =

∫
Θ
P (D|G,Θ)π(Θ|G)dΘ. (3.34)

In Equation (3.34), P (D|G) denotes the likelihood of data D given G, π represents the

prior on the parameters Θ of a discrete BN with structure G, and P (D) represents the

prior on the data D. By assuming a uniform prior on G, it turns out that searching for

the optimal structure maximizing the posterior probability P (G|D) is equivalent to find-

ing the one that maximizes the likelihood P (D|G). Several scoring functions for learning

Bayesian networks exist in the literature. Essentially, they result from different hypothe-

ses made on prior π and on Θ. Before giving the details related to the most common

used scores, we start by talking about two of their main properties: decomposition and

Markov equivalence. As we shall see in the next section, search methods heavily rely on

them when learning the BN structures.



Chapter 3. Learning Bayesian networks 58

Definition 3.1. (Score decomposition) A scoring function score(G|D) is said to be

decomposable if and only if it can be expressed as the sum over each node in G of a local

score depending only on the node and its parents:

score(G|D) =

n∑
i=1

score(Xi|Pa(Xi),D). (3.35)

By abuse of notation, since the local scores obviously depend unambiguously on dataset

D, they are often denoted as score(Xi|Pa(Xi)). Exploiting the decomposition property,

after each modification of structure G (by adding, deleting or reversing an arc), instead of

recomputing the overall score of the corresponding structure, we only need to compute

the local score of the family concerned by the modification and sum it to the other

precalculated (or unchanged) local scores. All the scoring functions that we will mention

in the following are decomposable.

Definition 3.2. (Score equivalence) A scoring function is said to be score equivalent

if and only if it assigns the same score to all the networks that belong to the same Markov

equivalence class.

Now, let us delve into the details of the different scoring functions. These scores are

classified into two main categories: Bayesian and information-theoretic scores. We start

by discussing the Bayesian scores. They consist in computing the posterior probability

distribution P (G|D), starting with a prior distribution P (G) over the possible networks.

In the following, we provide details about the most common Bayesian scores in the liter-

ature such as Bayesian Dirichlet [CH92b] (BD), Bayesian Dirichlet Equivalence [HGC95]

(BDe) and Bayesian Dirichlet equivalence uniform [Bun91](BDeu).

Bayesian Dirichlet (BD): Proposed by [CH92b], the BD score relies on a Bayesian

perspective, i.e., the uncertainties over structures, parameters and possible databases are

probabilized. The Bayesian scoring function is derived as follows:

ScoreBD(G,D) = P (G|D) ∝ P (D,G)

=

∫
Θ
P (D,G,Θ)dΘ

=

∫
Θ
P (D|G,Θ)π(Θ|G)π(G)dΘ

= π(G)

∫
Θ
P (D|G,Θ)π(Θ|G)dΘ

Assuming that π(Θ|G) is a Dirichlet prior with hyperparameters αi,j,k, Chickering and

Heckerman [CH96] have proved that the above equation is equivalent to the following

one:

ScoreBD(G|D) = π(G)

n∏
i=1

qi∏
j=1

Γ(αi,j)

Γ(Ni,j + αi,j)

ri∏
k=1

Γ(Ni,j,k + αi,j,k)

Γ(αi,j,k)
(3.36)



Chapter 3. Learning Bayesian networks 59

where αi,j =
∑ri

k=1 αi,j,k and Γ(·) is the usual Gamma function.

Bayesian Dirichlet Equivalent (BDe): Unfortunately, it can be shown that the

BD score is not score-equivalent in general. Heckerman et al. [HGC95] addressed this

problem by proposing a variant called the Bayesian Dirichlet Equivalent (BDe) score.

They proved that this new score is both decomposable and score-equivalent. The only

difference between the BD and BDe scores is the way by which each αi,j,k value is

specified. By introducing equivalent sample sizes N ′ , the BDe score defines:

αi,j,k = N
′
P (Xi = xk,Pa(Xi) = xj |G) (3.37)

where N ′ represents to the strength of our belief assigned to the prior distribution.

Bayesian Dirichlet equivalence uniform (BDeu): The major problem of BDe is

the computation of the probabilities P (Xi = xk,Pa(Xi) = xj |G) which do not depend

on any particular value of parameter set Θ. This makes these probabilities hard to

estimate in practice. To overcome this problem, in [Bun91], a new score called BDeu

has been proposed that, under some additional assumptions, specifies the values of the

probabilities:

αi,j,k = N
′
P (Xi = xk,Pa(Xi) = xj |G) =

N
′

riqi
(3.38)

where ri and qi are the domain sizes of Xi and Pa(Xi) respectively. Note that the BDeu

score is very sensitive to the sample size N ′ (which is the only needed parameter): large

values tend to oversmooth the data D and thus lead to complex DAGs with many edges.

The resulting BDeu score (obtained by replacing αi,j,k of Equation (3.36) by its value

shown in Equation (3.38)) is decomposable, as well as score equivalent.

The K2 score: Like BDeu, the K2 score [CH92a] can be thought of as the combination

of a Bayesian Dirichlet (BD) score with a particular a priori. In the case of K2, this

a priori is a Dirichlet distribution with all hyperparameters αi,j,k equal to 1. As it

is well-known that Γ(1) = 1 and that, for any positive integer value n, we have that

Γ(n+ 1) = n!, Equation (3.36) can be rewritten as:

ScoreK2(G|D) =

n∏
i=1

qi∏
j=1

(ri − 1)!

(Ni,j + ri − 1)!

ri∏
k=1

Ni,j,k!

The second category of scoring functions is information-theoretic. The idea is to exploit

information-theoretic notions to find a model that corresponds as much as possible to

the observed dataset D. Of course, the complete graph G certainly accounts for all the



Chapter 3. Learning Bayesian networks 60

information stored in D. So, information-theoretic approaches also exploit the Occam’s

Razor principle to keep the graph structure as sparse as possible. As such, these scores

are thus divided into two parts: the likelihood L(D|G), which gives us an idea about how

well model G fits to the data D, and a second term which penalizes complex models. The

complexity is usually expressed in terms of the number of parameters θi,j,k needed to

represent the BN. Given a node Xi and its parents Pa(Xi) in G with respective domain

sizes ri and qi, the number of parameters needed to represent distribution P (Xi|Pa(Xi)),

which is denoted by dim(Xi,G), is obtained as follows:

dim(Xi,G) = (ri − 1)qi. (3.39)

Therefore, the overall number of parameters of a given BN is:

dim(G) =
n∑
i=1

(ri − 1)qi. (3.40)

There exist several information-theoretic scoring functions. As for the Bayesian scores,

their differences result from different hypotheses made. Among these scores, we can

mention: the likelihood score , the Bayesian information criterion (BIC) and the Akaike

information criterion (AIC).

Likelihood score: As we have seen before, the likelihood of data D given a network

G is computed by the following equation:

L(D|G) =

n∏
i=1

qi∏
j=1

ri∏
k=1

(θi,j,k)
Ni,j,k . (3.41)

By taking the log of the previous equation, this lead to the LL(D|G) scoring function,

defined as follows:

LL(D|G) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Ni,j,k log θi,j,k (3.42)

As shown in Equation (3.42), the LL score does not take into account the complexity

of the model, therefore it tends to overfit the data by favoring the learning of graphs G
with (too) many arcs.

AIC/BIC scores: The Akaike Information Criterion and the Bayesian Information

Criterion [Aka70, S+78] (respectively denoted by AIC and BIC) scoring functions intend

to alleviate the problem of overfitting by favoring simple networks over complex ones.

To do so, they add to the likelihood function some penalization term. Equations for the



Chapter 3. Learning Bayesian networks 61

AIC and BIC scores are given as follows:

scoreAIC(G|D) = LL(D|G)− dim(G). (3.43)

scoreBIC(G|D) = LL(D|G)− 1

2
dim(G)logN. (3.44)

Independently, the same formula as BIC was derived using a Minimum Description

Length (MDL) justification [LB94] and is therefore called the MDL score.

3.2.4.3 Heuristics search approaches

Greedy search: This kind of algorithm can exploit any of the above scores. For this

algorithm, the considered search space is composed by all the DAGs defined over n

variables, and the set of operators used to perform the search are those mentioned in

Paragraph 3.2.4.1. Basically, the principle of this algorithm is the following: it starts

with a structure G0 (often empty). Then, at each step, it looks in the neighborhood of

the current structure (see Figure 3.9) for another structure G with a higher score than G0

given observations D. By exploiting the decomposability property of the scoring func-

tions, for each modified arc (insertion, deletion and reversing), we need only reevaluate

the score of the family of node Xi concerned by the modification.

Note that the trajectory generated by greedy search allows to map the initial solution G0

to a local optimum, where the search process is stuck (no candidate in the neighborhood

improves the score). To alleviate this problem, the greedy search algorithm can be iterated

several times, each time starting with a new graph resulting from a random perturbation

of G0. After several iterations, the algorithm chooses the structure leading to the best

improvement of the scoring function. Another variant for escaping local maxima consists

in performing many greedy search with random dataset perturbation [ENFS02] at each

time. In this approach, at each greedy search restart, the dataset is perturbed through

the addition or the deletion of a random number of instances in D. At the end, the best

structure over all the perturbed data is chosen. A third approach called greedy search

with a tabu list has been proposed by [Glo90]. This extension prevents the algorithm

from reversing recent moves, e.g., it does not allow an edge deletion at iteration t + 1

knowing that this edge has been added at iteration t. Note that other extensions of the

classical greedy search have been applied on ordering search spaces (O) in [TK05] and

on Markov equivalence class search spaces [Chi02b] instead of the DAGs one.

Algorithm K2: This algorithm has been proposed by [CH92a]. K2 is a greedy search

algorithm which requires an order over X . It tries to approximate the optimal graph

G by searching for each node Xi the set of Pa(Xi) that locally maximizes the scoring

function score(Xi|Pa(Xi)). Therefore, the only operator needed by this algorithm is the



Chapter 3. Learning Bayesian networks 62

addition of an arc between Xi and the set of its candidate parents (represented by its

predecessors in the given order ≺). The K2 algorithm proceeds as follows: it starts by

setting the parents of each nodeXi to the empty set (Pa(Xi) = ∅) and by calculating the

corresponding score (score(Xi|Pa(Xi))). Next, at each iteration, it tries to choose the

best parent Xj to add to Xi, with Xj ≺ Xi, i.e., the parent that increases the most the

score. This process is repeated for each node Xi until no additional parent can enhance

the scoring function score(Xi|Pa(Xi)). The pseudocode for K2 is given in Algorithm 6.

Algorithm 6: K2 Algorithm
Input: Data D, variable ordering ≺, upper bound k
Output: DAG G

1 A← ∅, G ← G(X ,A)
2 snew ← score(G|D)
3 foreach Xi ∈ X do
4 repeat
5 sold ← snew
6 Xj ← Argmax

Xj≺Xi AND (Xj→Xi)/∈A
score(Xi|Pa(Xi) ∪ {Xj})

7 snew ← score(Xi|Pa(Xi) ∪ {Xj})
8 if snew > sold then
9 G ← G(X , (A ∪ {(Xj → Xi)})

10 end
11 until snew < sold OR |Pa(Xi)| ≥ k;
12 end
13 return DAG G = (X ,A)

Greedy equivalence search (GES): Searching over equivalence classes can be con-

sidered as an extension of the classical greedy search over the DAGs space. As seen

earlier, to be able to perform a greedy search over equivalence classes, a score function

allowing the evaluation of partially directed graphs is needed. A common way to tackle

this task is to build for each CPDAG one corresponding DAG and, then, to resort to a

classical scoring function for DAGs, as presented previously. In order to move over the

CPDAG space, Chickering et al. [Chi02a] define a set of operators (mentioned in para-

graph 3.2.4.1) allowing to perform local graph modifications. Unfortunately, these search

operators are very complex and the algorithm needs many operations between CPDAG

and DAG spaces to calculate the score. Based on “Meek’s Conjecture” [Mee95], the

problem of multitude operations has been efficiently addressed [Chi02a] throughout the

proposition of an alternative approach that uses only the classical addition and deletion

operators. As proven in [Chi02b], these guarantee to change of equivalence class at each

arc modification. The proposed algorithm is called greedy equivalence search (GES). As

defined in [Chi02b], it consists of two steps: i) it starts with a CPDAG representing the

equivalence class of the empty DAG and it performs in the next iterations a set of edge

additions until a locally maximal solution is reached; and ii) it then performs the reverse



Chapter 3. Learning Bayesian networks 63

operation, by deleting edges from the previous CPDAG until no new edge deletion im-

proves the score. The GES algorithm guarantees to learn the correct Markov equivalence

class under the following conditions:

• the employed scoring function must be consistent, i.e., if the amount of data

N → +∞, then the structure G∗ that represents exactly the set of independence

assertions in D (P-map) shall obtain the highest score.

• the distribution P is faithful w.r.t. graph G∗ (see section 3.2.1),

• the observations in dataset D are i.i.d,

• a large dataset is needed.

3.2.5 Hybrid approaches

As mentioned earlier, the purpose of hybrid methods is to extend the advantages and re-

duce the limitations in both score and constraint-based approaches [TBA06, vDvdGT03a,

WL04, FJ09]. Constraint-based approaches are relatively fast and allow performing the

learning task in a deterministic way. However, the results returned by the statistical

tests rely on an arbitrary significance level α to decide whether two variables can be con-

sidered independent. This can make the learning process unstable in the sense that an

erroneous decision can trigger the accumulation of compensatory errors in the final struc-

ture. Unlike constraint-based approaches, score-based can address the structure learning

task even from small datasets. Unfortunately, such methods are slow to converge and the

complexity of the search space often prevents them from finding the optimal BN struc-

ture. Inspired from both previous approaches, hybrid algorithms begin by constructing

the skeleton of the BN (in order to restrict the search space) using a constraint-based

approach and, then, they transform it into a BN and they refine it through a score-based

search algorithm.

The specificities of each step and the way by which information resulting from the skeleton

learning are used in the second step differ between the approaches. Tsamardinos et

al. [TBA06] proposed the Min-Max Hill Climbing (MMHC), which is one of the most

popular BN structure learning in the literature. This algorithm has been extensively

evaluated on both synthetic and real-world datasets. It has proved to be very effective

in terms of computation times and has shown very accurate results compared to many

state-of-the-art approaches such as PC [SGS01], Three Phase Dependence [CGK+02],

Greedy Equivalence Search [Chi02b], greedy search, etc. As an hybrid approach, MMHC is

composed of two steps. In the first step, the algorithm tries to estimate the set of parents

and children of each node Xi using the MMPC Algorithm [TAS03] (see section 3.2.3.6).

In the second step, MMHC performs a restricted greedy search with a tabu list using the



Chapter 3. Learning Bayesian networks 64

Bayesian scoring function BDeu [HGC95]. It should be noted that the search step is

constrained to only consider adding an arc X → Y if and only if it was learnt by MMPC

in the first phase, i.e., X ∈ PCY
G and Y ∈ PCX

G . The pseudocode of MMHC is given at

Algorithm 7.

Algorithm 7: MMHC Algorithm
Input: Data D
Output: DAG G

1 //Restrict
2 foreach X ∈ X do
3 PCX

G ←MMPC(X,D)
4 end
5 // Greedy search
6 Perform a greedy search
7 Add X → Y iff X ∈ PCY

G
8 return DAG G = (X ,A)

In [vDVDGT03b], a skeleton-based learning algorithm has been proposed. This approach

starts by constructing the skeleton of the BN using only zero and first-order independence

tests. Those are then used to restrict the DAGs space in the second step. It should be

emphasized that the first step does not consists in learning the correct skeleton but it

aims at finding a skeleton that is already close to the true one11. By performing zero

and first order tests, the algorithm tries on one hand to avoid missing edges (errors of

type II) since they cannot be recovered in the next step. On the other hand, it aims

to minimize the number of additional edges (errors of type I), since these unnecessary

edges increase the size of the search space when performing the score-based search. In

the second phase, the algorithm uses a greedy search algorithm to navigate through the

restricted DAGs space. The same principle holds as in [TBA06]: the algorithm adds,

orients and removes only edges from the skeleton to produce the final structure G.

In [WL04], the authors use the same learning skeleton principle as in [vDvdGT03a] to-

gether with an evolutionary algorithm at the second step which also works on a restricted

search space.

In [FJ09], after learning the skeleton of the BN, the algorithm performs a local greedy

search to refine and find the optimal orientation of the structure by satisfying as much as

possible the set of constraints returned from the skeleton identification phase. The second

step is performed as follows: the algorithm starts by constructing a random ordering

over the variables and then it returns the optimal orientation consistent with it. The

resulting structure is then considered as a starting point of a greedy search, which relies

on a new operator called Toggle-Collider (shown in Figure 3.10), to generate the successor

candidates w.r.t. each current structure. Given a triple of variables X −Z − Y in G, the
11It should be noted that zero and first order tests do not suffice for identifying all neighbors for all

nodes.



Chapter 3. Learning Bayesian networks 65

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

Figure 3.10: Example of Toggle-Collider operator.

Toggle-Collider either transforms the triple into a v-structure (when it is not already the

case) or it breaks an existing v-structure into serial or divergent connections [FJ09]. It

then chooses the transformation that resulted in the highest BDeu score increase. The

orientation process continues until no further modification increases the score.

3.3 Conclusion

In this chapter, we have discussed the most common state-of-the-art Bayesian network

parameters and structures learning algorithms. We have shown the various details related

to each of them. Parameters learning algorithms can be divided into two main groups:

likelihood and Bayesian-based approaches. The former relies on the use of the likelihood

function as an evaluation criterion to identify the best set of parameter values. The latter

relies on the specification of a prior over parameters and tries to estimate the parameters

throughout the optimization of the posterior probability of the graph given the dataset.

Concerning the structure learning algorithms, they have been classified into three groups:

constraint-based, score-based and hybrid approaches. The main difference between these

methods appears in the way in which the set of conditional independences between vari-

ables are identified from the dataset. The constraint-based approaches rely on the use

of statistical tests to determine the skeleton of the BN, which is then oriented using

Meek’s deterministic rules. The score-based algorithms can be characterized by the fol-

lowing three features: the considered search space (DAGs, orderings, Markov equivalence

classes, etc.), the set of operators used to move from a given structure to another one,

and the heuristics used to find the structure that optimizes the scoring function. Finally,

the hybrid approaches try to exploit the advantages and reduce the limitations of both

constraint and score-based approaches.

It should be noted that until now Bayesian network parameter and structure learning

algorithms essentially work only on discrete datasets (multinomial and binomial) and rely

on a list of assumptions under which they are capable to perform an efficient estimations.

However, in many real-world applications like in nuclear safety, medicine and robotics,

these conditions are not necessarily met. For instance, in these domains, the datasets

are often composed of a mixture of continuous and discrete variables and they may



Chapter 3. Learning Bayesian networks 66

also contain some parameters configurations that can lead to the violation of some of the

previous assumptions, especially faithfulness (as we shall see in the next chapter). In such

situations, classical Bayesian network learning algorithms are doomed to be ineffective,

which limits their scope, notably by ruling them out of many interesting real application

domains.

In the next chapters, we will discuss how the Bayesian network structure learning task

has been tackled when the faithfulness assumption is ruled out. In this context, we

will highlight the different causes responsible for the unfaithfulness of the probability

distribution and we will present the most common state-of-the-art algorithms dedicated

to this problem. In addition, we will discuss how the mixture of continuous and discrete

variables in real-world application datasets has been managed in the literature in order

to make the task of Bayesian network learning both tractable and efficient.



Chapter 4

Bayes Net structure learning in the

absence of faithfulness

As shown in the preceding chapters, the DAG of a BN is a graphical representation of

the conditional independences among the BN’s random variables. Those are captured

from the graph by means of the d-separation criterion. Earlier works done in [Pea00,

SGS01, LMCL12, Luo06, RdMAC08] have shown that learning the Bayesian network

structure from observational data heavily relies on the assumption that DAG-faithfulness

is satisfied. Remind that faithfulness means that independences holding in distribution

P are equivalent to those entailed by the graph, i.e., {X} ⊥G {Y }|Z⇐⇒ {X} ⊥P {Y }|Z
(see Section 3.2.1). Actually, a BN is an I-map, which means that its semantics is the

following: {X} ⊥G {Y }|Z =⇒ {X} ⊥P {Y }|Z. But, when learning the BN from data,

the algorithms can only determine conditional independences of the type {X} ⊥P {Y }|Z
and those are converted into graphical independences, i.e., into {X} ⊥G {Y }|Z. As

a consequence, what the algorithms learn is a D-map, not an I-map. Under DAG-

faithfulness, those are equivalent, so the algorithms provide a BN that correctly represents

the distribution P that generated the observed data.

Unfortunately, DAG-faithfulness does not always hold. Through the Hammersley-clifford

theorem, it is known to hold for strictly positive probability distributions P but, other-

wise, in general, the property is not always satisfied. As an example, when X contains

some random variables having deterministic relations with others, e.g., when X = f(Z)

with f a deterministic function (which implies that P is not strictly positive), DAG-

faithfulness is never satisfied. It should be noted that in many domains, there exist

random variables with some deterministic relationships with other variables (e.g., in nu-

clear safety, medicine, robotics, etc.). Other sources of unfaithfulness such as information

equivalences or equivalent partitions as mentioned in [LMCL12]. In such cases, all the

BN learning algorithms mentioned in the previous chapter, whatever their type (score-

based, constraint-based or hybrid), fail to construct a BN that represents correctly the

67



Chapter 4. Bayes Net structure learning in the absence of faithfulness 68

dependences between the random variables. In other words, the BN they construct does

not represent the probability distribution P that generated the data. The problem is

the twofold: i) under unfaithfulness, some sets of conditional independences cannot be

represented by any DAG and the algorithms are misled in the sets of arcs they remove

(which can be too large); ii) some statistical conditional independence tests may indicate

an independence when, actually, there is none because they are misled by some statistical

ambiguity property.

This chapter studies some BN learning algorithms that try to overcome the issues raised

by unfaithfulness. It is organized as follows: we start by highlighting the most common

factors leading to the violation of the probability distribution faithfulness. Then, we

explain the impact of the absence of faithfulness when learning the BN structures (in

both skeleton learning and orientation phases). Finally, we present the most common

state-of-the-art learning algorithms dedicated to unfaithful distributions.

4.1 The causes of unfaithfulness

In this section we shall focus our discussion on the three most common factors responsible

for the unfaithfulness of the distribution, namely the deterministic relationships between

random variables, the information equivalence and equivalent partitions properties.

4.1.1 Deterministic relationships

In the context of BNs, deterministic relationships lead to the notion of deterministic

nodes, which are defined formally as follows:

Definition 4.1. (Deterministic node) Let X be a set of random variables and let P

be a probability distribution over them. A random variable X is said to be deterministic

if there exists a subset of variables Z ⊆ X \ {X} and a deterministic function f such

that X = f(Z). This relation entails that P (X = x,Z = z) = 0 whenever x 6= f(z) and

1 otherwise.

It may be noted that, when distribution P contains some deterministic nodes, it cannot

be strictly positive. As a matter of fact, the conditional distribution of a deterministic

node given its parents in the network G will be composed by only 1 and 0 probabilities. As

an example, Figure 4.1 shows an example of a CPT of a deterministic node representing

the functional relation X = f(Z, Y ), where all variables are assumed to be binary. In

this example, the relation X = f(Z, Y ) tells us that Y and Z contain all the information

needed to characterize without uncertainty the value of X. As a consequence, given the

deterministic node X = f(Z, Y ) in G, arc X → W can be substituted by arcs Y → W



Chapter 4. Bayes Net structure learning in the absence of faithfulness 69

Z Y

X

W

P (X|Z, Y )

X

Z Y t f

f f 0 1
f t 1 0
t f 1 0
t t 0 1

Figure 4.1: An example of deterministic CPT: X = f(Z, Y ).

and Z → W in G without altering the semantics of the original network. Therefore, we

can say that the BN shown in Figure 4.2 is equivalent to the one given in Figure 4.1.

However, recall that two BNs represent the same set of independences if they have the

same skeleton and the same set of v-structures (see the Markov equivalence property in

Section 2.3 of Chapter 2). As a consequence, from the definition of Markov equivalence,

both BNs shall not be equivalent. This seeming incoherence precisely results from the

unfaithfulness of distribution P and calls for another definition of the equivalence of two

BNs. In [GVP90], an extended definition of the concept of d-separation criterion, called

D-separation, has been proposed for this purpose:

Definition 4.2. (D-separation)

Let G = (X ,A) be a directed acyclic graph (DAG). Let X, Y, Z be three disjoint sets of

nodes in G. X and Y are said to be D-separated by Z, which is denoted by X⊥⊥GY|Z
if all the trails between each node in X and each node in Y are blocked by either Z or

W ∈ X \ (Z ∪X ∪Y) such that W = f(Z).

As can be seen, the definition of the D-separation criterion is similar to d-separation

except that it contains an additional condition dealing with the presence of deterministic

nodes in G. Therefore, the D-separation guarantees the detection of conditional indepen-

dences revealed by classical d-separation but also those resulting from the presence of

X Y

Z

W

Figure 4.2: An equivalent representation of the BN of Figure 4.1.



Chapter 4. Bayes Net structure learning in the absence of faithfulness 70

deterministic nodes in the network. To facilitate the understanding of the independences

induced by deterministic nodes in G, we consider the example of the BN structure shown

in Figure 4.3 and we assume that Y = f(W ) is the only deterministic node in G.

X Y Z

W

Figure 4.3: D-separation between X and Y by W where Y = f(W )

By D-separation, the conditional independence {X}⊥⊥G{Y }|{W} holds in this example.

This independence can be explained by the fact that, once the value of nodeW is known,

Y does not bring any additional information on X.

4.1.2 Information equivalence

Authors in [LMCL12] provide the definition of a new class of unfaithfulness called “infor-

mation equivalence” that represents a broader class of relations than just deterministic

ones.

Definition 4.3. Two disjoint sets of variables X and Y are considered as information

equivalent w.r.t. to a variable Z (which forms the reference variable) if and only if there

exists a subset W ⊆ X \ (X ∪ Y ∪ {Z}) for which the following conditions hold in

distribution P :

• (X 6⊥P {Z}|W) ∧ (Y 6⊥P {Z}|W)

• (X ⊥P {Z}|(W ∪Y))

• (Y ⊥P {Z}|(W ∪X))

Figure 4.4 illustrates the information equivalence of {X} and {Y } w.r.t. reference variable
Z. In this example, W = ∅ and {X} ⊥P {Z}|{Y } and {Y } ⊥P {Z}|{X}.

Given Definition 4.3, we can conclude that equivalence information [LMCL12] can result

from different unfaithful configurations, among which we can mention:

X Y Z

Figure 4.4: {X} and {Y } are information equivalent for Z.



Chapter 4. Bayes Net structure learning in the absence of faithfulness 71

• Triangle situation: as discussed in Section 3.2.3.5, this situation holds for each

triple of variables X, Y , Z in which each pair is marginally dependent but condi-

tionally independent given the third variable. As it is defined, triangle situation

can be seen as a kind of equivalence information where the knowledge given by

each pair of variables are equivalent from the viewpoint of the third one.

• Linear one-to-one relation: two variables X and Y are related by a one-to-one

relation if and only if f(X) = Y and f−1(Y ) = X. If a one-to-one relation holds

between two variables X and Y , this means that any variable Z being dependent

on X also depends on Y (and conversely). Both variables thus contain the same

knowledge about any other variable in network G (and in the same form). There-

fore, we can say that these variables are indistinguishable, hence they are not both

essential for the independence model because they express redundant information.

• Deterministic relation: the only difference between information equivalence and

deterministic relations is that the former does not entail necessarily a functional

relation between the considered variables. Hence, deterministic nodes can be con-

sidered as a subset of the information equivalence class. Given a network G, a

deterministic relation X = f(W) and a child node Z of X in the network, then

X and W form an information equivalence w.r.t. Z. Therefore, when learning the

BN structure, deleting the edge X − Z or W − Z is equivalent from the point of

view of Z.

4.1.3 Equivalent partitions

Equivalent partitions have been discussed in details in [LMCL12]. In the following we

will recall the most common notions related to this unfaithful parameters’ configuration

in P , and we will show how it may have an impact on the set of independence tests

performed when learning the BN structure.

As discussed earlier, two disjoint sets of variables X and Z are dependent if and only

if P (Z|X) 6= P (Z). That is, there exists at least two different values xi, xj in the

domain of X, hereafter denoted by val(X), such that P (Z|xi) 6= P (Z|xj). However,

despite the dependence between X and Z, it may sometimes occur that a subset of

values vx ⊆ val(X) lead to the same conditional distribution of Z, i.e., P (Z|xi) is the

same for all xi ∈ vx. In such a case, we say that all xi ∈ vx contain the same information

about the reference variable Z. Given the previous situation, val(X) can be decomposed

into a set of disjoint subsets of values denoted by val(X)i where distribution P (Z|xi) is

the same for all xi ∈ val(X)i. We call this decomposition of val(X) the Z-partition of

val(X). Let KZ(X) denote the index of a given set val(X)i in this partition. Then the

conditional distribution of Z depends only on the index of the Z-partition and therefore:



Chapter 4. Bayes Net structure learning in the absence of faithfulness 72

P (Z|X) = P (Z|KZ(X)) =⇒ X ⊥P Z|KZ(X). (4.1)

Before explaining the dependences/independences resulting from equivalent partitions,

we start by defining the notion of a binary relation between two sets of random variables

X and Y. By abuse of notation, a binary relationR between X and Y is a binary relation

over their domains, i.e., it is a subset of val(X)× val(Y). For each pair (x,y) ∈ R, we
use the classical notation xRy.

Definition 4.4. (Equivalent partitions) Let X and Y be two sets of random variables.

Let VX = {val(X)1, . . . , val(X)rX} be a partition of val(X). A binary relation R over

X and Y is an equivalent partition in val(Y) to partition VX if and only if the following

conditions are satisfied:

• ∀xi ∈ val(X)i,xj ∈ val(X)j where i 6= j and ∀yi ∈ val(Y) with xiRyi, then

¬(xjRyi) holds.

• ∀i ∈ {1, . . . , rX}, ∃xi ∈ val(X)i, ∃yj ∈ val(Y) such that xiRyj.

From definition 4.4, we can deduce that each partition val(X)i is associated with another

one val(Y)j for Y (first condition) which is non-empty (second condition). Similarly to

the equivalence information and deterministic relations (in terms of resulting indepen-

dences), the equivalent partitions lead to the following theorem:

Theorem 4.1. (Equivalent partitions) Let X and Y be two sets of random variables

and let Z be another variable. The following property:

({Z} 6⊥P X ∧ {Z} ⊥P Y|X) =⇒ {Z} ⊥P X|Y

is equivalent to the fact that the binary relation R over X and Y defined by xiRyj ⇐⇒
P (xi,yj) > 0 is an equivalent partition in val(Y) to the Z-partition of val(X).

The reader can also refer to [LMCL12] for additional details about equivalent partitions.

4.2 Absence of faithfulness when learning the Bayes Net

structure

4.2.1 When learning the skeleton

Remind that learning the skeleton of a BN consists in learning from data D the set of

direct dependences (represented by means of non-oriented edges in G) between random



Chapter 4. Bayes Net structure learning in the absence of faithfulness 73

variables. When performing the learning task, we would like to have {X} ⊥G {Y }|Z⇐⇒
{X} ⊥P {Y }|Z because it would imply that G contains an arc between X and Y if

and only if X and Y are probabilistically dependent given any set Z [Pea88]. The

previous assumption is called the adjacency faithfulness. As shown before, it guarantees

the correctness of learnt edges between nodes in the skeleton G. Unfortunately, as we

have seen earlier, this equivalence does not hold when the distribution P contains some

unfaithful parameters configurations. Recall that one of the main crucial conditions for

the faithfulness assumption is the Intersection axiom (see Section 2.2 of Chapter 2) which

is defined as follows:

(X ⊥P Y|(Z ∪W)) ∧ (X ⊥P W|(Z ∪Y))⇒ (X ⊥P (Y ∪W)|Z). (4.2)

The intersection property is ruled out when the distribution contains zero probability.

To facilitate the understanding of this problem, we consider the example of BN shown

in Figure 4.5, where X = {X,Y, Z,W1,W2} and Y = f(W1, Z,W2) is the only deter-

ministic node in G. By D-separation, the graph represents the following conditional

independences:

• {X}⊥⊥G{Y }|{Z,W1,W2} because, once the values of Z,W1,W2 are known, Y does

not bring anymore information on X since Y = f(W1, Z,W2).

• {X}⊥⊥G{W1,W2}|{Z, Y } by d-separation.

• {X} 6⊥⊥G{Y,W1,W2}|{Z} by d-separation.

By substituting X = {X}, Y = {Y }, Z = {Z} and W = {W1,W2} in Equation (4.2),

we can observe that the above three independences do not satisfy the intersection axiom.

The same violation of the intersection axiom occurs also for information equivalence,

equivalent partitions and all unfaithful parameters configurations. In general, whenever

a deterministic node —or any node for which the conditions of information equivalence

or equivalent partition hold— has a child in G, then the adjacency-faithfulness is lost,

i.e., X = f(Y) makes X conditionally independent from the rest of the network given

Y, even of its immediate children in the network (if they exist). As an example, in

the BN of Figure 4.5, where Y = f(W1, Z,W2), we have that {X} 6⊥⊥G{Y }|{W1, Z,W2}.
However, {X} ⊥P {Y }|{W1, Z,W2} because the values ofW1, Z,W2 determine the value

of Y , hence inducing that P (X|Y,W1, Z,W2) = P (X|W1, Z,W2). Therefore, most BN

structure learning algorithms would delete edge Y −X from the skeleton G. Remind that

this problem also holds for the other sources of unfaithfulnessmentioned in Definitions 4.3

and 4.4.



Chapter 4. Bayes Net structure learning in the absence of faithfulness 74

Y

W1 Z W2

X

Figure 4.5: A BN with one deterministic relation Y = f(W1, Z,W2).

4.2.2 When orienting the skeleton

By assuming adjacency faithfulness, the authors in [RZS06] explore the consequences of

the probability distribution unfaithfulness when performing the orientation of the BN

skeleton. It should be noted that the adjacency faithfulness states that if two variables

are adjacent in G they remain conditionally dependent given any subset of variables. This

assumption is necessary to recover the correct skeleton of the true BN. In the following,

we will give the definition the orientation faithfulness.

Definition 4.5. (Orientation faithfulness) For a given DAG G, the orientation faith-

fulness for each unshielded triple 〈X,Z, Y 〉 must verifies the following conditions:

• if 〈X,Z, Y 〉 forms a v-structure (X → Z ← Y ), then X and Y are conditionally

dependent given any subset of variables W ⊆ X \ {X,Y } that contains Z,

• otherwise, X and Y are conditionally dependent given any subset W ⊆ X \{X,Y }
that does not contain Z.

The orientation faithfulness assumption allows to ensure the correctness of the collider

and non-collider edges identifications 1. Recall that an unshielded triple 〈X,Z, Y 〉 is
considered as a v-structure if and only if Z does not belong to the separating sets ofX and

Y (SepSetXY ). As shown in [RZS06], it is possible to find probability distributions that

satisfy the adjacency faithfulness w.r.t. to the true DAG but not orientation-faithfulness.

In other words, adjacency faithfulness does not necessarily imply orientation faithfulness.

In the following example, borrowed from [RZS06], we consider the structure shown in

Figure 4.6. Here, the independences {X} ⊥P {Y } and {X} ⊥P {Y }|{Z} that can be

obtained from the distribution P satisfy the adjacency faithfulness assumption since both

of them lead to the deletion of edge X−Y , hence leading to the skeleton of the BN shown

in Figure 4.6. Suppose that learning the BN skeleton with the PC algorithm actually

leads to the deletion of edge X − Y . Then, when performing the skeleton orientations

during the second phase of PC, the unshielded triple 〈X,Z, Y 〉 will be converted into

a v-structure since SepSetXY = ∅. This orientation leads to a contradiction since
1If the orientation step fails to identify the correct BN, Meek’s rules used to perform the rest of the

orientation output an incorrect orientation.



Chapter 4. Bayes Net structure learning in the absence of faithfulness 75

{X} ⊥P {Y }|{Z} cannot be represented by the v-structure X → Z ← Y . Moreover,

if another orientation were chosen, this would lead to a serial or divergent connection

which is not confirmed by the marginal independence {X} ⊥P {Y }.

X Z Y

Figure 4.6: A simple BN with serial connection between X, Y and Z.

4.3 Related work

Several approaches have been proposed in the literature to address the problem of struc-

ture identification when some random variables are deterministic. For example, as men-

tioned in Definition 4.2 [GVP90] the definition of the d-separation criterion has been

adapted to cope with deterministic variables, hence resulting in D-separation. As dis-

cussed earlier, the latter adds to Definition 2.5 a condition that handles the conditional

independences resulting from deterministic relations. Unfortunately, applying this defi-

nition instead of that of d-separation is not sufficient to decrease the difficulty of learning

the BN structure in the presence of deterministic random variables.

In Spirtes et al. [SSM+96]2, it is considered that deterministic variables are not essential

for the independence model since they only express redundant information. Therefore, it

is proposed to filter them out from data before learning the structure of the BN. However,

it may be pointed out that, with datasets of limited sizes, such an approach can fail to

learn correctly the structure of the BN. For instance, assume that the graphical structure

G of a BN is such that X = {X,W, Y1, . . . , Yk, Z1, . . . , Zr} and that all these variables are

Boolean. Assume in addition that X is deterministically defined as the exclusive OR of

Y1, . . . , Yk and that W depends stochastically on X,Z1, . . . , Zr. Then, by removing X,

W depends on Y1, . . . , Yk, Z1, . . . , Zr, which, to be detected, requires an independence

test over a contingency table of 2k+r+1 cells instead of 2r+2 cells for the dependence

test of W with X,Z1, . . . , Zr. As another example, consider a BN whose variables are

X,Y, Z, T , with X = f(Y,Z), and whose arcs are Y → X, Z → X, X → T . Then

{X} d-separates {Y, Z} from T whereas, by removing X, this conditional independence

cannot be taken into account in the BN. Moreover, as shown in [J.L07], deterministic

variables play an essential role by providing an efficient insight in the underlying studied

system when performing causal analysis.

Rodrigues de Morais et al. [RdMAC08] addressed structure learning through an original

determination of the Markov blanket (MB) of each node X of X , i.e., the minimal

set of nodes Z such that, given Z, X is independent from the rest of the network (in

a BN, the MB of X is the set of its parents, children and the other parents of the
2Note that this approach supposes that deterministic variables are known a priori, which is not always

the case in many real application domains.



Chapter 4. Bayes Net structure learning in the absence of faithfulness 76

XY Z

W

Figure 4.7: An example where W ∈ PCY
G and Y 6∈ PCW

G .

children). The idea relies on the identification of only the set of parents and children

(PCX
G ) of the nodes X, as specified in [TBA06], i.e., PCX

G is equal to MB(X) minus the

parents of the children of X. As discussed in the previous chapter (Section 3.2.3.6), in

Tsamardinos et al. [TBA06], PCX
G is constructed incrementally, starting from an empty

set and adding into it one by one new nodes Y such that {X} 6⊥P {Y }|Z for all sets

Z included in the current set PCX
G . In a second step, for each variable Y ∈ PCX

G , if

there exists a set Z ⊆ PCX
G \ {Y } such that {X} ⊥P {Y }|Z, then Y is removed from

the candidates parents-children PCX
G . In a DAG-faithful context, two different BNs

representing the same independence model have precisely the same {PCXi
G }ni=1 sets and

it is shown in [TBA06] that a BN should contain an arc between nodes X and Y if and

only if Y ∈ PCX
G and X ∈ PCY

G . The and condition as shown in [TBA06] is necessary to

avoid false positive problems. For a better understanding of this problem, we consider the

example of BN depicted in Figure 4.7. Here, node Z cannot be added to PCY
G because,

if the BN is faithful, {Y } ⊥P {Z}. Node X is not d-separated of Y given ∅ and given

{W}, so X ∈ PCY
G . Similarly, W ∈ PCY

G because W and Y are not d-separated given ∅
and {X}. Conversely, Y 6∈ PCW

G because X,Z ∈ PCW
G and {Y } ⊥P {W}|{X,Z}. The

“and” condition is thus compulsory to avoid adding arc Y →W in the graph. However,

in a DAG-unfaithful context, this condition fails to produce the correct BN. For instance,

if X is a deterministic node in Figure. 4.7, i.e., X = f(Y, Z), then Y,Z ∈ PCX
G but this

will rule out W belonging to PCX
G because {X} ⊥P {W}|{Y,Z} since X does not bring

any more information to W when Y and Z are already known. Therefore the “and”

condition will prevent the existence of arc X → W in the learned structure. To cope

with this problem, it is suggested in [RdMAC08] to substitute the “and” operator by

an “or” operator. This solution allows to address the problem entailed by deterministic

nodes, but as shown previously, this “or” operator will add arc Y → W , which is not

necessary for the other parts of structure where faithfulness holds.

In Luo [Luo06], association rules miners are used to detect deterministic relations. Those

are used in a constraint based algorithm (inductive causation (IC)) to build the BN as

follows:

1. X and Y are connected by an arc if and only if {X} 6⊥P {Y }|Z for every set

Z ⊆ X \ {X,Y } such that neither X nor Y are determined by Z;



Chapter 4. Bayes Net structure learning in the absence of faithfulness 77

2. the unshielded triple (X − Z − Y ) is considered as a v-structure if and only if

there exists a set W 6⊇ {Z} such that {X} ⊥P {Y }|W and neither X nor Y are

determined by W.

This method, while quite efficient, is unable to remove some arcs. For instance, as shown

in Figure 4.8, if X = {X,Y, Z,W,U}, with X = f(Y, Z), and if the BN has a diamond

shape with X at the bottom, W at the top and Y,Z on the middle, then rule 1 above

prevents discarding arc X →W or X ←W .

X

Y Z

W

U

Figure 4.8: An example of problem of statistical indistinguishably between X and
W .

Lemeire et al. [LMCL12] provides the definition of a new class of unfaithfulness called

“information equivalence” that follows from a broader class of relations than just deter-

ministic ones as shown in Definition 4.3. In addition to the latter, this class also contains

equivalence partitions discussed in Section 4.4 where each one is a source of unfaithfulness.

The algorithm developed in [LMCL12] consists in testing, for each independence returned

by the statistical test {X} ⊥P {Y }|Z, whether an equivalence information can be found

by testing additionally whether {X} ⊥P Z|({Y } ∪W) and {Y } ⊥P Z|({X} ∪W) hold

and whether the conditions of Definition 4.3 are satisfied. If this is the case, the arc

between X and Y is not removed from G. Information equivalence encompasses depen-

dences due to deterministic relations but, in practice, we observed that independence

tests often fail to reveal true information equivalences.

Finally, to cope with this problem, Ramsey et al. [RZS06] have proposed an extended

version of the PC algorithm called the conservative PC (CPC)3 which deals with the

problem of unfaithfulness orientation. The CPC algorithm replaces the v-structure iden-

tification step in the PC algorithm by the following instructions: for each unshielded

triple 〈X,Z, Y 〉, all potential parent subsets (adjacent nodes) of X and Y are checked:

(a) if Z is not part of the subsets of variables that renders X and Y independent,

orient the triple as follows: X → Z ← Y ,

(b) if Z is in all the subsets of variables that render X and Y independent, do not

orient the triple, i.e., it is not a v-structure,
3Not to be confused with CPC of algorithm MMPC mentioned in Chapter 3.



Chapter 4. Bayes Net structure learning in the absence of faithfulness 78

(c) if none of the above conditions hold, mark the triple as "unfaithful".

For more details about CPC algorithm, the reader should refer to [RZS06].

4.4 Conclusion

In this chapter we have discussed the most common sources leading to the unfaithfulness

of the probability distribution and we have shown their impacts on the BN learning task.

In the adjacency search step, unfaithful parameters configurations such as deterministic

nodes, information equivalence or equivalent partitions may lead to a set of conditional

independences that cannot be represented faithfully by a BN structure. The orientation

step and more particularly the identification of the collider connections (or v-structure)

cannot be carried out since many marginal independences from the distribution lead to

either erroneous or ambiguous edge orientations.

We have also discussed the most common state-of-the-art approaches dedicated to BN

learning task when the faithfulness of the distribution is ruled out. These algorithms,

as we have seen earlier, try to deal with deterministic relations and other sources of

unfaithfulness but all of them have serious shortcomings. In those methods, unfaithful

parameters configurations are perceived as sources of problems, hence they try to per-

form additional statistical tests in order to cope with unfaithfulness. However, as we

shall see in following chapters, deterministic relations as well as the Bayesian network

structure properties (see Chapter 2) bring valuable information that cannot be exploited

by classical algorithms, thereby preventing them to be fully effective.

In the next chapter, we will develop a new approach with an opposite view: we try to

exploit deterministic relations together with the BN properties as new opportunities to

help the learning algorithm to add, remove and orient edges in a principled manner.



Part II

Contributions

79



Chapter 5

An efficient Bayes Net structure

learning in the presence of

deterministic relations

As discussed in the previous chapters, in many real-world applications, the set of assump-

tions on which rely the majority of the structure learning algorithms is not fully satisfied.

As a consequence, those algorithms are no more guaranteed to provide the BNs that the

user looks for. In addition, when they converge, there is usually no criterion to assess

the “distance” between the returned BN and the “true” one. The different exceptions

that may occur in the probability distribution that lead to the violation of the afore-

mentioned assumptions have led researchers to propose tailored learning algorithms that

could overcome these issues. For instance, some algorithms take into account the exis-

tence of deterministic relations [RdMAC08, Luo06], information equivalence, equivalence

partitions [LMCL12], etc.

However, for important critical applications, such algorithms can be ineffective and pro-

vide very unsatisfactory solutions. Such a situation, which was actually our starting

point, arises in nuclear safety, notably in problems of nuclear accident scenario recon-

struction from sensors’ partial observations. In this domain, BNs and their inference

engines seem well-suited for helping Decision Makers make the best decisions in order

to limit as much as possible the consequences of the accident. The difficulty of the BN

learning task in this application domain arises from the presence of deterministic depen-

dences between random variables. Those essentially represent equations modeling the

various physical and chemical phenomena occurring in a damaged nuclear power plant

during a severe accident. Remind that classical structure learning algorithms rely on the

faithfulness assumption which assumes that independences holding in distribution P are

equivalent to those entailed by the graph, i.e., there exists no conditioning set of vari-

ables that can make directly related variables in G become conditionally independent.

80



Chapter 5. Learning Bayesian network 81

Based on this property, the algorithms determine the conditioning sets in the distri-

bution based on the dataset and each dependence/independence is converted into its

graphical counterpart in G. As such, these algorithms learn a D-map instead of learning

the I-map which is a BN. Under faithfulness, D-maps and I-maps are equivalent. Un-

fortunately, the faithfulness property does not hold in the nuclear safety domain due to

the presence of deterministic relations among some variables in the distribution. In this

case, even state-of-the-art algorithms dedicated to structure learning with deterministic

variables [Luo06, LMCL12, RdMAC08, GVP90] prove to be ineffective to discover many

dependences/independences. In our opinion, this is due to the fact that they strongly

rely on statistical tests that often fail to provide the right answers when faithfulness

occurs. In addition, they do not necessarily exploit valuable information that may come

from deterministic relations. The problem, e.g., in nuclear safety, is that such a failure is

a serious issue especially if the results returned by the BN are to be taken into account

in the reactor handling process.

In our case, we advocate to exploit the properties of both deterministic relations and

those entailed by Bayesian networks when learning the structure. More precisely, we

propose a new hybrid algorithm, combining a constraint-based approach with a greedy

search, that includes specific rules dedicated to deterministic nodes that significantly

reduce the incorrect learning. It consists in constructing at a first step the skeleton of

the BN, i.e., its graphical structure in which the arcs are substituted by edges, and, then

to convert it into a directed graph which is subsequently refined by a greedy search. This

kind of technique is known to be very effective [TBA06]. The originality of our algorithm

lies in the rules applied in its three steps, that exploit the features of the deterministic

relations:

1. to discard arcs that should not belong to the BN but that cannot be detected by

scoring or independence tests;

2. to orient optimally the arcs adjacent to deterministic nodes.

In addition, our algorithm uses an original way to compute the conditional independences

it needs to construct the BN’s graphical structure.

The rest of the chapter is organized as follows: we start by presenting a concrete example

related to the nuclear safety area for which the faithfulness property is ruled out. Then,

we present the set of assumptions under which our proposed approach works. Next, we

provide the details of our approach and justify its correctness. Finally, some concluding

remarks are given in the conclusion. Some experimentations highlighting the effectiveness

and efficiency of the method are provided in the next chapter.



Chapter 5. Learning Bayesian network 82

5.1 A concrete case of unfaithfulness in the nuclear field

In the following, we discuss a concrete phenomenology that may occur in severe accident

situations and for which the faithfulness property is ruled out. This example results from

the ideal gas law.

The ideal gas law is a thermodynamic model used to determine the behavior of real

gases in the containment at low pressure. When the gas molecules collide with the wall

of the container (e.g., the containment of the reactor), they are exerting a force over it.

This increases the pressure inside the container. Ideal gas low expresses the relationships

between pressure, volume, temperature and the moles of the gas through the following

deterministic relation:

PV = nmol.R.T (5.1)

where :

• P is the pressure of the gas (in Pa);

• V is the volume of the container (in m3)

• nmol is the number of moles (in mol)

• R is a universal constant fixed to R = 8,3144621 J.K−1.mol−1

• T is the temperature (in K) ;

From Equation (5.1), we can conclude that each element composing the ideal gas law

model can be deduced from the other terms via a deterministic relation as can be seen

in Table 5.1.

P =
nmolRT

V
Pressure

V =
nmolRT

V
Volume

nmol =
PV

RT
Mole

T =
PV

nmolR
Temperature

Table 5.1: Equations derived from the Ideal Gas Law

To facilitate the understanding of the ideal gas law model, we consider the example of a

cylinder with a moving piston as shown in Figure 5.11. This example illustrates the effect

of gas molecules (represented by balloons) which exert a small force (Fr) each time they

collide with the walls of the container (or the cylinder), hence increasing the pressure
1Picture taken from http://www.eoht.info/page/Social+ideal+gas+law



Chapter 5. Learning Bayesian network 83

inside it. The more frequently the gas molecules collide with the walls, the greater the

pressure exerting on the walls of the container. Suppose that the gas injected into the

enclosed volume 2 is the Air. By forcing more and more Air moles into this small volume,

the pressure in the container increases more and more, hence this exerts a force on the

moving piston. This force (Fr = P ·Ar, where Ar is the area of the piston base and P is

the pressure of gas) is sufficient to move the piston toward the top part of the container

with a distance ∆L, which therefore leads to the increase of the volume of the cylinder to

∆V . The increasing volume phenomena (volume 2) shown in Figure 5.1 can be expressed

by the fact that injection of more and more Air into the cylinder makes the gas molecules

in volume 2 get more and more compressed. As a consequence, the proportion of the

total volume taken by the molecules gets higher and higher. When the volume available

around the molecules converges to zero (molecules touching each other), the gas needs

more and more space. For this reason, it pushes the stamp toward the top part of the

cylinder. As can be noticed in Figure 5.1, the compression of the molecules of the gas is

not the same in both volumes. It should be noted that the relation between volume (V )

and pressure (P ) can easily be deduced from the first equation shown in Table 5.1. As

the volume of the containment increases (denominator), the pressure decreases.

Figure 5.1: Ideal gas law with a piston and closed cylinder example

Figure 5.2.(a) depicts the BN structure that represents the ideal gas law related data.

In this example, the deterministic variable "pressure (P )" is represented with a shaded

node with double-borders. As can be seen in Table 5.1, Pressure (P ) is determined

by nmol(= nH2+ nH2O+ nAir), T , and V , which form its parents in G. Note that

term R of the ideal gas law equation cannot be taken into account in the BN since

its value remains always the same (it is a constant, not a random variable). The set

of conditional independences encoded by the structure of Figure 5.2.(a) do not rule

out the rest of the deterministic relations derived from the ideal gas law equation (see

Table 5.1). To understand how the other deterministic relations induced by the ideal

law gas model are represented by the BN of Figure 5.2, let us delve into the details of

the conditional independences semantics encoded by the model. In this example, the



Chapter 5. Learning Bayesian network 84

T nH2OnH2 NAirV

P

CF

T nH2OnH2 nAirV

P

CF

Theoretical BN Learned BN

Figure 5.2: BNs resulting from the ideal gas low example

considered variables nmol, V and T of the gas perfect law are marginally independent,

since the state of each one of them does not have any effect on the values taken by

the others. Such independences can be easily represented by means of a v-structure

(which corresponds to the family of node P ) as shown in the BN of Figure 5.2.(a).

Given the definition of v-structures, it turns out that, by conditioning on the value of

P , the marginal independences between parent nodes are transformed into conditional

dependencies, i.e., each value(s) taken by a subset of these variables (parents nodes of P )

changes our belief on the other variables when P is instantiated. The set of connections

that can be established after conditioning on P are represented by red arcs as shown in

Figure 5.3.

T nmol V

P

T nmol V

P

P = f(nmol, V, T ) T = f(P, nmol, V )

T nmol V

P

T nmol V

P

nmol = f(P, V, T ) V = f(P, nmol, T )

Figure 5.3: Communication flow between the ideal gas law variables

By D-separation, the model of Figure 5.2 entails the following conditional independences:

({nmol, T, V } ⊥G {CF}|{P}) ∧ ({nmol} ⊥G {T}) ∧ ({nmol} ⊥G {V }) ∧ ({V } ⊥G {T}).

However, by functional relation, we know that nodes V , nmol, and T contains all the

relevant information about P . Hence the latter becomes independent from the rest of

the variables given its parents in G. This leads to:

{P} ⊥P {CF}|{nmol, T, V } (5.2)



Chapter 5. Learning Bayesian network 85

Both independences ({P} ⊥P {CF}|{nmol, T, V }) and ({nmol, T, V } ⊥P {CF}|{P}) can-
not be represented faithfully in the network because the deletion of their corresponding

arcs leads to an erroneous BN structure. In addition, maintaining both marginal depen-

dencies with CF would represent a redundant information and, thus, would rule out the

minimality condition of the BN structure. The structure resulting from classical learning

algorithms with ideal gas law data is shown in Figure 5.2.(b), where the arc between P

and CF is erroneously deleted by the conditional independence shown in Equation (5.2).

5.2 A new learning algorithm suited for deterministic rela-

tions

In the following, we will introduce a new algorithm to overcome the issues raised in

the preceding section. This one is designed for learning the BN structure when some

deterministic nodes exist in dataset D. Like several other BN learning algorithms, ours

is an hybrid which is composed by two phases. In the first phase, a skeleton of the BN

is determined (or at least an approximation). This skeleton serves in a first phase to

approximately describe the set of dependencies between random variables, hence it can

be used as a prior about possible existing arcs in the final BN. In the second phase,

the skeleton is transformed into a BN, which is refined through a score-based search

algorithm. It must be emphasized that in all the steps (skeleton and orientation), we

dedicate special rules to address the unfaithfulness induced by deterministic nodes.

Before giving the details of our approach, we start this section by introducing the set

of assumptions under which our approach is supposed to work effectively. Next, we

will provide the details related to a well known information theoretic metric called the

Shannon entropy function, since it will be used in our approach to help determining the

deterministic relations when learning the BN structure from dataset D.

5.2.1 Assumptions

In the sequel, we will assume that DAG-unfaithfulness results only from deterministic

nodes and that, whenever X = f(Z), all Z ∈ Z are automatically parents (or causes)

of X in the BN’s graphical structure G. One-to-one relationships are not considered in

our scope, i.e., if we detect two deterministic nodes that are in a one-to-one mapping

in distribution P , we simply discard one of them to avoid redundancies in the data. In

addition, we assume that the problem of unfaithfulness is local and does not propagate

to the rest of the network when performing the BN structure learning, i.e., the unfaith-

fulness concerns only the adjacency around each deterministic node. In other words,

whenever there is no deterministic node in some parts of the searched structure G, then



Chapter 5. Learning Bayesian network 86

the faithfulness assumption holds and classical learning algorithm identify correctly these

latter. An example of unfaithfulness boundaries in G is represented in Figure 5.4, where

the impact of deterministic node Z = f(X,Y ) during the BN learning concerns only the

identification of arcs Z − U and Z −W .

X Y

Z

U W

SV

Figure 5.4: Boundaries of unfaithfulness in a BN with Z = f(X,Y ).

Finally, we suppose that the training dataset is large and fully observed. This guarantees

the correctness of the scoring/statistical functions used to compute the set of conditional

independences between random variables.

5.2.2 Deterministic nodes detection with an entropy function

In general, the (Shannon) entropy function is used to compute the expected uncertainty

that characterizes a random variable X, i.e., it tells us the amount of information stored

into X. The entropy of X, hereafter denoted by H(X), is calculated by the following

equation:

H(X) = −
rx∑
i=1

p(xi) log p(xi). (5.3)

It must be noted that the entropy function does not depend on the values taken by the

random variable, but only on its probability distribution. The "log" function used in

Equation (5.3) is in base 2, hence the unit of information uncertainty is expressed in

bits. For instance, we take the following sequence of length 20 bits which is composed

by 1 and 0 values: 00000010101000100001. From the previous sequence, we can deduce

that the probabilities of 0 and 1 outcomes are respectively 0.75 and 0.252. By referring

to Equation (5.3), there exists an encoding of the sequence that uses only (on average)

H(X) = 0.188 bits for each bit of the sequence. The latter can thus be fully encoded

(without any loss) in 3.76 bits instead of 20 bits.

It should be noted that when the distribution is uniform X ∼ U({1, .., N}), the uncer-

tainty reaches its maximum, with an entropy value equal to logN3. To facilitate the
2The probabilities of 0 and 1 values are obtained by simply counting the occurrences of each value

and dividing them by N = 20.
3The general rule of the entropy function says that if a given value is more probable than the others,

the uncertainty of X decreases, i.e., as knowledge grows, the entropy value decreases.



Chapter 5. Learning Bayesian network 87

understanding of the maximum value that H(X) may take, let p1 and p2 = 1−p1 denote

respectively the probabilities of 0 and 1 values in the previous sequence. We should

keep in mind that searching the optimal value of p1 can be considered as a constrained

optimization problem:
Argmaxpi H(X)

such that
2∑
i=1

pi = 1
(5.4)

Such an optimization problem can be addressed using the approach of Lagrange multi-

pliers. To maximize Equation (5.4), it suffices to maximize the following unconstrained

equation:
L = H(X) + λg(X)

=

(
−

2∑
i=1

pi log pi

)
+ λ

(
2∑
i=1

pi − 1

)
where λ represents the Lagrange Multiplier. Finding the optimal value pi consist in

maximizing the previous equation, which is done by solving the system of equations:

∂L
∂pi

= 0,
∂L
∂λ

= 0

This leads to the following optimal solutions:

p1 = 0.5, p2 = (1− p1) = 0.5⇐⇒ X ∼ U({1, 2}) or X ∼ B(0.5)

where B and U denote respectively the binomial and the uniform distributions.

The joint entropy of two variables X and Y is calculated by the same formula as that of

Equation (5.3), where p(xi) is replaced by p(xi, yj):

H(X,Y ) = −
rx∑
i=1

ry∑
j=1

p(xi, yj) log p(xi, yj). (5.5)

The chain rule property can be used to decompose the equation of the joint entropy as

follows:

H(X1, X2, . . . , Xn) = −
n∑
i=1

H(Xi|Xi−1)

where Xi−1 = {X1, X2, ..., Xi−1} and H(Xi|Xi−1) denotes the conditional entropy. The

conditional entropy is used generally to represent the uncertainty over a random variable

X remaining after the values of a set Z are known. Conditional entropy formula H(X|Z)

is given as follows:

H(X|Z) = −
rx∑
i=1

rz∑
j=1

p(xi, zj) log p(xi|zj). (5.6)



Chapter 5. Learning Bayesian network 88

By referring to the previous equation, the joint entropy expression given in Equation (5.5)

can be rewritten as follows

H(X,Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X). (5.7)

Note that H(X|Y ) 6= H(Y |X) except when X and Y are in a one-to-one mapping.

If we go back to the Subsection 4.1 of Chapter 4 and make the relation with the notion of

conditional entropy, we can conclude that equivalence X = f(Z)⇐⇒ H(X|Z) = 0 holds,

because Z contains all the information about X (there is no uncertainty over X once the

values of Z are known). The previous equivalence can be of great explanatory importance

in our case, since it can be exploited in the identification of possible deterministic relations

between a given set of variables, allowing therefore the identification of deterministic

nodes W in G as follows:

W = {Xi ∈ G|H(Xi|Pa(Xi)) = 0 : Pa(Xi) 6= ∅, i ∈ {1, ..., n}}. (5.8)

Note that deterministic root nodes S are not considered in our scope. Actually, H(Xi) =

0 means thatX takes only one value in the dataset, henceXi is not a random variable and

can therefore be discarded from dataset D. Such nodes are automatically independent

from the rest of model variables:

∀S ∈ S, ({S} ⊥P (X \ {S})).

To summarize, the relationship between deterministic nodes and conditional entropy is a

valuable information that can be exploited when learning the BN structure. However, it

may be pointed out that the exclusive use of conditional entropy to address the problem of

unfaithfulness, as we shall see hereafter, is not sufficient because it may lead to another

kind of problem called “statistical indistinguishability” [Luo06]. For this reason, the

information given by conditional entropy must be merged with BN properties in the

form of novel learning rules dedicated to deterministic nodes and to the learning process

in general (in both adjacency and orientation steps).

5.2.3 First phase: learning the BN’s skeleton

In the first phase of our approach, we try to determine the skeleton of the final BN

from the available data in order to restrict the search space when moving to the second

phase. Recall that the skeleton of a BN corresponds to its graphical structure G in which

the arcs have been transformed into (undirected) edges. As a consequence, there exists

an arc X → Y in the BN if and only if there exists an edge X − Y in the skeleton.



Chapter 5. Learning Bayesian network 89

Learning the skeleton prior to refine it into a BN is computationally attractive because

the skeleton’s undirected nature makes it faster to learn than learning BNs.

As discussed in Chapter 3, there exist several algorithms for discovering the skeleton

of a BN, for instance the PC algorithm [SGS01], Max-Min Parents Children [TBA06]

or Three-Phase Dependency Analysis [CGK+02]. For the first step of our method, we

designed a variant of PC adapted to exploit deterministic relations. We choose PC

because it is simple and efficient. In addition, the way by which statistical independence

tests are performed within the different iterations of the PC algorithm is well suited for

the deterministic nodes identification during the skeleton learning phase.

To test whether X and Y are independent given a set of variable Z (X ⊥P Y |Z), we

have chosen to compute a G2-statistical test, i.e.,

G2(X,Y |Z) = 2

rx∑
i=1

ry∑
j=1

rz∑
k=1

Ni,j,k ln
Ni,j,kNk

Ni,kNj,k
, (5.9)

where Ni,j,k, Ni,k, Nj,k, Nk represent the number of occurrences of each tuple (xi, yj , zk),

(xi, zk), (yj , zk), zk in an N -sized dataset respectively. The G2 test is known to pro-

vide more robust independence tests than χ2, especially for large datasets. Moreover,

the likelihood ratio G2 computation proves to be more tractable for large dimensional

datasets than χ2, since it can be neatly decomposed into smaller components (by parsing

database), allowing therefore to speed-up its computation. This option cannot be done

exactly with χ2 statistical test.

As discussed earlier, the idea of PC consists in starting with a complete undirected

graph G. Then, the algorithm iterates the computations of independence tests between

pairs of variables (X,Y ) given sets Z that are adjacent to X or Y in G. Whenever

it finds that {X} ⊥P {Y }|Z, edge X − Y is removed from G and Z is added to the

SepSetXY . However, as shown in the preceding section, when X = f(Z), the G2-test

always indicates that {X} ⊥P {Y }|Z, for any Y , even if Y strongly depends on X (e.g.,

Y is a child of X in the searched DAG). See Figure 4.5. Therefore, a G2-test should

never be used when X or Y is a deterministic node depending on Z, since it leads

automatically4 to an erroneous result (error of type II). Unfortunately, deterministic

nodes are not known from the beginning of the learning algorithm. As statistical tests

cannot distinguish between conditional independences resulting from d-separation and

those entailed by deterministic relations, this calls for a method to detect deterministic

nodes before computing the statistical tests. For this purpose, we exploit the conditional

entropy H(X|Z), and more precisely the equivalence property between the latter and

the deterministic relation as discussed earlier. As we shall see, this will be sufficient to

avoid numerous erroneous edge deletions.
4Except in the case of statistical indistinguishability as we shall see later.



Chapter 5. Learning Bayesian network 90

Given a dataset D, the conditional entropy of a variable X given Z (represented by

Pa(X) in G) can be estimated by the following equation:

H(X|Z) = − 1

N

rX∑
i=1

rZ∑
j=1

Ni,j log
Ni,j

Nj
(5.10)

where Nij is the number of occurrences in the dataset in which X and Z have taken their

ith and jth values respectively, Nj is the number of occurrences in the dataset in which

Z has taken its jth value, and rX and rZ are the domain sizes of X and Z respectively.

As shown above, X is a deterministic node defined by X = f(Z) if and only if H(X|Z) =

0. Therefore our first adaptation of PC consists in computing the conditional entropies

H(X|Z) and H(Y |Z) and, if one of them is equal to 0 (or is below a threshold), we just

do not use the G2-test over (X,Y |Z) to remove edge X − Y .

For instance, in the BN depicted by Figure 5.5.(a), the test {D} ⊥P {E}|{A,C} should
not be carried out by the PC algorithm, since D = f(A,C). It must be noted here that

computing these conditional entropies only marginally increases the overall learning’s

computation time. Actually, the most time consuming task is the parsing of the dataset

in order to evaluate observation counts Ni,j,k, Ni,k, Nj,k, Nk, which are also needed to

compute traditional scores like BDeu, BIC or K2. The computations of Equations (5.9)

and (5.10) are significantly faster than this task.

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

(a) Original BN (b) Edge C −D not removed (c) P (D|A,B,C) = P (D|A,C)

A

B

C

D

E

A

B

C

D

E

(d) problem of acyclicity (e) P (B|A,C,D) = P (B|A,C)

Figure 5.5: A BN with both deterministic relation D = f(A,C) and the problem of
statistical indistinguishability.



Chapter 5. Learning Bayesian network 91

5.2.3.1 Edges deletion with deterministic nodes

As discussed earlier, the use of conditional entropy test allows to overcome the problem

of unfaithfulness by detecting the set of deterministic nodes during the BN learning task.

However, the exclusive use of conditional entropy when performing conditional indepen-

dence tests can raise another kind of problem which is called “statistical indistinguishabil-

ity” [Luo06]: there exist cases where conditional independences can be explained by both

d-separation and by deterministic relations. For instance, in Figure 5.5, the conditional

independence between B and D given {A,C} can result from B and D being d-separated

by {A,C} but also from D being a deterministic node defined by D = f(A,C). By tak-

ing into account the results returned by conditional entropy, our algorithm first checks

whether H(D|{A,C}) = 0 or H(B|{A,C}) = 0 . As this is the case for node D since

D = f(A,C), edge B − D will never be removed from G due to a G2 test involving D

given {A,C} (since the rule we provided in the preceding subsection forbids G2 testing

in this case). But it might be the case that the “true” BN we look for contains neither arc

B → D nor D → B due to d-separation, hence edge B −D should have been removed.

Note that the statistical indistinguishability problem can be a serious issue if it is not

handled during BN learning, especially for large networks involving many deterministic

nodes since:

• It prevents the algorithm from deleting many false positive edges (error of type

I) from G, hence leading to the learning of a complex BN structure (with a lot of

arcs).

• It can also be the cause of false negative edge deletions (error of type II especially

for small dataset), since it contributes to the increase of the adjacency set around

deterministic variables in G, leading therefore to the increase of the sizes of the

contingency tables used for the conditional independence tests5.

If we come back to the example of Figure 5.5, the approach of [Luo06] and the current

version of our approach keep this edge since there is no rule yet allowing to remove it

from the skeleton.

However, as will be shown in Proposition 5.1, edge B −D can always be safely removed

from G without requiring the computation of G2 independence test, i.e., the BN should

not contain arcs B → D or D → B.

Proposition 5.1. Let X be a deterministic node defined by X = f(Z) and let Y be a

node such that, in the skeleton G learnt by the algorithm, Y 6∈ Z and Z ⊆ Adj(Y ), where

Adj(Y ) refers to the set of neighbors of Y in G. Then edge X − Y can be removed from

G.
5We should keep in mind that conditional independence tests rely on the adjacency of each tested

nodes as a set of conditioning variables



Chapter 5. Learning Bayesian network 92

Proof. Our goal is to learn a skeleton G. Hence to any of its edges must correspond an

arc in the BN. Three cases can obtain:

• assume that, in the BN, there exists an arc X → Y and that all the nodes, say Z, of

Z are such that Z → Y . Then {X}∪Z ⊆ Pa(Y ). Define K as Pa(Y ) \ ({X}∪Z).

Then P (Y |Pa(Y )) = P (Y |{X} ∪Z∪K) = P (Y |Z∪K) because X does not bring

any additional information once Z is known. Therefore arc X → Y can be removed

from the BN as well as edge X − Y from G.

• assume that, in the BN, there exists an arc X → Y and that there exists at least

one node Z ∈ Z such that Y → Z. Then X,Y, Z forms a directed cycle since Z ∈ Z

is also a parent of X as X = f(Z). This is impossible since BNs are DAGs.

• assume that, in the BN, there exists an arc Y → X. Then {Y } ∪ Z ⊆ Pa(X).

Define K as Pa(X)\({Y }∪Z). Then P (X|Pa(X)) = P (X|{Y }∪Z∪K) = P (X|Z)

because, once Z is known, X is determined. Hence arc Y → X can be removed

from the BN as well as edge X − Y from G.

So, in all cases, the BN should contain neither arc B → D nor arc D → B. The skeleton

should therefore not contain edge B −D.

To facilitate the understanding of Proposition 5.1, a schematization example of the differ-

ent parts (or the orientation cases) of the previous proof are shown by Figure 5.5.(b).(c).(d).(e).

Through the above proposition, we can see that the originality of our proposal is to solve

the problem of statistical indistinguishability by using both conditional entropy (to dis-

cover deterministic nodes) and by exploiting properties of Bayesian networks (conditional

independences, acyclicity, etc.).

Note that the way by which Proposition 5.1 is used during the skeleton learning phase

will be as follows: at the end of the first phase of our algorithm, for each deterministic

node X, all edges X − Y for nodes Y satisfying the conditions of Proposition 5.1 are

discarded. Remind that the previous proposition is applied only once at the end of our

first skeleton phase. This can be explained by the fact that PC algorithm starts with a

fully connected graph G, hence many edges may satisfy the deletion conditions mentioned

in Proposition 5.1 at the beginning steps of the algorithm, leading therefore to many

erroneous edge deletions from G. However, at the end of the skeleton’s construction, this

proposition is meaningful and is coherent with the proof of Proposition 5.1.

A second variant we introduce also concerns edges deletions during the skeleton learn-

ing using deterministic variables: the proposition below shows that some edges can be

removed from G without requiring the computation of conditional independences using

G2 test:



Chapter 5. Learning Bayesian network 93

Proposition 5.2. Let X and Y be two deterministic nodes, i.e., X = f(W) and Y =

f(Z). Assume that X 6∈ Z and that Y 6∈ W. Then edge X − Y can be safely removed

from G.

Proof. Let us assume that the BN we learn contains arc X → Y . Then, {X} ∪ Z ⊆
Pa(Y ). But then, P (Y |Pa(Y )) = P (Y |Z) since Y = f(Z). Therefore, removing from

the BN all the arcs in Pa(Y )\Z results in a new BN that represents the same distribution.

Therefore, it is safe to discard arc X → Y . By symmetry, it would also be safe to discard

arc Y → X. G being a skeleton, it is thus safe to remove edge X − Y from G.

An example of edge deletion using Proposition 5.2 is mentioned in the network example

of Figure 5.6. As can be seen, in this example the BN contains two deterministic nodes

Z = f(X,Y ) and W = f(S). Knowing that each edge in the skeleton corresponds to an

arc in the final BN structure, the two possible orientation cases of edge Z −W in G lead

to the following results:

• Z →W :

if f(s) = w =⇒ P (W = w|S = s, Z = z) ≈ Nw,s,z

Ns,z
=
Nw,s

Ns
= 1

=⇒ P (W |S,Z) = P (W |S)

• Z ←W :

if f(x, y) = z =⇒ P (Z = z|X = x, Y = y,W = w) =
Nz,x,y,z

Nx,y
=
Nx,y,z

Nx,y
= 1

=⇒ P (Z|X,Y,W ) = P (Z|X,Y )

As a result, we can clearly see that both edge Z − W orientations do not entail any

modification on both conditional probability distributions of Z and W when W and Z

are respectively instantiated. The only impact that edge Z −W may exerts on the BN

representation concerns the sizes of the CPTs of Z and W , the latter being obtained by

simply duplicating the CPTs of the deterministic nodes P (Z|X,Y ) and P (W |S) by the

number of modalities taken by W and Z respectively. Due to these reasons, edge Z−W
must be deleted from G without being tested.

To summarize, each time our algorithm discovers a new deterministic node, it applies

Proposition 5.2 to remove all the edges between this node and the previously discovered

deterministic nodes satisfying the conditions.

Overall, our algorithm for computing the BN’s skeleton (using the previous propositions)

when there exist deterministic nodes is described in Algorithm 8.



Chapter 5. Learning Bayesian network 94

X Y

Z

W

S

Figure 5.6: Example of edge Z −W deletion using deterministic nodes Z = f(X,Y )
and W = f(S).

A

B

C

D

E F

A

B

C

D

EG F

CutAF={E} CutAF={C,G}

Figure 5.7: Example of two scenarios of conditioning variables computations.

5.2.3.2 Reducing the sizes of the conditioning sets during G2 tests

Another variant with the original PC algorithm that was already advocated in [SGS01]

and [AGM06] is the use of min cutsets to determine the conditioning sets in our inde-

pendence tests in order to avoid missing edges (error of type II): PC usually tests the

independence between X and Y first by computing G2(X,Y |∅) then, if this test fails (i.e.,
if it does not provide evidence that X is independent of Y ), conditional tests G2(X,Y |Z)

are performed iteratively with sets Z, adjacent to X or Y , of increasing sizes until either

a conditional independence is proved or the size of the database does not allow any more

meaningful statistical test.

In our algorithm, we not only perform these tests with Z of increasing sizes, we also

compute a minimal cutset CutXY in G separating X and Y , i.e., a set of nodes CutXY
which, when removed from G, makes X and Y belong to two different connected com-

ponents. This can be easily done by computing a min cut in a max-flow problem. If

the size of CutXY is smaller than that of sets Z PC would have used, we just perform

G2(X,Y |CutXY ). This results in the construction of smaller contingency tables and, as

such, this increases the accuracy of the statistical test. Moreover, the additional time

required to compute CutXY can be balanced by the number of G2-tests it allows to

avoid. An example of conditioning variables selection can be shown in Figure 5.7. In

this example, we assume that we wish to test the conditional independence between A

and F . The application of a max-flow algorithm (to construct the min-cut) on the left

graph returns a conditioning set equal to {E}, which also corresponds to what the PC

algorithm would have chosen. On the right graph, however, PC would be unable to



Chapter 5. Learning Bayesian network 95

find a conditioning set of size 2 in the neighborhood of F that would make A and F

independent whereas conditioning on CutAF = {C,G} would conclude that edge A−F
can be removed from the skeleton.

Of course, for large graphs, computing min cutsets can be expensive. In this case, we

resort to a technique advocated in [GJ06]: basically, graph G is incrementally triangu-

lated, hence resulting in a junction tree incrementally constructed [GJ06]. Then, some

cliques CX and CY containing X and Y are identified as well as the minimal-size sepa-

rator SXY on the trail between CX and CY . Set SXY is a cutset and, thus, to test the

independence between X and Y , it is sufficient to compute G2(X,Y |SXY ). In practice,

incremental triangulations are very fast to perform and sets SXY are relatively small.

Algorithm 8: Learning the skeleton of the BN
Input: a dataset D
Output: a skeleton G
Start with a complete undirected graph G = (V,A)
DR ← ∅ // the set of deterministic relations found so far
SepSet ← ∅ // the set of independences {X} ⊥P {Y }|Z found so far
i← 0 // the size of the conditioning sets tested
repeat

foreach edge X − Y in G do
if there exists a set Z = CutXY or SXY of size ≤ i, or Z adjacent to X or to Y
of size i, s.t. {X} ⊥P {Y }|Z then
if 6 ∃ S,T ⊆ Z s.t. (X|S) ∈ DR or (Y |T) ∈ DR then

NewDeterministicRelation ← false
if H(X|Z) = 0 then

find the smallest S ⊆ Z s.t. H(X|S) = 0
DR ← DR ∪ {(X|S)}
apply Proposition 5.2 to remove edges
NewDeterministicRelation ← true

if H(Y |Z) = 0 then
find the smallest T ⊆ Z s.t. H(Y |T) = 0
DR ← DR ∪ {(Y |T)}
apply Proposition 5.2 to remove edges
NewDeterministicRelation ← true

if NewDeterministicRelation = false then
A← A \ {X − Y }
SepSet ← SepSet ∪ {(X,Y |Z)}

until all nodes in V have at most i neighbors;
use Proposition 5.1 to remove unnecessary edges
return undirected graph G = (V,A)



Chapter 5. Learning Bayesian network 96

5.2.4 Second phase: orientation and refinement

The next step of our learning algorithm consists in orienting the edges in order to get an

initial BN that will subsequently be refined. In [SGS01], PC first identifies the BN’s v-

structures using the computed “SepSet”, i.e., triples of nodes (X,Y, Z) that are connected

as X − Y − Z and such that {X} 6⊥P {Z}|Y and {X} ⊥P {Z}|W for some W 6⊇ {Y }.
For these triples, the BN should contain the following arcs: X → Y ← Z. A BN is

fully characterized by its skeleton and the set of its v-structures. When deterministic

nodes exist, it is suggested in [Luo06] to add an extra condition on sets W: if X or

Y is a deterministic node defined by some set S, then W 6⊇ S. Our algorithm follows

the same rule. In our framework, we add, prior to the v-structures orientation, the

following “causal” constraint: for each deterministic node X = f(W), all the edges

W −X, for W ∈ W, are converted into arcs W → X. But deterministic relations can

be further exploited; examples of such exploitation can be found, e.g., in [JHS10] and

[DJM+10]. Here, we propose to leverage deterministic relation features to deduce some

orientations that are necessary. As an illustration, consider skeleton G of Figure 5.8.a

where X = f(U, Y, Z) is a deterministic node. Our “causal” constraint imposes the

orientation of Figure 5.8.b. But, as shown in the proposition below, the only reasonable

orientation for the remaining edges adjacent to X are those given in Figure 5.8.c.

X

Y Z U

W V

X

Y Z U

W V

X

Y Z U

W V

(a) (b) (c)

Figure 5.8: A skeleton G with a deterministic node X = f(Y,Z, U)

Proposition 5.3. Let G be a skeleton and let X be a deterministic node defined by

X = f(W). Let Z = Adj(X) \W in G. Then for each Z ∈ Z, edge X − Z must be

oriented as X → Z.

Proof. Assume that the BN contains arc Z → X. In the BN, let K = Pa(X) \
(W ∪ {Z}). Then the joint probability model by the BN is P (V) = P (X|Pa(X)) ×∏
V ∈V\{X} P (V |Pa(V )) = P (X|W)×

∏
V ∈V\{X} P (V |Pa(V )) because, once W is known,

K and Z do not bring any additional information on X. Therefore arc Z → X can be

removed from the BN without altering the probability distribution. But this is impossi-

ble because edge X −Z belonging to skeleton G implies that X and Z are conditionally

dependent given any other set of nodes. Hence, the arc between X and Z in the BN is

necessarily X → Z.



Chapter 5. Learning Bayesian network 97

An example of orientation using Proposition 5.3 is mentioned in Figure 5.9.(a). Remind

that there exists an arc D ← E or E → D in the BN structure if and only if there

exists an edge D − E in its skeleton. As a matter of fact, the edge linking D and

E in the example of Figure 5.9 has to be oriented at the end of the learning process.

By assuming that all variables represented in the BN are binary and the deterministic

relation D = f(B,C) is defined as follows:

f(b, c) =

{
f if (b = f) ∧ (c = f),

t otherwise

The resulting CPTs of node D given the two possible orientations of D − E are shown

in Figure 5.10.

As can be seen in Figure 5.10, we notice that the CPT representing the distribution

P (D|B,C,E) appears as a duplication (× 2 times) of P (D|B,C) (which corresponds to

the deterministic relation D = f(B,C)). Given the previous assertion, we can deduce

that the semantic of the CPT of node D where D ← E is inconsistent with that of the

edge D − E learnt in the CPDAG as shown in Figure 5.9.(b): remind that the D − E
asserts that D 6⊥P E|W in P for all W ⊆ X \ {B,D,E} i.e., learning new information

on a given variable influences our belief in the other. Given the previous property,

.

B

A D

C

E

B

A D

C

E

(a) Original BN structure with D = f(B,C) (b) CPDAG of BN

Figure 5.9: Example of BN and CPDAG to be learned

P (D|B,C)

D

B C t f

f f 0 1
f t 1 0
t f 1 0
t t 1 0

P (D|B,C,E)

D

B C E t f

f f f 0 1
f f t 1 0
f t f 1 0
f t t 1 0
t f f 0 1
t f t 1 0
t t f 1 0
t t t 1 0

(a) CPT with D → E (b) CPT with D ← E

Figure 5.10: Resulting CPT orientation of edge D − E



Chapter 5. Learning Bayesian network 98

the orientation D ← E (which gives P (D|B,C,E) = P (D|B,C)) must be replaced by

D → E in G in order to represent the dependency between D and E.

With all those rules, our algorithm converts the skeleton into a Completed Partially Di-

rected Acyclic Graph (CPDAG). The remaining edges are then converted in a similar

fashion as PC does (when PC is unable to orient edges, we select arbitrarily an orienta-

tion). At this point, our algorithm has constructed an initial BN. This one is then refined

using any search algorithm [TBA06]. The only constraint we add on this algorithm is

that it never modifies the arcs adjacent to the deterministic nodes nor add new ones. As

a matter of fact, due to the unfaithfulness induced by determinism, classical algorithms

tend to erroneously modify the neighborhood of the deterministic nodes.

To summarize the different steps of our learning algorithm, we take the example of data

that has been sampled from the model of Figure 5.9.(a). The results of the different

phases while executing our proposed algorithm are depicted in Figure 5.11. As can be

seen, the algorithm starts with a completely connected undirected graph (a). At first, the

checking phase of the set of marginal independences between variables ends without any

edge removed since the model of Figure 5.9 does not entail any marginal independence.

In the second step, the conditional independence of each pair of adjacent nodes in G
given one single conditioning variable is tested. The removals of edges B−E and C−E
result from such conditional independences given {D} (see figures 5.11.(b) and 5.11.(c)).

Then, edge B−C can be removed by testing {B} ⊥P {C}|{A} (Figure 5.11.(d)). At this
point, the min-cutset algorithm can identify that independence tests between A and E

can be performed by conditioning only on CutAE = {D} (Figure 5.11.(e)). Recall that

the goal of the min cutset algorithm is to minimize the set of conditioning variables, this

is the reason why D will be used instead of, e.g., {B,C} (which would have been selected

by PC). In the same step, we can remark in (f) and (g) that, despite the independences

{D} ⊥P {E}|{B,C} and {D} ⊥P {A}|{B,C} resulting from the statistical tests, the

edges D − E and A − D are not removed from G since H(D|{B,C}) = 0 and the

deterministic nature of D = f(B,C) is recorded6. Given the resulting skeletons in (f)

and (g), we can clearly identify that edge A − B satisfies the set of deletion conditions

defined in Proposition 5.17 since D is identified as a deterministic node in G and the

adjacent nodes of A are also the determinant variables of D. As a matter of fact, the

edge A−B should never exists in G (it is thus removed).

During the skeleton’s orientation phase, the deterministic relation D = f(B,C) leads to

the orientation of edges B − D and C − D towards D. In addition, the deterministic

nature of node D is also exploited to orient the edge D − E as D → E by referring to
6The deterministic node D and the set of SepSet together are used to orient the skeleton of the BN.
7Remind that this edge cannot be removed from G due to the problem of statistical indistinguisha-

bility.



Chapter 5. Learning Bayesian network 99

B

A D

C

E

.

B

A D

C

E

B

A D

C

E

(a) complete graph (b){B} ⊥P {E}|{D} (c) {C} ⊥P {E}|{D}

.

B

A D

C

E

B

A D

C

E

B

A D

C

E

(d) {B} ⊥P {C}|{A} (e) {A} ⊥P {E}|{D} (f) {D} ⊥P {E}|{B,C}
B

A D

C

E

B

A D

C

E

B

A D

C

E

(g) {A} ⊥P {D}|{B,C} (h) Delete A−D (i)Orient d− e to d→ e

B

A D

C

E

(j) Complete the orientation of G

Figure 5.11: Execution of our algorithm when learning the model of Figure 5.9.(a)

our proposed rule shown in Proposition 5.38. Note that at step (i), information about

SepSet and meek’s rules cannot allow the orientation of the rest of the CPDAG, notably

the edges B−A and C−A given that they can be oriented in both directions. In such a

case, we select an arbitrary orientation of the remaining edges and we obtain a prior DAG

that will be the starting point of a refined process using the TABU search algorithm.

Recall that during this search phase, the adjacency of node D (B → D, C → D and

D → E) should never been modified9.

5.3 Conclusion

In this chapter, we have proposed a new algorithm for learning the structure of BNs

when some variables have deterministic relations with others. This algorithm relies on

very effective dedicated rules whose mathematical correctness has been proved. Unlike

popular BN learning algorithms dedicated to deterministic relations, ours does not rely
8In addition to Proposition 5.3, an opposite orientation of D → E leads to a v-structure which is

inconsistent with the independences shown in steps (b,c) of Figure 5.11.
9Note that we cannot rely on score and statistical tests when the faithfulness assumption is ruled out.



Chapter 5. Learning Bayesian network 100

on the exclusive use of statistical tests to address the problem of erroneous edge deletions.

Its originality lies in the combination of valuable information coming from deterministic

nodes with other useful properties entailed by BN in an efficient way. The principle of

our approach can be described as follows:

i) it consists in learning at a first time the skeleton of the BN using an extension of

the PC algorithm (cutset and entropy) together with our first proposed rule which

attempts to discard arcs that should not belong to the BN;

ii) statistical indistinguishability that may result from the use of the entropy function

during the previous step is handled by means of a second proposed rule which

defines a set of conditions (available only at the end of the first phase) under which

false positive edges in G are detected and then removed;

iii) finally, our algorithm uses an original way to orient the skeleton of the BN by

exploiting first the discovered deterministic nodes and SepSet variables to obtain

a prior orientation. Second, it consists in refining the prior orientation through a

score-based search algorithm under a set of rules (or constraints) deduced from the

deterministic nodes.

To summarize, thanks to our proposed approach we can theoretically handle the problem

of unfaithfulness when learning the BN from data containing deterministic nodes. In the

next chapter, we provide experiments to show the effectiveness and efficiency of our

method.



Chapter 6

Evaluation on Benchmark Bayesian

networks

6.1 Principles of the benchmark evaluation

In this chapter, we highlight the effectiveness of our method by comparing it with MMHC

[TBA06] (which is not suited to cope with deterministic nodes), “OR+Inter.IAMB”

[RdMAC08] and the algorithm of Luo [Luo06], substituting its association rule min-

ers by conditional entropy tests to detect deterministic nodes, in order to improve its

effectiveness.

The comparisons of the studied algorithms have been carried out by evaluating the

structure returned by each of these algorithms. To do this, we used synthetic datasets

generated from discrete BNs following the guidelines given in [ICR04]. We thus gener-

ated randomly BNs containing from 10 to 50 nodes and from 12 to 170 arcs. Nodes had

at most 6 parents and their domain size was randomly set between 2 and 6. Finally,

the number of deterministic nodes was chosen arbitrarily between 1 and 15. From these

BNs, we generated datasets of sizes ranging from 1000 to 50000 records. Overall, 750

datasets were generated. It should be emphasized that each BN produced by MMHC,

OR+Inter.IAMB, Luo and our algorithm on these datasets has been converted into a

CPDAG corresponding to its Markov equivalence class (i.e., a skeleton in which the v-

structures are oriented). This makes comparisons meaningful since two BNs represent

exactly the same independence model if and only if they belong to the same Markov

equivalence class, i.e., they have the same CPDAGs. Finally, the CPDAGs were com-

pared against those of the true BNs by means of three metrics:

1. the “Precision” (or Positive Predictive value), Precision=TP/(TP + FP ), where

TP denotes the number of arcs/edges present in the learnt CPDAG that also exist

101



Chapter 6. Evaluation on Benchmark Bayesian networks 102

in the true BN’s CPDAG (True positive) and FP corresponds to the number of

arcs/edges present in the learnt CPDAG that do not exist in the true BN’s CPDAG

(False Positive).

2. The “Recall” (True Positive rate), Recall=TP/(TP +FN), where FN corresponds

to the number of arcs/edges deleted erroneously during the learning process (False

Negative).

3. The third criterion is the “F-score”, which can be considered as a more global eval-

uation metric comparing to the Recall and the Precision, since it allows to quantify

how good is the learning algorithm in both dependences and independences dis-

covering. As such, it allows to give a general overview on the efficiency of each

studied algorithm. Its equation is given as follows:

F-score = 2× (Precision× Recall)/(Precision + Recall)1.

All the details related to the computations of the mentioned evaluation metrics given

the learnt and the original CPDAGs are shown in Table 6.1. For compactness, Precision

and Recall are denoted respectively by Prec. and Rec.

The purpose of this experimental chapter of our work is to reinforce and prove the

reliability of the theoretical properties of our algorithm (particularly those that deal with

deterministic nodes) and to highlight its improvement w.r.t. state-of-the-art algorithms.

6.2 Using simulated datasets from synthetic Bayesian net-

works

6.2.1 The evaluation of the whole network structure

In this section we perform the evaluation of the whole CPDAG returned by each of the

aforementioned learning algorithms[MGJCC14, TBA06, RdMAC08, Luo06]. Here, we

do not restrict ourselves to the parts of the structure concerned by the unfaithfulness

(deterministic nodes) but we compute the metrics of the above section on the whole

graph.

For the experiments, many BN parameters have been varied in order to study their effect

on the behavior of each of the studied algorithms. This allows fine-grain interpretations.

The considered parameters and their ranges have been defined as follows:

• the complexity of G: 12-30, 31-50, 51-70, 71-170 arcs.
1It can be considered as a tradeoff between Precision and Recall metrics.



Chapter 6. Evaluation on Benchmark Bayesian networks 103

N◦ Original edges/arcs Learnt edges/arcs TP FN FP TN
Undirected part of the CPDAG

1 − − ×
2 − → ×
3 − ← ×
4 − 6↔ ×
5 6↔ 6↔ ×
6 6↔ − ×
7 6↔ ↔ ×

Directed part of the CPDAG
8 → → ×
9 → − ×
10 → ← ×
11 ↔ 6↔ ×
12 ← → ×
13 ← − ×
14 ← ← ×
Recall=

∑
i TPi/

∑
i(TPi + FNi)

Precision=
∑

i TPi/
∑

i(TPi + FPi)

F-score= 2×(Recall× Precision)/(Recall+Precision)

Table 6.1: Computing the distance between the learnt and the original BNs

• the number of deterministic nodes in G: 1-4, 5-9 and 10-15.

• the size of the datasets used to learn G: 1000, 5000, 1000, 20000, 50000.

• the number of parents per family in G: 1-4, 5-7.

Note that in our context, the parameters related to the complexity and the number of

parents in G have been considered together since they entail almost the same information.

Figure 6.1 displays the averages over the generated datasets of the F-score, Recall and

Precision metrics for the four algorithms. Curves being similar, we averaged the results

for BNs with 1-4 deterministic nodes (the top two curves), 5-9 deterministic nodes (the

two curves at the middle) and 10-15 deterministic nodes at the bottom of the figure.

As can be seen from the resulting curves, except sometimes when the dataset is small (size

equal to 1000 records), our algorithm substantially outperforms the other state-of-the-art

algorithms, especially asymptotically for large datasets. The F-score of our algorithm is

actually about 10%, 15% and 25% higher than the MMHC, Wei Luo and Or+Inter.Iamb

algorithms respectively when the number of deterministic nodes lies between 1 and 4.

The overall Recall and Precision rates are slightly lower but still significant. The ob-

tained performance of our algorithm follows mainly from its learning rules dedicated to

deterministic nodes: by using conditional entropy, it avoids discarding edges that are

needed and, by Proposition 5.3, it correctly orients the edges in the neighborhood of de-

terministic nodes. This explains why its Recall is higher than the other methods. For the



Chapter 6. Evaluation on Benchmark Bayesian networks 104

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

P
re

ci
si

on
/R

ec
al

l

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

R
ec

al
l/P

re
ci

si
on

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

R
ec

al
l/P

re
ci

si
on

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

Figure 6.1: F-score (left side), Recall and Precision (right side) results in function of
the number of deterministic nodes in G.

F-score and Precision, in addition to correctly recovering dependences, Propositions 5.1

and 5.2 enabled our algorithm to remove arcs that the other methods were unable to

remove (when statistical indistinguishability occurs for instance), hence making it more



Chapter 6. Evaluation on Benchmark Bayesian networks 105

0 10000 20000 30000 40000 50000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

R
ec

al
l/P

re
ci

si
on

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

R
ec

al
l/P

re
ci

si
on

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

Figure 6.2: F-score, Recall and Precision with a number of arcs ranging from 12 to
50 and a number of parents smaller than or equal to 4 in G: the top curves and the
bottom curves are averages for BNs with 12 to 30 arcs and 31 to 50 arcs respectively.

suited for recovering independences. Finally, our original selection of the conditioning

sets in the G2-tests also helped discovering conditional independences. Roughly speak-

ing, unlike state-of-the-art algorithms, via our approach, we succeeded to convert the

problem of unfaithfulness induced by the existence of deterministic nodes in P to a valu-

able information that has been exploited to enhance and optimize the reliability of the

structure learning process.

The accuracy of our algorithm is also demonstrated by varying the parameters related

to the complexity of G and the number of parents as shown in Figures 6.2, 6.3, 6.4 and

6.5: in those figures, average F-scores, Recalls and Precisions are computed on BNs with

arcs ranging from 12 to 170 arcs.

From these curves, except in rare exceptions when the datasets contain only 1000 records,

our algorithm always outperforms the state-of-the-art methods, whatever the complexity



Chapter 6. Evaluation on Benchmark Bayesian networks 106

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

R
ec

al
l/P

re
ci

si
on

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

R
ec

al
l/P

re
ci

si
on

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

Figure 6.3: F-score, Recall and Precision with a number of arcs ranging from 51 to
170 and a number of parents smaller than or equal to 4 in G: the top curves and the
bottom curves are averages for BNs with 51 to 70 arcs and 71 to 170 arcs respectively.

of the BN. The obtained scores as well as the difference w.r.t. the others methods are

characterized by a lower variance (or a better stability) and the F-score of our algorithm

is always about 30%, 12% and 10% greater than the Or+Inter.Iamb, Wei Luo and MMHC

algorithms respectively.

It should be noted that despite the rules dedicated to handle deterministic relations when

using the Or+Inter.Iamb algorithm, the latter is doomed to be ineffective to learn a good

structure (actually, in the best of cases, it does not exceed the F-score rate of 60% (for all

data sizes) and obtains always the lowest F-score results, as seen in Figures 6.2 to 6.5).

This can be explained by the fact that the substitution of the “and” operator by the “or”

operator when executing the MMPC algorithm induces the addition of an important set

of False Positive edges in all the substructures of G where the faithfulness assumption

holds. For a better understanding of this result, refer to Figures 6.1 to 6.5: as can be seen,

the Recall (True Positive rate) obtained by Or+Inter.Iamb exceeds the rate of 80% for



Chapter 6. Evaluation on Benchmark Bayesian networks 107

dataset sizes ranging from 10000 to 50000 and a number of deterministic nodes ranging

from 1 to 4. For the other values of the parameters, OR+Inter.Iamb obtains also good

results in terms of Recall, outperforming in many cases MMHC and Wei Luo approaches.

These results are not surprising because the Or+Inter.Iamb approach addresses efficiently

the problem of the False Negative (FN) edges resulting from the deterministic nodes in

G. However, we can clearly notice in the same figures that OR+Inter.Iamb is faced

with a problem of False Positive edges/arcs, especially when the number of deterministic

nodes becomes important in G. This explains why the best F-score reached does not

exceed the rate of 60%. In addition, the impact of the number of deterministic nodes on

the Precision of OR+Inter.Iamb can be also seen in Figure 6.1, where it decreases from

59% (when the dataset size is equal to 50000 and the number of deterministic nodes lies

between 1 and 4) to 49% for the same dataset size and a number of deterministic nodes

between 10 and 15.

It should be noted that, despite the unfaithfulness of the distribution, MMHC (which

is not suited to cope with deterministic nodes) obtains good results in terms of F-score

and outperforms in many occasions the other two state-of-the-art algorithms. In reality,

this good behavior of MMHC does not mean necessarily that MMHC is appropriate for

the task of BN structure learning under unfaithfulness, but it simply entails that MMHC

learns better than Wei Luo and OR+Inter.Iamb algorithms some substructures in G for

which the faithfulness is verified. This argument will be justified in the next section

where, as we shall see, the efficiency of the MMHC algorithm becomes the lowest one

when restricting our experimentations to the neighborhood of G’s deterministic nodes.

6.2.2 Evaluation of substructures around deterministic nodes

In this section, we perform the evaluation of the studied algorithms by computing the

Recall, Precision and F-score rates only around deterministic nodes of their resulting

CPDAGs, i.e., only over the edges/arcs for which at least one extremal node is determin-

istic. For instance, if we are interested to evaluate the structure G depicted by Figure 6.6,

only edges Z−U , X−Z, U −V , Z−U and W −V are taken into consideration. In this

figure, the obtained Precision values around deterministic nodes Z and U are respectively

equal to 0.5 and 1, hence an average equal to 0.75 for the overall structure. Concerning

the Recall values around the same deterministic nodes, they are respectively equal to 0.5

and 0.67, hence an average of 0.585.

It should be noted that the evaluations performed in this part of our experimentations

rely on the BN benchmarks considered in the previous section, where we limit the bound-

aries of our evaluations on the neighborhood of each deterministic nodes in order to

measure the sensitivity of each algorithm when learning these unfaithful parts. In other



Chapter 6. Evaluation on Benchmark Bayesian networks 108

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

R
ec

al
l/P

re
ci

si
on

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

R
ec

al
l/P

re
ci

si
on

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

Figure 6.4: F-score, Recall and Precision with a number of arcs ranging from 12 to
50 and a number of parents greater than 4 in G: the top curves and the bottom curves

are averages for BNs with 12 to 30 arcs and 31 to 50 arcs respectively.

words, throughout these experiments, we wish to measure the robustness of each learning

algorithm against the unfaithfulness incurred by deterministic nodes.

Tables 6.2 and 6.3 display the averages and standard deviations over the 750 datasets

of the Recall, Precision and F-score for the four algorithms. The results shown in both

tables have been generated by comparing the learnt substructures (by considering both

the skeleton and CPDAG of G) representing the neighborhood of each deterministic

node w.r.t. to the original version. In addition to the mentioned evaluation criteria,

we note in these tables the presence of an additional criterion in our results denoted

by “var%Overall”. This metric indicates the differences between the results obtained

when considering the overall learnt structure (as the previous experimentations do) and

those obtained when restricting ourselves to some specific substructures in G (around

deterministic nodes). Note that a positive var%Overall denoted by “+” means that we



Chapter 6. Evaluation on Benchmark Bayesian networks 109

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

R
ec

al
l/P

re
ci

si
on

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

F
−

sc
or

e

Our_Algorithm
Or+Inter.IAMB_Algorithm
WeiLuo_Algorithm
MMHC_Algorithm

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size datasets

R
ec

al
l/P

re
ci

si
on

Prec.Our_Algorithm
Prec.Or+Inter.IAMB_Algorithm
Prec.WeiLuo_Algorithm
Prec.MMHC_Algorithm
Rec.Our_Algorithm
Rec.Or+Inter.IAMB_Algorithm
Rec.WeiLuo_Algorithm
Rec.MMHC_Algorithm

Figure 6.5: F-score, Recall and Precision with a number of arcs ranging from 51 to
170 and a number of parents greater than 4 in G: the top curves and the bottom curves

are averages for BNs with 51 to 70 arcs and 71 to 170 arcs respectively.

obtain a better result when we evaluate only the neighborhood of deterministic nodes

and “-” otherwise.

Before discussing in details the results shown in Tables 6.2 and 6.3, note that we could

expect from the beginning that the behaviors of the studied algorithms in these experi-

mentations would be very different from those of the previous section since they do not

highlight the same properties: they actually focus on the unfaithfulness. Notably, we

could expect that the MMHC algorithm would produce the worse results since it is not

adapted to deal with deterministic relations.

As can be seen in both skeletons and CPDAGs, our algorithm significantly outperforms

the state-of-the-art algorithms in terms of F-score for all dataset sizes. These results

highlight again the effectiveness of our proposed rules, notably that of Proposition 5.3



Chapter 6. Evaluation on Benchmark Bayesian networks 110

Sizes Criterion OR+Inter.Iamb Wei Luo Our algorithm MMHC

1000

Recall 0.75±0.29 0.72±0.26 0.77± 0.28 0.62± 0.29
Precision 0.89± 0.18 0.90±0.17 0.89±0.20 0.97± 0.14
F-score 0.78±0.24 0.77±0.22 0.80± 0.24 0.72±0.24

var%Overall +0.34 +0.34 +0.21 +0.17

5000

Recall 0.83±0.25 0.76± 0.25 0.86± 0.23 0.71±0.29
Precision 0.91±0.14 0.95± 0.12 0.94±0.12 0.95±0.15
F-score 0.843±0.20 0.82±0.20 0.88± 0.19 0.78±0.24

var%Overall +0.31 +0.15 +0.05 +0.08

10000

Recall 0.83±0.25 0.78±0.26 0.87± 0.22 0.72±0.28
Precision 0.92±0.13 0.94±0.14 0.94±0.12 0.96± 0.089
F-score 0.85±0.20 0.83±0.21 0.88± 0.18 0.79±0.22

var%Overall +0.27 +0.16 +0.01 +0.05

20000

Recall 0.80±0.26 0.80±0.25 0.86± 0.22 0.73±0.27
Precision 0.88±0.18 0.94±0.11 0.94±0.10 0.97± 0.08
F-score 0.81±0.22 0.84±0.19 0.88± 0.18 0.80±0.21

var%Overall +0.22 +0.13 +0.0.01 +0.04

50000

Recall 0.77±0.26 0.84±0.22 0.89± 0.22 0.73±0.26
Precision 0.84±0.23 0.94±0.11 0.95± 0.11 0.94±0.11
F-score 0.78±0.24 0.87±0.18 0.90± 0.18 0.80±0.21

var%Overall +0.18 +0.11 +0.02 +0.02

Table 6.2: Evaluation of the BN skeletons around deterministic nodes

Sizes Criterion OR+Inter.Iamb Wei Luo Our algorithm MMHC

1000

Recall 0.34±0.36 0.55±0.39 0.64± 0.37 0.50±0.38
Precision 0.41±0.42 0.63±0.40 0.69±0.38 0.70± 0.42
F-score 0.36±0.37 0.57±0.38 0.66± 0.37 0.57±0.38

var%Overall -0.08 +0.14 +0.07 +0.02

5000

Recall 0.47±0.42 0.62±0.34 0.75± 0.35 0.62±0.37
Precision 0.51±0.42 0.75±0.32 0.79± 0.33 0.78±0.35
F-score 0.48±0.41 0.66±0.32 0.76± 0.34 0.67±0.35

var%Overall -0.05 -0.01 -0.07 -0.03

10000

Recall 0.52±0.42 0.65±0.35 0.75± 0.35 0.62±0.37
Precision 0.55±0.42 0.76±0.35 0.79± 0.33 0.76±0.35
F-score 0.52±0.42 0.69±0.34 0.76± 0.34 0.66±0.36

var%Overall -0.06 +0.02 -0.11 -0.08

20000

Recall 0.51±0.41 0.68±0.33 0.74± 0.34 0.64±0.36
Precision 0.54±0.41 0.77±0.31 0.77±0.33 0.79± 0.34
F-score 0.51±0.40 0.71±0.31 0.75± 0.33 0.69±0.34

var%Overall -0.08 0 -0.12 -0.07

50000

Recall 0.53±0.40 0.71±0.32 0.74± 0.36 0.63±0.36
Precision 0.56±0.42 0.77± 0.32 0.76±0.35 0.74±0.36
F-score 0.53±0.40 0.73±0.32 0.74± 0.35 0.67±0.35

var%Overall -0.07 -0.03 -0.04 -0.11

Table 6.3: Evaluation of the BN CPDAGs around deterministic nodes



Chapter 6. Evaluation on Benchmark Bayesian networks 111

X Y

Z W

U

V

X Y

Z W

U

V

X Y

Z W

U

V

Original G Learnt G Learnt skeleton

Figure 6.6: Evaluations around deterministic nodes

0 10000 20000 30000 40000 50000

0.
00

0.
05

0.
10

0.
15

0.
20

Size datasets

D
iff

er
en

ce
 b

et
w

ee
n 

P
re

ci
si

on
/R

ec
al

l

Or+Inter.IAMB
Wei Luo
Our algorithm
MMHC

0 10000 20000 30000 40000 50000

0.
0

0.
1

0.
2

0.
3

0.
4

Size datasets

D
iff

er
en

ce
 b

et
w

ee
n 

P
re

ci
si

on
/R

ec
al

l

Or+Inter.IAMB
Wei Luo
Our algorithm
MMHC

(a) CPDAG case (b) Skeleton case

Figure 6.7: Tradeoff between Precision and Recall of BN structure learning algorithms

which deals with the problem of unfaithfulness by adding a constraint about arcs deletions

around deterministic nodes in G when performing the greedy search step.

In the skeleton context (Table 6.3), the difference in terms of Recall between our al-

gorithm and MMHC exceeds 13% for all dataset sizes, while it is between 5%-9% and

2%-6% higher than Wei Luo and Or+Inter.Iamb approaches respectively. As explained

previously, these results fit well with our expectations regarding the lowest Recall rate

obtained by the MMHC algorithm. As a matter of fact, the first phase of MMHC (using

the MMPC algorithm) leads to the deletion of an important set of false negative edges

around the deterministic nodes that cannot be recovered during its second greedy search

phase (due to the constraints related to the edge addition operations). However, as can

be seen in Table 6.2, MMHC outperforms in most cases the other algorithms, including

our approach, in terms of Precision, which is not a surprising result given the following

reasons:

• in our approach but also in the state-of-the-art algorithms, the additional learning



Chapter 6. Evaluation on Benchmark Bayesian networks 112

rules and the rigid controls dedicated to the neighborhood around each determin-

istic node does not guarantee a perfect result, and may obviously prevent the

deletion of some false positive edges from G (due to statistical independence errors,

insufficient data, etc.).

• as the number of arc/edges around deterministic nodes decreases, the Precision rate

increases. For instance, if the learning algorithm returns an empty neighborhood

set around U and Z nodes (see Figure 6.6), the overall obtained Precision rate in

such a case will be equal to 1 (which represents the highest value).

• The Precision or Recall values alone do not reflect the effectiveness of the algorithm.

That is the reason why it is important to ensure a good trade-off between these two

criteria; when the difference between the Recall and Precision rates is lower, the

reliability of the algorithm is higher. By referring to this information, the tradeoff

shown by MMHC is the lowest one (the highest difference) as we can be seen in

Figure 6.7.(b).

As we can see in Table 6.2, the increase in terms of the F-score values generated by

Wei Luo and OR+inter.Iamb is significant (according to those obtained from the whole

CPDAG): it ranges from 18% to 35% and from 11% to 34% respectively, outperform-

ing therefore the results obtained by MMHC. These results highlight clearly the unstable

characteristic of both previous algorithms, since they do not build in an homogeneous way

the different parts of the structure, i.e., the learning effort is mainly concentrated around

deterministic nodes while the rest of G is completely ignored (statistical indistinguisha-

bility [Luo06] and False Positive edges additions [RdMAC08]). Unlike these approaches,

ours tries to establish a balance in terms of learning efficiency between the substruc-

tures where the faithfulness is guaranteed and those which suffer from the problem of

determinism, i.e., our proposed learning rules guarantee the reliability of the structure

building by calibrating the learning process when it is necessary without favoring some

substructures to others. Regarding the MMHC algorithm, the increase shown by MMHC

in terms of F-score is marginal (between 0.02 and 0.17), but it does not presents a good

sign of reliability given the bad tradeoff between the Recall and Precision values (as

shown in Figure 6.7.(b)).

Regarding the CPDAG case, as it is shown in Table 6.3, we can clearly remark that

the results characterizing Wei Luo and OR+Inter.Iamb undergo a significant decrease

comparing to those mentioned in Table 6.2, giving thereby the second position to the

MMHC algorithm. Once again, our approach outperforms the rest of the algorithms in

terms of Recall, F-score and also Precision except for the case when the dataset size is

equal to 1000. This can be explained by the fact that unlike state-of-the-art approaches,

our algorithm relies on Proposition 5.3 to infer in an original way the orientations of

edges around deterministic nodes, which are therefore maintained during the second



Chapter 6. Evaluation on Benchmark Bayesian networks 113

phase (to cope with the possible errors of orientation/deletion of these arcs). Such rule

does not appear in the other algorithms, where the main goal is the correct learning of

the skeleton (as shown in the results of Table 6.2). It should be emphasized that the

difference between the results mentioned here and those obtained for the whole CPDAG

structure using our approach are almost the same (variations between -0.04 and 0.12).

This remains also valid for the tradeoff curves between Precision and Recall where the

gaps between them, as shown in Figure 6.7.(a), are always the lowest ones compared to

those of the other algorithms.

To summarize, in all the results that we have shown and for all parameters variations,

our algorithm significantly outperforms the other classical learning approaches, almost

on all criteria. Another important point that should be noted in this context concerns

the remarkable stability characterizing all the results returned by our approach. Unlike

our algorithm, the behaviors the other ones varies hugely w.r.t. the different parameters

(complexity, CPDAG, skeleton, etc.).

6.3 Conclusion

In this chapter, we have performed an experimental study on the structure learning

approach developed in the preceding chapter. We compared it with three state-of-the-art

algorithms: MMHC, Wei Luo and OR+Inter.Iamb. The experimentations were carried

out using a set of synthetic datasets generated from random BNs containing deterministic

nodes. The comparisons between the studied algorithms were performed by computing

the Recall, Precision and F-score rates of each skeleton/CPDAG learnt by each algorithm

given the original BN. As shown in the previous sections, our proposed rules have enabled

our approach to significantly outperform the other ones in terms of the quality of the

structure learnt. This improvement has been shown throughout the evaluations made

on the overall structures and on the set of substructures around the deterministic nodes

(the source of the problems).

Performing comparisons in these two contexts (global/local structure around the deter-

ministic nodes) highlighted the regions in which the algorithms focused their learning

efforts. Clearly, Wei Luo’s and OR+Inter.Iamb’s rules focus too much on the determin-

istic neighborhood, at the expense of the regions in which faithfulness holds (for such

regions, they make mistakes that could be avoided). MMHC being not tailored to deal

with unfaithfulness, it performs significant mistakes around the deterministic nodes. Un-

like the other methods, our approach provides a good balance between global and local

contexts, which explains why it outperforms the other algorithms.



Chapter 7

Cluster-based multivariate

discretization

For several decades, Bayesian networks (BN) have been successfully exploited for dealing

with uncertainties. However, while their learning and inference mechanisms are relatively

well understood when they involve only discrete variables, their coping with continuous

variables is still often unsatisfactory. One actually has to trade-off between expressiveness

and computational complexity: on one hand, conditional Gaussian models and their

mixing with discrete variables are computationally efficient but they definitely lack some

expressiveness [LW89]; on the other hand, mixtures of exponentials, bases or polynomials

are very expressive but at the expense of tractability [MRS01, SW11]. In between lie

discretization methods which, by converting continuous variables into discrete ones, can

provide a satisfactory trade-off between expressiveness and tractability.

In many real-world applications, BNs are learnt from data and, when there exist con-

tinuous attributes, those are often discretized prior to learning, thereby opening the

path to exploiting efficient discrete variable-based learning algorithms. However such an

approach is doomed to be ineffective because the conditional dependences/arcs learnt

during the learning phase bring valuable information that cannot be exploited by the

discretization algorithm, thereby severely limiting its effectiveness. Unfortunately, there

are surprisingly few papers in the literature on discretizing while learning, probably

because it incurs substantial computational costs and it requires multivariate discretiza-

tion instead of just a univariate discretization. In this direction, Minimum Description

Length (MDL) and Bayesian scores used by search algorithms have been adapted to

include multivariate discretizations taking into account the BN structure learnt so far

[FG96, MC98]. But, to be naturally included into these scores, the latter heavily rely

on entropy-related maximizations which, as we shall see, is not very well suited for BN

114



Chapter 7. Cluster-based multivariate discretization 115

learning. In [SEHK11], a non-linear dimensionality reduction process (Gaussian pro-

cess latent variable model – GP-LVM) combined with a Gaussian mixture model-based

discretization is proposed for BN learning. Unfortunately, the GP-LVM step maps the

random variables space into another space, hence loosing their semantics as well as a

lot of information. In addition, the second step does not rely on the BN structure and,

consequently, do not exploit other useful information.

Unlike in BN learning, multivariate discretization has often been exploited in the ma-

chine learning community for supervised classification tasks [Ker92, Bou04, FI93, ZRR98,

Bou06]. But the goal is only to maximize the classification power w.r.t. one target vari-

able. As such, only the individual correlations of each variable with the target are of

interest and, thus, only bivariate discretization is needed. BN structure learning is fun-

damentally different because the complete set of conditional dependences between all sets

of variables is of interest and multivariate discretization shall most often involve more

than two variables. This makes these approaches not easily transferable to BN learning.

In [KK99], the authors propose a general multivariate discretization relying on genetic

algorithms to construct rulesets. However, here again, the approach is very limited in

the sense that it is designed to cope with only one target class variable and, in addition,

the domain size of this variable needs to be small to keep the method tractable.

The unsupervised learning community has also exploited discretizations, but those are

essentially univariate [DKS95, JLZW09, Rat03, RZWL13], which make them usable per

se only as a preprocess prior to learning. However, BN learning can be related to un-

supervised learning in the sense that all the BN’s random variables can be thought

of as targets whose discretized values are unobserved. This suggests that some of the

key ideas underlying unsupervised learning algorithms might be adapted for learning BN

structures. Clustering is one such popular framework. In [MC99], for instance, multivari-

ate discretization is performed by clustering but, unfortunately, independences between

random variables are only considered given a latent variable. This limits considerably

the range of applications of the method because numerous continuous variables require

the latent variable to have a large domain size in order to get good quality discretiza-

tions. This approach is therefore limited to small datasets and, by not exploiting the BN

structure, it is best suited as a BN learning preprocess. Finally, by relying on entropy,

its effectiveness for BN learning is certainly not optimal. However, in this context, we

advocate to exploit clustering methods for discretization w.r.t. BN learning.

More precisely, we propose two versions of a clustering-based approach for multivariate

discretization that take into account the conditional dependences among variables dis-

covered during the learning process. Both versions rely on the assumption that data

are distributed according to truncated normal distributions within each interval of dis-

cretization. Their difference lies in the way the optimal distributions are evaluated: one

version approximates them using a mixture of untruncated Gaussians combined with



Chapter 7. Cluster-based multivariate discretization 116

an optimization problem while the second version directly use truncated normal dis-

tributions. By exploiting clustering rather than entropy, both approaches overcome the

shortcomings induced by the latter and, by taking into account the dependences between

random variables, they significantly increase the quality of the discretization compared

to state-of-the-art clustering approaches.

The rest of the chapter is organized as follows. We start by recalling some generalities

about BN in order to introduce the notations necessary for the rest of the chapter, we

also recall some discretization schema learning process. Next, we describe the general

architecture of our algorithms for multivariate discretization while learning BN structure:

those actually exploit conditional dependence/arc learnt during the learning phase to

provide effective continuous variables discretization. Then we provide some details about

these algorithms and justify their correctness. Finally, some concluding remarks are

given.

7.1 Basics on BN Structure Learning and Discretization

To avoid ambiguities between continuous variables and their discretized counterparts, in

the rest of this chapter, letters, when superscripted by “◦”, e.g., X̊, x̊, represent variables
and their instantiations prior to discretization (for discrete variables, X = X̊ and x = x̊).

In the rest of the chapter, n will always denote the number of variables in the BN (see

Definition 2.1 Chapter 2), and we will assume that X1, . . . , Xl are discrete whereas

X̊l+1, . . . , X̊n are continuous. N will always represent the number of records in the input

database D̊. Given D̊ = {x̊(1), x̊(2), . . . , x̊(N)}, BN learning consists of finding DAG G
that most likely accounts for the observed data in D̊. Recall, that BN structure learning

algorithm can be divided into 3 classes [KF09]:

i) the search-based approaches that look for the structure optimizing a score (BD,

BDeu, BIC, AIC, K2, etc.);

ii) the constraint-based approaches that exploit statistical independence tests (χ2,

G2, etc.) to find the best structure G;

iii) the hybrid methods that exploit a combination of both.

In the rest of the chapter, we will focus on search-based approaches since our closest

competitors, [MC98, FG96], belong to this class of DAGs search.

Remind that these algorithms start with a structure G0 (often empty). Then, at each

step, they look in the neighborhood of the current structure for another structure, say

G, that increases the likelihood of structure G given observations D, i.e., P (G|D). The



Chapter 7. Cluster-based multivariate discretization 117

neighborhood is often defined as the set of graphs that differ from the current one only

by one atomic graphical modification (arc addition, arc deletion, arc reversal). P (G|D) is

computed locally through the aforementioned scores. A seen in Chapter 3, by assuming

a uniform prior on all structures G, we have that:

P (G|D) =
P (D|G)P (G)

P (D)
∝ P (D|G) =

∫
θ
P (D|G,θ)π(θ|G)dθ, (7.1)

The different hypotheses on prior π and on θ result in the different scores (see, e.g.,

[S+78] for the hypotheses for the BIC score used later).

When database D̊ contains continuous variables, those can be discretized. A discretiza-

tion of a continuous variable X̊ is a function f : R→ {1, . . . , g} defined by an increased

sequence of g cut points {d1, d2, ..., dg} such that:

f (̊x) =


0 if x̊ < d1,

k if dk ≤ x̊ < dk+1, for all k ∈ {1, . . . , g − 1}
g if x̊ ≥ dg.

In other words, the discretization task aims to find the number of intervals and its

corresponding set of cut points that jointly maximize the used objective (or scoring)

function.

Let F be a set of discretization functions, one for each continuous variable. Then, given

F , if D denotes the (unique) database resulting from the discretization of D̊ by F ., the
BN scoring function defined by Equation (7.1) becomes:

P (G|D̊,F) ∝ P (D̊|G,F) = P (D|D̊,G,F)P (D̊|G,F) = P (D̊|D,G,F)P (D|G,F),

Assuming that all databases D̊ compatible with D given F are equiprobable, we thus

have that:

P (G|D̊,F) ∝ P (D|G,F) =

∫
θ
P (D|G,F ,θ)π(θ|F ,G)dθ. (7.2)

From Equation (7.2), we can therefore conclude that instead of finding the structure

G∗ that maximizes the likelihood given the discrete data, BN structure learning with

continuous random variables amounts to find the structure G∗ such that:

G∗ = Argmax
G

P (G|D,F) (7.3)

Note that P (D|G,F ,θ) corresponds to a classical score over discrete data, π(θ|F ,G) is

the prior over the parameters of the BN given F .

Equation (7.2) is precisely the one used when discretization is performed as a preprocess

before learning.



Chapter 7. Cluster-based multivariate discretization 118

When discretization is performed while learning, like in [MC98, FG96], both the struc-

ture and the discretization should be optimized simultaneously. In other words, the

problem consists in computing ArgmaxF ,G P (G,F|D̊), where finding the best discretiza-

tion amounts to find the best set of cut points (including the best size for this set) for

each continuous random variable. And we have that:

P (G,F|D̊) = P (G|F , D̊)P (F|D̊) ∝ P (F|D̊)

∫
θ
P (D|G,F ,θ)π(θ|F ,G)dθ. (7.4)

As can be seen, the resulting equation combines the classical score on the discretized data

(the integral) with a score P (F|D̊) for the discretization algorithm itself. The logarithm

of the latter corresponds to what [FG96] and [MC98] call DLΛ(Λ) +DLD̊→D(D̊,Λ) and

Sc(Λ; D̊) respectively (defined in the chapter about discretization).

7.2 A New Multivariate Discretization-Learning Algorithm

As mentioned earlier, we believe that taking into account the conditional dependences/in-

dependences between random variables is important to provide high-quality discretiza-

tions that minimize the information loss. Our approach thus follows Equation (7.4) and

our goal is to find the discretization corresponding to ArgmaxF ,G P (G,F|D̊). It must

be emphasized that optimizing jointly over F and G is too computationally intensive a

task to be usable in practice. Fortunately, we can approximate it efficiently through a

gradient descent algorithm, alternating optimizations over the discretization F given a

fixed structure G and optimizations over the structure G given a fixed discretization F .
This suggests the BN structure learning method described as Algorithm 9.

Algorithm 9: Our structure learning architecture.

Input: a database D̊, an initial graph G, a score function sc on discrete variables
Output: the structure G of the Bayesian network

1 repeat
2 Find the best discretization F given G
3 {Xl+1, . . . , Xn} ← discretize variables {X̊l+1, . . . , X̊n} given F
4 G ← G’s neighbor that maximizes scoring function sc w.r.t. {X1, . . . , Xn}
5 until G maximizes the score;

Note that the task of multivariate discretization when alternating between G and F
as shown in Algorithm 9 becomes untractable especially when the size of the network

as well as the number of continuous variables to be discretized is large. As discussed

earlier, the multivariate discretization is much more time consuming than univariate or

bivariate discretization since it considers many variables at each time. As such, Line 2

of Algorithm 9 could thus incur a strong overhead to the learning algorithm because

the discretization search space increases exponentially with the number of variables to



Chapter 7. Cluster-based multivariate discretization 119

discretize. To alleviate this problem, we suggest a local search algorithm that iteratively

fixes the discretizations of all the continuous variables but one and optimizes the dis-

cretization of the latter (given the other variables) until some stopping criterion is met.

As such, discretizations being optimized one continuous variable at a time, the combi-

natorics and the computation times are significantly limited. Line 2 of Algorithm 9 can

thus be detailed as Algorithm 10.

Algorithm 10: One-variable discretization architecture.

Input: a database D̊, a graph G, a scoring function sc on discrete variables
Output: a discretization F

1 repeat
2 i0 ← Select an element in {l + 1, . . . , n}
3 Discretize X̊i0 given G and {X1, . . . , Xi0−1, Xi0+1, . . . , Xn}
4 until stopping condition;

In the following, we provide the details related to our proposed approaches and we start

by listing the set of assumptions under which our methods are capable to return a “good

quality” discretization. Then we provide the way by which each continuous variable is

discretized while taking into consideration its correlations with the other variables.

7.2.1 Assumptions

The remainder of this chapter proposes a multivariate discretization approach under the

following assumptions:

Assumption 1. In our approach, we assume that within every interval, each continuous

random variable, say Xi0 , is distributed w.r.t. a truncated normal distribution. Over its

whole domain of definition, it is thus distributed as a mixture of truncated Gaussians

defined as follows:

g(̊xi0 |Θ) =

g∑
k=0

πkf (̊xi0 |θk) (7.5)

where πk represents the weight of the kth component (or truncated Gaussian) in the

mixture (with the constraint that πk ≥ 0 and
∑g

k=0 πk = 1) and f(·|θk) represents the

probability density function (density for short) of the truncated Gaussian parameterized

by θk = (µk, σk,
⋃g
k=1{dk}). Therefore:

f (̊xi0 |θk) =



0 if x̊i0 < dk,
h(̊xi0 |θk)∫ dk+1

dk

h(̊x|θk)dx
if x̊i0 ∈ [dk, dk+1)

0 if x̊i0 ≥ dk+1.

(7.6)



Chapter 7. Cluster-based multivariate discretization 120

Note that hk(.|θk) is the probability density function of the standard normal distribution

which is defined by the following equation:

h(̊xi0 |θk) =
1√

2πσk
exp

[
−1

2

(
x̊i0 − µk
σk

)2
]

(7.7)

The term
∫ dk+1

dk

hk (̊x|θk)dx in Equation (7.6) represents a normalization factor, such that

the integral of f (̊xi0 |θk) is equal to 1. Unfortunately, this integral cannot be expressed

using a closed-form formula.

Given the above assumption, we can conclude that each observation x̊i0 is sampled from

only one of the g+1 components of the mixture. It must be emphasized that, in our case,

the choice of a model based on a mixture of truncated normal distributions to represent

the distribution of the continuous random variables has been motivated by domain ex-

pert’s knowledge. Actually, it fits well with the distributions of the physical variables

characterizing the nuclear accidents. For example, when a nuclear accident situation

occurs, pressure with very low (e.g., <0.1 bar) and very high (>30 bar) values cannot

appear in reality, hence these values are not considered during accident simulations. In

addition, many physical variables are always greater than a threshold (which is fixed by

an expert).

Figure 7.1 gives an example of a truncated normal distributions mixture composed by 4

truncated Gaussians.

0.00

0.25

0.50

0.75

1.00

-10 -5 0 5 10

g
(̊x
i 0
|Θ

)

X̊i0 values

[d3,+∞), π3,N (µ3, σ3)
[d2, d3), π2,N (µ2, σ2)
[d1, d2), π1,N (µ1, σ1)

(−∞, d1), π0,N (µ0, σ0)

Figure 7.1: Truncated mixture Gaussian model example

Assumption 2. Let X̊i0 be a continuous random variable and let Xi0 be its discretized

counterpart. Then X̊i0 is independent of the rest of the random variables given Xi0 .

Assumption 3. The observations in the database are mutually independent and iden-

tically distributed (i.i.d. hypothesis).



Chapter 7. Cluster-based multivariate discretization 121

7.2.2 Discretization Criterion

Once the discretization architecture of the algorithm is defined, the next step consists

in finding the discretization criterion under which the optimal F will be found. Recall

that the implementation of Algorithm 10 needs a discretization criterion to be optimized

throughout the search process. Basic ideas include trying to find cut points minimiz-

ing the discrepancy between the frequencies or the sizes of intervals [di, di+1). A more

sophisticated approach consists of limiting as much as possible the quantity of informa-

tion lost after discretization, or equivalently to maximize the quantity of information

remaining after discretization. This naturally calls for maximizing an entropy. This is

essentially what our closest competitors do [FG96, MC98] when performing their multi-

variate discretization while learning the BN structure. But entropy may not be the most

appropriate measure when dealing with BNs.

In order to highlight the shortcoming of entropy based discretization methods, let us

consider the example of the continuous variable distribution shown in Figure 7.2. We

have a random variable Å with the following domain of definition {a1, a2, a3}. Then, it

is possible that, for some BN:

P (A = a1) =
1

6
P (A = a2) =

1

3
P (A = a3) =

1

2
.

With a sufficiently large database D, the frequencies of observations of a1, a2, a3 in D
would certainly be close to these probabilities. Hence, learning P (A) from D would result

in:

P (A = a1) ≈ 1

6
P (A = a2) ≈ 1

3
P (A = a3) ≈ 1

2
.

Now, assume that the observations in D are noisy, say with a Gaussian noise with an

infinitely small variance, as in Figure 7.2. Then, after discretization, we shall expect to

have 3 intervals with respective frequencies 1
6 ,

1
3 and 1

2 , i.e., intervals similar to (−∞, d1),

[d1, d2) and [d2,+∞) of Figure 7.2. However, w.r.t. entropy, the best discretization

corresponds to intervals [−∞, s1), [s1, s2) and [s2,+∞) of Figure 7.2 whose frequencies

are all approximately equal to 1
3 since the entropy criterion reaches its maximum value

when the different modalities (or intervals) of a given variable are equiprobable (as seen

in Section 5.2.2 of Chapter 5). Therefore, whatever the infinitesimal noise added to data

in D, an entropy-based discretization will always produce a discretized variable A with a

uniform distribution [1
3 ,

1
3 ,

1
3 ] instead of [1

6 ,
1
3 ,

1
2 ]. This suggests that entropy is probably

not a good criterion for discretizing continuous variables for BN learning.

By giving the assumption of a truncated Gaussian mixture model as the probability dis-

tribution of Å (hereafter called TGM) on which relies our approach, Figure 7.2 suggests



Chapter 7. Cluster-based multivariate discretization 122

a1 a2 a3d1 d2

s1 s2

Figure 7.2: Discretization: entropy v.s. clustering.

that clustering would probably be more appropriate: here, one cluster/interval per trun-

cated Gaussian would provide a better discretization. The weights of the mixture then

form precisely the CPT of A (the discrete counterpart of Å) in the discrete BN.

In particular, if Å has some parents in the BN, there are as many TGM as the product

of the domain sizes of its parents in G. The parameters of such a discretization scheme

are therefore: i) a set of g of cut points (to define g + 1 intervals) and ii) a mean and

a variance for each interval (to define its truncated Gaussian). Figure 7.3 depicts an

example of BN with its corresponding CPTs before and after discretizing the continuous

variable Å into three intervals.

In this example, all the parents of Å (composed by X and Y ) are assumed to be binary,

hence the product of their domain sizes as well as the number of TGMs are equal to 4.

This leads to the following mixture models:

(X = f ∧ Y = f) =⇒ T GM0 : 0.1f0(̊a|θ0) + 0.4f1(̊a|θ1) + 0.5f2(̊a|θ2)

(X = f ∧ Y = t) =⇒ T GM1 : 0.9f0(̊a|θ0) + 0.01f1(̊a|θ1) + 0.09f2(̊a|θ2)

(X = t ∧ Y = f) =⇒ T GM2 : 0.9f0(̊a|θ0) + 0f1(̊a|θ1) + 0.1f2(̊a|θ2)

(X = t ∧ Y = t) =⇒ T GM3 : 0.1f0(̊a|θ0) + 0.7f1(̊a|θ1) + 0.2f2(̊a|θ2)

(7.8)

X Y

Å

D

P (Å|X,Y )

X Y Å

f f T GM0

f t T GM1

t f T GM2

t t T GM3

P (A|X,Y )

A

X Y a1 a2 a3

f f 0.1 0.4 0.5
f t 0.9 0.01 0.09
t f 0.9 0 0.1
t t 0.1 0.7 0.2

Hybrid BN CPT for continuous node Å CPT after discretization of Å

Figure 7.3: Example of mixture Gaussian and discrete CPTs



Chapter 7. Cluster-based multivariate discretization 123

Note that the parameters θk of each component f0, f1, f2 of the example do not depend

on the values of the parents: they are fixed once and for all. Only the weight parameters

{πk}, which are needed to represent the mixture model, change from
⋃2
k=0 πk when

Å has no parent to
⋃4
j=1(

⋃2
k=0 πjk) when its parents are X and Y . In other words,

the dependence between the mixture weights and the values taken by the parents of

the continuous node in G is the only difference between univariate and multivariate

discretization.

7.2.3 Two proposed versions for multivariate discretization

By assuming that each continuous random variable X̊i0 is distributed as a mixture of

truncated normal distributions of parameters θk, the joint optimization of the model

parameters Θ is really hard to perform due to the normalization requirement that the

integrals of the truncated Gaussian distributions of each interval must sum to 1 (as

seen in Equation (7.6)). Actually, these integrals cannot be expressed in closed-form

formulas. For this reason, we have chosen in a first version of the algorithm to relax

this task by estimating a mixture of untruncated Gaussians (the normalization factor

does not appear in such a case), and then approximating the truncated model using

the parameters computed previously. In a second version, we have proposed a more

sophisticated approach which directly uses truncated Gaussians to make the continuous

variables discretization. This results in the development of two versions of multivariate

discretization algorithms:

Version 1. we alleviate the discretization computational burden by proposing an ap-

proximation of the optimal cut points, means and variances of the truncated mixture

model using a two-step process:

• first, we approximate the density of the joint {X1, . . . , Xi0−1, X̊i0 , Xi0+1, . . . , Xn}
as a mixture of untruncated Gaussians. Figure 7.4 shows an example of a Gaussian

mixture model with its respective parameters.

• in a second step, we compute the best cut points w.r.t. the Gaussians. As each

Gaussian is associated with an interval, the parts of the Gaussian outside the

interval can be considered as a loss of information and we therefore look for cut

points that minimize this loss. Figure 7.5 depicts a computation example of the

set of cut points associated to the untruncated mixture model shown in Figure 7.4.

Version 2. it consists in jointly optimizing the mixture model parameters Θ (cut point,

mean variance and proportions) without performing any intermediate step (as the first

approach does).



Chapter 7. Cluster-based multivariate discretization 124

0.00

0.25

0.50

0.75

1.00

-10 -5 0 5 10
g
(̊x
i 0
|Θ

)
X̊i0 values

π3,N (µ3, σ3)
π2,N (µ2, σ2)
π1,N (µ1, σ1)
π0,N (µ0, σ0)

Figure 7.4: Mixture Gaussian parameters estimation

0.00

0.25

0.50

0.75

1.00

-10 -5 0 5 10

g
(̊x
i 0
|Θ

)

X̊ values

d1 d2 d3

π3,N (µ3, σ3)
π2,N (µ2, σ2)
π1,N (µ1, σ1)
π0,N (µ0, σ0)

Figure 7.5: Cut point estimation for the mixture Gaussian model of Figure 7.4

Now, let us delve into the details related to the parameters estimation of the truncated

and untruncated mixture models. We start by describing the common shared principles

of our proposed approaches that concern, notably, the way by which the BN structure

(dependences/arcs) is taken into account when performing the discretization of each

continuous variable X̊i0 in G. Then, we provide the details of our proposed multivariate

discretization algorithms (with and without truncated Gaussian distributions) and we

justify their correctness.

7.2.4 Discretization exploiting the BN structure

Assume that structure G is fixed and that all the variables except X̊i0 are discrete. The

density over all the variables, p(X̊), is expressed by the following chain rule:

p(X̊) = p(X̊i0 |Pa(X̊i0))
∏
i 6=i0

P (Xi|Pa(Xi)) (7.9)

where p(X̊i0 |Pa(X̊i0)) represents a mixture of the truncated Gaussians for each value of

X̊i0 ’s parents as shown in the example of Figure 7.3 (there are always a finite number of

values since all the variables except X̊i0 are discrete in the BN). P (Xi|Pa(Xi)) should

be the CPT of discrete variable Xi given its parents but, unfortunately, it is not well



Chapter 7. Cluster-based multivariate discretization 125

defined if X̊i0 (the continuous variable to be discretized) is part of Pa(Xi) because, in

this case, Pa(Xi) has infinitely many values. An example of such a problem can be seen

in Figure 7.6, where the continuous node X̊i0 is the parent of the discrete (Boolean)

node V . As shown in this example, even for a simple BN with only two nodes, the

resulting CPT of node V cannot be well defined (node X̊i0 takes an infinity of values),

hence this prevents discretizing X̊i0 so as to maximize Equation (7.9). Fortunately, this

problem can be easily overcome by enforcing that X̊i0 has no child while guaranteeing

that the density represented by the whole BN structure remains unchanged. Actually,

in [Sha86], Shachter provides some arc reversal operators that, when applied, never alter

the density/probability distribution.

X̊i0

V

P (V |X̊i0)

X̊i0 t f

−∞ ? ?
... ... ...
x̊

(i)
i0

? ?
... ... ...
x̊

(k)
i0

? ?
... ... ...

+∞ ? ?

Figure 7.6: CPT representation when a discrete node has continuous parent(s) in G



Chapter 7. Cluster-based multivariate discretization 126

Theorem 7.1. An arc X → Y connecting two nodes in G can be replaced by arc Y → X

without altering the distribution represented by the BN provided that the two following

condition hold:

1. the arc reversal does not create a directed cycle;

2. all the parents of X are added to Y and all the parents of Y except X are added to

X.

With such a transformation, we can ensure that the continuous variable X̊i0 to be dis-

cretized at each iteration is represented by a leaf node in G, hence the problem induced

by the continuous parents described above is overcome given that the rest of the CPTs

are composed by only discrete families (represented by finite CPTs). As an example of

these transformations, reversing arc X → V of Figure 7.7.(a) results in Figure 7.7.(b)

and, then, reversing arc X →W results in Figure 7.7.(c).

Q P

X

Y

Z

U

W V

Q P

X

Y

Z

U

W V

Q P

X

Y

Z

U

W V

(a) (b) (c)

Figure 7.7: Shachter’s arc reversals.

Therefore, to enforce that X̊i0 has no child, if {i1, . . . , ic} denotes the set of the index

of the children variables of X̊i0 , sorted by a topological order of G, then, by reversing

sequentially all the arcs Xij → X̊i0 , j = 1, . . . , c, we get:

p(X̊) = p(X̊i0 |Pa(X̊i0))×
∏

i 6={i0,...,ic}

P (Xi|Pa(Xi))×
c∏
j=1

P (Xij |Pa(Xij )), (7.10)

p(X̊) = p(X̊i0 |MB(X̊i0)) ×
∏

i 6={i0,...,ic}

P (Xi|Pa(Xi))

×
c∏
j=1

P (Xij |
j⋃

h=1

(Pa(Xih)\{X̊i0}) ∪Pa(X̊i0)),

(7.11)

where MB(X̊i0) is the Markov blanket of X̊i0 in G: note that, in the last expression

of p(X̊), only the first term involves X̊i0 , hence all the other CPTs are well defined.

As a side effect, we can clearly see in the chain rule given in Equation (7.11) that Xi0

depends only to its Markov Blanket (in the network after arcs reversal operations). As

a matter of fact, the discretization of X̊i0 can be optimized by taken into account only

p(X̊i0 |MB(X̊i0)), since none of the other terms is related to X̊i0 . In other words, the



Chapter 7. Cluster-based multivariate discretization 127

discretization of X̊i0 , after Shachter’s arc reversals, depends only on the discretization

of its new parents, since by conditioning on those nodes, X̊i0 becomes independent from

the rest of the variables.

Theorem 7.2. Let X̊i0 ∈ X be a variable to be discretized in order to optimize p(X̊).

Then the value of Θ for this optimal discretization is obtained as:

Θ = Argmax
Θ

p(X̊i0 |MB(X̊i0)). (7.12)

From Theorem 7.2 and Equation (7.11), we can conclude that only the Markov blanket

of the variable X̊i0 should be considered when making the discretization of the latter. By

taking into account this property, Algorithm 10 is then replaced by the version shown in

Algorithm 11.

Algorithm 11: One-variable discretization new architecture.

Input: a database D̊, a graph G, a scoring function sc on discrete variables
Output: a discretization F

1 repeat
2 i0 ← Select an element in {l + 1, . . . , n}
3 Discretize X̊i0 given G and MB(X̊i0)

4 until stopping condition;

Once the architecture of the discretization approach given G is defined, it remains for

us to find an efficient strategy to determine the optimal parameters associated to the

untruncated mixture model corresponding to p(X̊i0 |MB(X̊i0)). The EM algorithm is

known to be efficient for solving such a task.

In the following, we start by explaining the most common principles of the EM algorithm

that will used to perform the estimation of the parameters of the mixture model. Next,

we provide the details and justify the correctness of the mixture parameters estimation

using the EM algorithm. Then, we discuss the way by which the set of cut points (of

the different intervals) are identified in both truncated and untruncated mixture model

contexts.

7.2.4.1 EM algorithm preliminaries

When the available data do not allow to perform parameters estimation and/or the ex-

pression of the likelihood cannot be analytically maximized, the expectation maximiza-

tion (EM) algorithm can be a solution. This algorithm aims to address the parameters

estimation task when this impossibility is due to the presence of hidden (or missing)



Chapter 7. Cluster-based multivariate discretization 128

observations in the data. Proposed by [DLR77], the EM algorithm estimates the param-

eters of a model with an iterative process by starting from some initial parameter values,

and then performing a set of iterations characterized by the following two steps:

• Expectation (E-step): uses the current parameters values to complete the data

and computes the expected value of the log-likelihood measure.

• Maximization (M-step): treats the completed data as if they were completely

observed, and then learns the new parameters values by maximizing the log-

likelihood function.

Before giving the details of each of the steps composing the EM iterations, let us mention

the inequality property that characterizes the log-likelihood, which we try to maximize

within the EM iterations. For every m ∈ {1, . . . , N}, let Z(m) be a hidden discrete

random variable whose domain is {z(m)
0 , . . . , z

(m)
g }. Variable Z(m) takes value z(m)

k if and

only if the mth observation x̊(m)
i0

of variable X̊i0 in database D̊ is believed to be part of

the kth component (or cluster) represented by the hidden variable Z(m). The completed

log-likelihood of X̊i0 taking into account the hidden variables Z(m) and parameters Θ is

given as follows:

LL(X̊i0 |Θ) =

N∑
m=1

log

(
g∑

k=0

p(̊x
(m)
i0

, z
(m)
k |Θ)

)

=
N∑
m=1

log

(
g∑

k=0

P (z
(m)
k |̊x(m)

i0
,Θ)

p(̊x
(m)
i0

, z
(m)
k |Θ)

P (z
(m)
k |̊x(m)

i0
,Θ)

)

≥
N∑
m=1

g∑
k=0

P (z
(m)
k |̊x(m)

i0
,Θ) log

(
p(̊x

(m)
i0

, z
(m)
k |Θ)

P (z
(m)
k |̊x(m)

i0
,Θ)

)
(7.13)

where x̊(m)
i0

represents the observed value of X̊i0 in themth record of D̊ and P (z
(m)
k |̊x(m)

i0
,Θ)

represents the probability that the kth component of Z(m) obtains given that x̊(m)
i0

has

been observed. As this is a probability, we have of course that
∑g

k=0 P (z
(m)
k |̊x(m)

i0
,Θ) = 1.

The inequality shown by Equation (7.13) is deduced from the well-known Jensen’s in-

equality: for any λ0, . . . , λg ≥ 0 with
∑g

k=0 λk = 1, and any tuple (y0, . . . , yg) of positive

numbers, we have that:

log

(
g∑

k=0

λkyk

)
≥

g∑
k=0

λk log(yk). (7.14)

Therefore, instead of maximizing Θ using the exact log-likelihood expression LL(X|Θ)

expressed by the log of a summation1, the EM algorithm relies on the maximization of
1The log of a summation is difficult to be maximized in an analytic way.



Chapter 7. Cluster-based multivariate discretization 129

Objective function
Lower bound

Figure 7.8: The maximization of log-likelihood using a lower bound approximation.

a lower-bound function (as can be seen in the example of Figure 7.8) using the following

steps:

• E-step :

Qt+1
m (z

(m)
k ) = P (z

(m)
k |̊x(m)

i0
,Θt), ∀m ∈ {1, ..., N}

LLt+1(X̊i0 |Θt) =
N∑
m=1

g∑
k=0

Qt+1
m (z

(m)
k ) log

(
P (̊x

(m)
i0

, z
(m)
k |Θt)

Qt+1
m (z

(m)
k )

)
(7.15)

• M-step:

Θt+1 = Argmax
Θ

LLt+1(X̊i0 |Θ) (7.16)

To solve ArgmaxΘ LL(X̊i0 |Θ), EM [DLR77] iteratively alternates expectations (E-step)

and maximizations (M-step) until the convergence toward a local maximum, which is

guaranteed to correspond to the Argmax we look for due to the concavity of the log-

likelihood function (as seen in Figure 7.9). Remind that the iterative process of EM

starts by an initial parameters assignment Θ0 generated randomly (or by using some

other methods). The algorithm then performs the computation of the probabilities of

missing observations by using the current parameters (E-step). In the M-step a new set

of parameters are estimated by MLE over the completed (or weighted) data. Then, the

resulting new parameters are used as a new starting point for the next iteration, and so

on.



Chapter 7. Cluster-based multivariate discretization 130

Standard deviation ..

P
ro

po
tio

ns
 ..

M
eans ..

Figure 7.9: The concavity of the log-likelihood function according to Θ.

7.2.5 Gaussian Mixture model-based discretization

7.2.5.1 Parameters estimation with EM algorithm

Let qi0 represent the (finite) number of values of MB(X̊i0). For simplicity, we will denote

by {1, . . . , qi0} the set of values of the joint discrete random variable MB(X̊i0). Let g

denote the number of cut points in the discretization and let {N (µk, σk) : k ∈ {0, . . . , g}}
be the corresponding set of Gaussians. Then, the density function of an observation x̊i0
given its Markov blanket values is expressed as follows:

p(X̊i0 = x̊i0 |MB(X̊i0) = j) =

g∑
k=0

πjkf (̊xi0 |θk) ∀ j ∈ {1, . . . , qi0}. (7.17)

Remember that each value of MB(X̊i0) (which corresponds to the parents of X̊i0 after

Shachter’s transformations) induces its own set of weights {πj0, . . . , πjg} as shown in the

example of Figure 7.3 and Equation (7.8). As discussed earlier, the joint optimization

of the truncated mixture parameters as described in Equation (7.17) is really hard to

perform so we propose an approximate estimation of the density p(X̊i0 = x̊i0 |MB(X̊i0) =

j) using an untruncated Gaussian mixture model. First, we shall focus our discussion on

the estimation of the parameters of this untruncated Gaussians mixture model using EM.

Then we will show how this estimation can be used to approximate the parameters and

cutpoints for the truncated Gaussians mixtures. So, for the moment, Equation (7.17) is

replaced by the following expression:

p(X̊i0 = x̊i0 |MB(X̊i0) = j) ≈
g∑

k=0

πjkh(̊xi0 |θk) ∀ j ∈ {1, . . . , qi0}, (7.18)



Chapter 7. Cluster-based multivariate discretization 131

As can be seen, the only difference between Equations (7.17) and (7.18) lies in the density

function they use to represent the different components in the mixture model, i.e., f(.|θk)
and h(.|θk) represent respectively the truncated and untruncated Gaussians.

By assuming that data in D̊ are i.i.d., the log-likelihood of D̊ given Θ =
⋃g
k=0(

⋃qi0
j=1{πjk}∪

{θk}) is equal to:

LL(D̊|Θ) =
N∑
m=1

log p(X̊i0 = x̊
(m)
i0
|MB(̊xi0)(m),Θ), (7.19)

By replacing the probability in the above equation by its appropriate expression, we

obtain:

LL(D̊|Θ) =

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

log

[
g∑

k=0

πjkh(̊x
(m)
i0
|θk)

]
(7.20)

It must be emphasized that in this estimation step, we take into account weights πjk
only for the records in the database that correspond to MB(̊xi0)(m) = j.

Let Qt+1
m (z(m)) = P (z(m) |̊x(m)

i0
,Θt), i.e., Qt+1

m (z(m)) represents the distribution that, at

the t+1th step of the algorithm, x̊(m)
i0

is believed to have been generated by such and such

untruncated Gaussian. The term Qt+1
m (z

(m)
k ) is calculated by the following equation:

Qt+1
m (z

(m)
k ) =

πtjkh(̊x
(m)
i0
|θtk)∑g

k′=0 π
t
jk′h(̊x

(m)
i0
|θtk′)

, (7.21)

As discussed in section 7.2.4.1, instead of maximizing LL(D̊|Θ), EM tries to maximize

a lower bound function which results from the concavity property of the log-likelihood

function and Jensen’s inequality. The lower bound function in our case is given as follows:

LL(D̊|Θ) =

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

log

[
g∑

k=0

Qm(z
(m)
k )

πjkh(̊x
(m)
i0
|θk)

Qm(z
(m)
k )

]

≥
qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

g∑
k=0

Qm(z
(m)
k ) log

[
πjkh(̊x

(m)
i0
|θk)

Qm(z
(m)
k )

] (7.22)

Given the above inequality, choosing a new parameter set Θ that maximizes the lower

bound function, will automatically enhance the original log-likelihood.

After identifying the objective function to be optimized during the estimation process,

EM can be used to find the appropriate parameters of the untruncated mixture model

given G. The pseudocode of the resulting EM algorithm is described in Algorithm 12.

It must be noted that in Algorithm 12, only the M-step can be computationally intensive.

Fortunately, here, we can derive in closed-form the optimal values of Line 4 (which is not

the case for the truncated mixture model, as we shall see hereafter). This step consists in



Chapter 7. Cluster-based multivariate discretization 132

Algorithm 12: The EM algorithm.

Input: a database D̊, a number g of cut points, DAG G
Output: an optimal set of parameters Θ

1 Select (randomly) an initial value Θ0

2 repeat
// E-step (expectation)

3 Qt+1
m (z(m))← P (z(m) |̊x(m)

i0
,Θt) ∀ m ∈ {1, . . . , N}

// M-step (maximization)

4 Θt+1 ← Argmax
Θ

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

g∑
k=0

Qt+1
m (z

(m)
k ) log

[
πjkh(̊x

(m)
i0
|θk)

Qt+1
m (z

(m)
k )

]
5 until convergence;

searching the best maximization of the log-likelihood function w.r.t. the mixture model

parameters.

Proposition 7.3. At the E-step, probability Qt+1
m (z

(m)
k ) =

πtjkh(̊x
(m)
i0
|θtk)∑g

k′=0 π
t
jk′h(̊x

(m)
i0
|θtk′)

, where

πtjk and θtk are weights, means and variances in Θt. The optimal parameters of the

M-step are respectively:

πt+1
jk =

∑
m:MB(̊xi0 )(m)=j Q

t+1
m (z

(m)
k )∑

m:MB(̊xi0 )(m)=j

∑g
k′=0Q

t+1
m (z

(m)
k′ )

,

µt+1
k =

∑N
m=1Q

t+1
m (z

(m)
k )̊x

(m)
i0∑N

m=1Q
t+1
m (z

(m)
k )

σt+1
k =

√√√√∑N
m=1Q

t+1
m (z

(m)
k )(̊x

(m)
i0
− µt+1

zk )2∑N
m=1Q

t+1
m (z

(m)
k )

.

Proof. Let us delve into the details of the mentioned update equations associated to each

parameter of the mixture model. We begin by the weight πjk for each kth component

given the parents modality j. We should keep in mind that parameter πjk needs a

little more work since its values are constrained to being positive and adding up to 1.

Therefore, we get:

∂LL(D̊|Θt)

∂πjk
=

∑
m:MB(̊xi0 )(m)=j

Qt+1
m (z

(m)
k )

πjk
− Qt+1

m (z
(m)
g )(

1−
∑g−1

k=0 πjk

) = 0 (7.23)

From this result, we can immediately conclude that Equation (7.23) is equal to 0 when

πj,k verifies:
Qt+1
m (z

(m)
k )

πjk
=

Qt+1
m (z

(m)
g )(

1−
∑g−1

k=0 πjk

) ∀k ∈ {0, ..., g − 1}.

Therefore:

Qt+1
m (z

(m)
1 )

πj1
= · · · = Qt+1

m (z
(m)
g )

πjg
=

∑g
k=0Q

t+1
m (z

(m)
k )∑g

k=0 πjk
=

g∑
k=0

Qt+1
m (z

(m)
k ).



Chapter 7. Cluster-based multivariate discretization 133

Substituting these equivalences into Equation (7.23) gives us the following update equa-

tion:

πt+1
jk =

∑
m:MB(̊xi0 )(m)=j Q

t+1
m (z

(m)
k )∑

m:MB(̊xi0 )(m)=j

∑g
k=1Q

t+1
m (z

(m)
k )

.

Concerning the parameters µk, its optimal value in the M-step can be determined by the

cancellation of the following derivative equation:

∂LL(D̊|Θt)

∂µk
= − 1

σ2
k

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

Qt+1
m (z

(m)
k )(−x̊(m)

i0
+ µk) = 0

= − 1

σ2
q

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

Qt+1
m (z

(m)
k )µk −Qt+1

m (z
(m)
k )̊x

(m)
i0

= 0.

(7.24)

This leads to the following equality:

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

Qt+1
m (z

(m)
k )µk =

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

Qt+1
m (z

(m)
k )̊x

(m)
i0

. (7.25)

Substituting this result into Equation (7.24) gives the following µk update equation:

µt+1
k =

∑N
m=1Q

t+1
m (z

(m)
k )̊x

(m)
i0∑N

m=1Q
t+1
m (z

(m)
k )

.

Finally, the optimal σt+1
k value is obtained by setting the following first order partial

derivation to zero:

∂LL(D̊|Θt)

∂σk
=

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

Qt+1
m (z

(m)
k )

[
− 1

σk
+

1

σ3
k

(̊x
(m)
i0
− µk)2

]
= 0

=

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

Qt+1
m (z

(m)
k )

[
−1 +

1

σ2
k

(̊x
(m)
i0
− µk)2

]
= 0.

(7.26)

From this result, we get:

1

σ2
k

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

Qt+1
m (z

(m)
k )(̊x

(m)
i0
− µk)2 =

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

Qt+1
m (z

(m)
k ).

Substituting this result into Equation (7.26) gives the following σk update equation:

σt+1
k =

√√√√∑N
m=1Q

t+1
m (z

(m)
k )(̊x

(m)
i0
− µt+1

k )2∑N
m=1Q

t+1
m (z

(m)
k )

.

Hence the update equations of Proposition 7.3.



Chapter 7. Cluster-based multivariate discretization 134

In this version of our approach, the use of the Algorithm 12 and the update formulas

shown in Proposition 7.3 together allow to estimate efficiently the parameters of the

mixture model. For instance, Figure 7.1 depicts an example of a mixture Gaussian model

where the optimal parameters are given as follows: N0(π0 = 0.21, µ0 = −6, σ0 = 1.2),

N1(π1 = 0.23, µ1 = −2, σ1 = 1.25), N2(π2 = 0.2, µ2 = 1.5, σ2 = 0.85) and N3(π3 =

0.36, µ3 = 5, σ3 = 1.5).

However, as discussed earlier, our ultimate goal in this phase does not consist in comput-

ing only the mixture Gaussian parameters, but to approximate the truncated Gaussian

model (our initial assumption) and to exploit it to make the discretization of each con-

tinuous variable X̊i0 . Therefore, it remains to determine the best cut points {d1, . . . , dg}
(or the discretization) from our estimation of the mixture model. Let us see how this

task can be performed.

7.2.5.2 Determination of the Cut Points

As mentioned at the end of Subsection 7.2.2, each Gaussian N (µk, σk) is associated

with an interval [dk, dk+1)2 and the parts of the Gaussian outside the interval can be

considered as a loss of information. The optimal set of cut points T̂ = {t̂1, . . . , t̂g} is

thus that which minimizes this loss. In other words, it is equal to:

T̂ = Argmin
{d1,...,dg}

g∑
k=0

∫ +∞

dk

h(x|θk−1)dx+

∫ dk

−∞
h(x|θk)dx,

where θk represents pairs (µk, σk) and d0 and dg+1 are set to −∞ and +∞ respectively.

As each Gaussian N (µk, σk) is associated with interval [dk, dk+1), we can assume that

t̂k ∈ [µk−1, µk), for all k. Therefore:

T̂ =

{
Argmin

dk∈[µk−1,µk)

∫ +∞

dk

h(x|θk−1)dx+

∫ dk

−∞
h(x|θk)dx : k ∈ {1, . . . , g}

}
. (7.27)

All the t̂k can thus be determined independently. In addition, as shown below, their

values are the solution of a quadratic equation:

Proposition 7.4. Let u(dk) represent the sum of the integrals in Equation (7.27). Let

αk be a solution (if any) within interval (µk−1, µk) of the quadratic equation in dk:

d2
k

(
1

σ2
k−1

− 1

σ2
k

)
+ 2dk

(
µk
σ2
k

− µk−1

σ2
k−1

)
+

(
µ2
k−1

σ2
k−1

−
µ2
k

σ2
k

− 2log
σk
σk−1

)
= 0. (7.28)

Then t̂k is, among {µk−1, µk, αk}, the element with the highest value of u(·) (which can

be quickly approximated using a table of the Normal distribution).
2Without loss of generality, we consider here that the the µk’s resulting from the EM algorithm are

sorted by increasing order.



Chapter 7. Cluster-based multivariate discretization 135

Proof. Let g(·) and k(·) be two functions such that ∂g(x)/∂x = h(x|θk−1) and ∂k(x)/∂x =

h(x|θk). Then:

d̂k = Argmin
dk∈[µk−1,µk)

u(dk) = Argmin
dk∈[µk−1,µk)

∫ +∞

dk

∂g(x)

∂x
dx+

∫ dk

−∞

∂k(x)

∂x
dx

= Argmin
dk∈[µk−1,µk)

−g(dk) + k(dk) + lim
d→+∞

[g(d)− k(−d)].

Let us relax the optimization problem and try to find the Argmin over R. Then the

min is obtained when ∂u(dk)/∂dk = 0 or, equivalently, when ∂(−g(dk) + k(dk))/∂dk =

−h(dk|θk−1) + h(dk|θk) = 0. Since h(·|θ) represents the density of the Normal distribu-

tion of parameters θ, this is equivalent to:

− 1√
2πσk−1

exp

(
−1

2

(
dk − µk−1

σk−1

)2
)

+
1√

2πσk
exp

(
−1

2

(
dk − µk
σk

)2
)

= 0,

or, equivalently:

σk
σk−1

=

exp

[
−1

2

(
dk−µk
σk

)2
]

exp

[
−1

2

(
dk−µk−1

σk−1

)2
] = exp

[
1

2

(
dk − µk−1

σk−1

)2

− 1

2

(
dk − µk
σk

)2
]
,

which, by a log transformation, is equivalent to:

2 log
σk
σk−1

=
d2
k

σ2
k−1

− 2µk−1dk
σ2
k−1

+
µ2
k−1

σ2
k−1

−
d2
k

σ2
k

+
2µkdk
σ2
k

−
µ2
k

σ2
k

.

This corresponds precisely to Equation (7.28). So, to summarize, if the optimal solution

lies inside interval (µk−1, µk), then it satisfies Equation (7.28). Otherwise, either u(dk) is

strictly increasing or strictly decreasing within (µk−1, µk), which implies that the optimal

solution for t̂k is either µk−1 or µk, which completes the proof.

For a better understanding of the use of the previous proposition, let us apply it on

a concrete example which aims to estimate the cut point associated to the first two

Gaussians N0(−6, 1.2) and N1(−2, 1.25) shown in Figure 7.1. By replacing the variables

corresponding to parameters µ and σ in the above quadratic equation by their appropriate

values we get:

d2
k(0.05) + dk(5.77) + 22.35 = 0

The square-root part of the previous quadratic equation is as follows:

∆ = b2 − 4ac

= (5.77)2 − 4(0.05 ∗ 22.35)

= 28.462

(7.29)



Chapter 7. Cluster-based multivariate discretization 136

Given that ∆ > 0, then the previous quadratic equation can be resolved in two ways:

dk1 =
−b−

√
∆

2a
or dk2 =

−b+
√

∆

2a
= −102.01 or = −4.02

(7.30)

As discussed earlier, the computed cut point d̂k between the considered Gaussians, must

lies inside interval [−6,−2]. Therefore, the chosen solution for the considered quadratic

equation will be dk = −4.02, which fits exactly with the cut point d1 depicted in Fig-

ure 7.5. The same principle is followed to make the estimation of the other cut points

(d2 and d3).

As can be seen in Figure 7.5, the resulting mixture model (after cut points estimations)

is a good approximation of the original truncated mixture model which is given in Fig-

ure 7.1. Note that in this example, the resulting discretization schema is:

f (̊xi0) =


0 if x̊i0 < −4.02,

1 if −4.02 ≤ x̊i0 < −0.045,

2 if −0.045 ≤ x̊i0 < 2.97,

3 if x̊i0 ≥ 2.97.

7.2.5.3 Score and Number of Cut Points

To complete the description of the algorithm, there remains to determine the number of

cut points (or the number of components in the mixture model). Of course, the higher

the number of cut points, the higher the likelihood but the lower the compactness of the

representation3. To reach of good trade-off, we simply propose to exploit the penalty

functions included into the score used for the evaluation of different BN structures (see

Line 5 of Algorithm 9). Here, we use the BIC score [S+78], which can be locally expressed

by the following expression:

BIC(X̊i0 |MB(X̊i0)) = LL(D̊|Θ)− |Θ|
2

log(N) (7.31)

where LL(D̊|Θ) is the log-likelihood with the parameters estimated by EM, given the

current structure G. |Θ| represents the number of parameters, i.e., |Θ| = qi0 × g + 2 ×
(g+ 1): the first and second terms correspond respectively to the number of parameters

πjk and of (µk, σk) needed to encode the conditional distributions (recall that there are

g + 1 Gaussians and qi0 represents the domain size of MB(X̊i0). Now, the best number

of cut points is simply that which optimizes equation (7.31).
3Note that N − 1 cut points leads to a zero log-likelihood.



Chapter 7. Cluster-based multivariate discretization 137

7.2.5.4 Summary

To summarize, for a given network G and a set of continuous variables X̊, our discretiza-

tion approach lies in the joint use of a tailored version of EM (see Algorithm 12) and

our proposed cut points estimation method (given by Proposition 7.4). As discussed

earlier, to alleviate the problem of the strong overhead that the joint discretization of

all the continuous variables may incur to the learning process, discretizations are per-

formed one continuous variable at a time. In this direction, the discretization of X̊i0

in G is carried out by considering only its interactions with the set of variables repre-

senting its Markov blanket, i.e., X̊i0 is discretized by maximizing the log-likelihood of

p(X̊i0 |MB(X̊i0)). Given the previous steps, one important question may arise about the

way by which each new discretization will be propagated (or communicated) to the rest

of continuous variables schema in G. To do so, our algorithm follows the same propaga-

tion principle as in [MC98, FG96], where, each time we change the discretization of X̊i0 ,

the discretizations of the variables of its Markov blanket are also subsequently recom-

puted. Figure 7.10 depicts a schematization example of the propagation trajectories (or

the impact) of each new discretization in a network G containing 7 continuous random

variables. In this example, changing for instance the discretization of node C may have

an impact on the incoming discretizations of variables composing its Markov blanket

MB(C) = {A,B,D,E}, i.e., this might lead to reconsider the discretization of these

variables (as mentioned by the dotted edges between C and MB(C) in Figure 7.10).

A

FÅ
FC̊

B

FC̊
FB̊

C̊
FE̊

FC̊

FC̊
FD̊

D

FD̊ FF̊

E

FE̊FG̊

F G

Figure 7.10: The propagation trajectories of the discretization schema in G (the
discretization of variables A, B, D, E, F , G are fixed while discretizing variable C)

Roughly speaking, the principle of our multivariate discretization approach goes as fol-

lows: we begin by performing a univariate discretization for all the continuous variables,

starting with an empty structure G0. This results in a discrete dataset D, hence we can

use standard learning algorithms to discover a new network G1 (not empty). At this step,

the network G1 is fixed and we select a variable X̊i0 and search for its optimal discretiza-

tion while treating all the other variables as discrete (i.e., we use their discretization

computed in the previous iteration). This can be done by using the approach previously

described (EM and cut points estimation). We repeat this step for each continuous vari-

able until no discretization schema leads to an improvement of the BIC scoring function.

Given this approach, it is obvious to deduce that such an optimization approach must



Chapter 7. Cluster-based multivariate discretization 138

converge since, as seen earlier, the EM algorithm guarantees that at each iteration the

log-likelihood P (F|G1, D̊) is increased. Hence it must stop at some stage. After complet-

ing the discretization of all the variables in G1, we repeat the learning of a new structure

G2 using the resulting discretization and so on.

It must be emphasized that our algorithm decides to continue (stop criterion) the dis-

cretization process if and only if Gt (the resulting structure from the tth discretization)

is different from Gt−1, i.e., it means that structure Gt entails a different set of condi-

tional independences than those encoded by Gt−1 (note that if Gt−1 ≡ Gt the resulting

discretization will be equivalent).

7.2.6 Truncated mixture Gaussian model based discretization

In this section, we present an alternative method which aims to identify the best dis-

cretization F by directly estimating the truncated mixture model parameters (without

performing any additional intermediate steps). Similarly to the previous approach, the

current one addresses the model parameters estimation by taking into account the con-

ditional independences entailed by G (as explained in Section 7.2.4) and it relies on the

use of the EM algorithm, which is known to be efficient for addressing such a difficult

optimization task.

Before explaining the details of our estimation method, it must be underlined that each

truncated Gaussian in the mixture model (to be estimated) can be defined using the fol-

lowing two steps: a classical normal distribution with parameters µk and σk are chosen

initially, and next, a truncation interval [dk, dk+1) is assigned to the considered Gaus-

sian. By adding the truncation, the density function of the classical normal distribution

is modified by assigning a 0 density for all the values outside the fixed interval, and

uniformly scaling the values inside the interval in order to ensure that f(.|θk) integrates

to unity (a valid density function).

As seen earlier in Equations (7.6) and (7.18), the only difference between the truncated

and the untruncated mixture distributions is the normalization factor which, as we shall

see hereafter, does not complicate the E-step of the EM algorithm, but can be an issue for

the maximization of certain parameters of the mixture model during the M-step: except

the update equation related to the parameter πij , the other ones cannot be computed

analytically.

It should be noted that despite the strong overhead and the complexity that the truncated

mixture model parameters estimation incurs to the multivariate discretization process

(since it cannot be expressed using closed form-formula due to presence of the inte-

gral), we think that the result returned by our new method can be of great explanatory

importance because:



Chapter 7. Cluster-based multivariate discretization 139

• when estimating discretization the function F given G, the joint optimization of the

truncated mixture model parameters (means, variances, weights, intervals) guaran-

tees the maximization of the likelihood defined as ArgmaxF P (F|G, D̊), hence lead-

ing to the optimization of the global initial objective function defined as P (G,F|D̊).

• the returned results can also be used as a validation approach that allows us to

check the quality of our first discretization version, which, as discussed earlier,

produces only an approximate estimation of the original truncated mixture pa-

rameters. Actually, in the previous approach, the optimality of the cut points

estimation method w.r.t. likelihood P (F|G, D̊) (by solving the quadratic equation)

cannot be proved. This can be explained, in particular, by the fact that the cut

points are not computed by taking into account the whole dataset D̊, but only by

using some summary in the form of the mean and variance parameters found by

EM.

Before discussing the details of our approach, we should keep in mind that several trun-

cation modalities of the Gaussian density function can be considered in our case:

(dk = −∞) ∧ (dk+1 = +∞) =⇒ untruncated

(dk > −∞) ∧ (dk+1 = +∞) =⇒ lower truncated

(dk = −∞) ∧ (dk+1 < +∞) =⇒ upper truncated

(dk > −∞) ∧ (dk+1 < +∞) =⇒ complete truncated

Figure 7.11 shows some examples of the previous truncations where: (a) observations

are not truncated (−∞,+∞) (b) observations are left censored at -2 by [−2,+∞) (c)

observations are right censored at 2 by (−∞, 2] (d) observations are censored between -2

and 2 by [−2, 2].

In the rest of this section, we shall focus our discussion on complete truncated Gaussian

distribution. Our approach assigns to the left and right sides of respectively the first

and last intervals of the discretization schema of X̊i0 the min and max values taken by

the latter, which are denoted hereafter by min(X̊i0) and max(X̊i0) (instead of −∞ and

+∞). Regarding the truncations of the middle intervals, they are unknown and should

be estimated from dataset D̊ using the MLE method.

Now, let us delve into the details of truncated mixture parameters estimation using our

new variant of the EM algorithm.

7.2.6.1 Truncated mixture model parameters estimating with EM

In our approach, we propose to estimate the parameters Θ of the truncated mixture

model from D̊ by maximum likelihood. For this purpose, we use EM to provide a good



Chapter 7. Cluster-based multivariate discretization 140

0
0.1
0.2
0.3
0.4
0.5

-4 -2 0 2 4

f(̊
x
i 0
|θ
)

X̊i0 values

0
0.1
0.2
0.3
0.4
0.5

-4 -2 0 2 4

f(̊
x
i 0
|θ
)

X̊i0 values

0
0.1
0.2
0.3
0.4
0.5

-4 -2 0 2 4

f(̊
x
i 0
|θ
)

X̊i0 values

0
0.1
0.2
0.3
0.4
0.5

-4 -2 0 2 4

f(̊
x
i 0
|θ
)

X̊i0 values
(a) Untruncated Gaussian (b) Lower truncated Gaussian

0
0.1
0.2
0.3
0.4
0.5

-4 -2 0 2 4

f(̊
x
i 0
|θ
)

X̊i0 values

0
0.1
0.2
0.3
0.4
0.5

-4 -2 0 2 4

f(̊
x
i 0
|θ
)

X̊i0 values

0
0.1
0.2
0.3
0.4
0.5

-4 -2 0 2 4

f(̊
x
i 0
|θ
)

X̊i0 values
(c) Upper truncated Gaussian (d) Complete truncated Gaussian

Figure 7.11: Modalities of truncated Gaussian distribution

approximation of the parameters. For every m ∈ {1, . . . , N}, let Z(m) be a hidden

discrete random variable whose domain is {z(m)
0 , . . . , z

(m)
g }. Variable Z(m) takes value

z
(m)
k if and only if the mth observation x̊

(m)
i0

of variable X̊i0 in database D̊ is believed

to have been generated by the kth truncated normal distribution. Assuming that data

in D̊ are i.i.d, the log-likelihood of D̊ given Θ =
⋃g
k=0{

⋃qi0
j=1{πjk},θk} (where θk =

(µk, σk, dk−1, dk)) is calculated as follows:

LL(D̊|Θ) =

N∑
m=1

log p(X̊i0 = x̊
(m)
i0
|MB(̊xi0)(m),Θ). (7.32)

By replacing p(X̊i0 = x̊
(m)
i0
|MB(̊xi0)(m),Θ) by its corresponding mixture model equation,

we obtain:

LL(D̊|Θ) =

qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

log

[
g∑

k=0

πjkf (̊x
(m)
i0
|θk)

]
(7.33)

where the expression of f(.|θk) is given by Equation (7.6).

It must be emphasized that this version of our approach shares the same principle as

in the first step of the previous approach (based on the untruncated mixture model),

where the goal of the EM algorithm consists in optimizing LL(Θ|D̊) by relying on a



Chapter 7. Cluster-based multivariate discretization 141

lower bound given as follows:

LL(D̊|Θ) ≥
qi0∑
j=1

∑
m:MB(̊xi0 )(m)=j

g∑
k=0

Qm(z
(m)
k ) log

[
πjkf (̊x

(m)
i0
|θk)

Qm(z
(m)
k )

]
(7.34)

As seen in Figure 7.8, this lower bound can have a functional form, in principle. In fact,

choosing a set of new parameter values to maximize the lower bound function will always

result in an improvement over the original objective function (which is the likelihood),

i.e., maximizing this optimal lower bound in the M-step of EM will guarantee to take

us closer to the maximum of the initial log-likelihood function. Remind that in this

approach, we just need to apply the standard EM, considering for weights πjk only the

records in the database that correspond toMB(̊xi0) = j (as the previous approach does).

For each record of D̊, Z(m) = z
(m)
k if and only if the mth observation x̊i0 of continuous

variable X̊i0 in the database is believed to have been generated from the kth truncated

Gaussian. Let Qt+1
m (z(m)) = P (z(m) |̊xi0 ,Θt). Having the same kind of formula as in the

untruncated mixture model, the term Qt+1
m (z

(m)
k ) is defined by the following equation:

Qt+1
m (z

(m)
k ) =

πtjkf (̊x
(m)
i0
|θtk)∑g

k′=0 π
t
jk′f (̊x

(m)
i0
|θtk′)

. (7.35)

The main difference between the E-step in the untruncated and the truncated mixture

models appears in the way by which the term Qt+1
m (z

(m)
k ) is computed. Since we rely

on truncated Gaussian distributions here, Equation (7.35) amounts to restrict the term

Qt+1
m (z

(m)
k ) to take only 0 and 1 values, i.e.:

Qt+1
m (z

(m)
k ) =

{
1 if dk ≤ x̊

(m)
i0

< dk+1

0 otherwise
(7.36)

Exploiting the above equations, the term Qt+1
m (z

(m)
k ) can be found by simply testing

whether x̊(m)
i0

belongs to the interval [dk, dk+1)4. For instance, in the mixture depicted

by Figure 7.1, the term Qt+1
m (zt+1

2 ) is equal to 0 for all x̊(m)
i0

/∈ [−0.045, 2.97).

Regarding the M-step of the EM algorithm, it yields to the maximization of the log-

likelihood function by estimating the optimal parameter values. Note that at each step,

Θt+1 are found by solving the equations in which the first order partial derivatives of

the lower bound function w.r.t. µk, σk, πjk, dk, are equal to zero.

In the following, we will provide the details related to the different M-step update equa-

tions.
4It is not the case for the untruncated model, where Qt+1

m (z
(m)
k ) is positive for all the untruncated

normal distributions.



Chapter 7. Cluster-based multivariate discretization 142

We start by parameter πt+1
jk , which corresponds to the weight (or probability) of ob-

servations assigned to (or sampled from) the kth component in the mixture model. As

discussed earlier, πt+1
jk imposes the following constraints: i) all πt+1

jk are non-negative,

and ii)
∑g

k=0 π
t+1
jk = 1. So:

∂LL(D̊|Θt)

∂πjk
=

∑
m:MB(̊xi0 )(m)=j

Qt+1
m (z

(m)
k )

πjk
− Qt+1

m (z
(m)
g )(

1−
∑g−1

k=0 πjk

) = 0 (7.37)

From the previous result, we can immediately conclude that this equation is equal to 0

when πt+1
jk verifies:

πt+1
jk =

∑
m:MB(̊xi0 )(m)=j Q

t+1
m (z

(m)
k )∑

m:MB(̊xi0 )(m)=j

∑g
k=0Q

t+1
m (z

(m)
k )

=
Nj[k−1,k)

Nj
(7.38)

where, Nj[k−1,k) is the number of occurrences of X̊i0 within the interval [dk−1, dk) when

X̊i0 ’s Markov blanket’s value is j. Nj represents the number of records in D̊ in which

MB(̊xi0)(m) = j. Therefore, for parameters πt+1
jk , it is possible to obtain an analytic

expression.

Now, let us examine the optimization of parameter µt+1
k . By taking the derivative of the

lower bound function w.r.t. µk, we get:

∂LL(D̊|Θ)

∂µk
=

N∑
m=1

Qm(z
(m)
k )


(
x̊

(m)
i0
− µk
σ2
k

)
−

∂

∂µk

∫ dk+1

dk

h(x|θk)dx∫ dk+1

dk

h(x|θk)dx

 = 0. (7.39)

Let K =

(
x− µk
σk

)
. Then, as h(x|θk) is the probability density function of the normal

distribution, the derivative shown in the above equation can be rewritten as follows:

∂LL(D̊|Θ)

∂µk
=

N∑
m=1

Qm(z
(m)
k )


(
x̊

(m)
i0
− µk
σ2
k

)
−

∂

∂µk

∫ dk+1−µk
σk

dk−µk
σk

1√
2π
e−

1
2
K2

︸ ︷︷ ︸
F ′ (K)

dK

∫ dk+1

dk

h(x|θk)dx


(7.40)

To simplify the previous equation, we replace hereafter the term 1√
2π
e−

1
2
K2

by F ′(K) to

obtain the following expression:



Chapter 7. Cluster-based multivariate discretization 143

∂

∂µk

∫ dk+1−µk
σk

dk−µk
σk

F
′
(K)dK =

∂

∂µk

(
F

(
dk+1 − µk

σk

)
− F

(
dk − µk
σk

))
= − 1

σk
F
′
(
dk+1 − µk

σk

)
+

1

σk
F
′
(
dk − µk
σk

)
= −h(dk+1|θk) + h(dk|θk).

(7.41)

Substituting the previous result into Equation (7.39), we get:

∂LL(D̊|Θ)

∂µk
=

N∑
m=1

Qt+1
m (z

(m)
k )


(
x̊

(m)
i0
− µk
σ2
k

)
+
h(dk+1|θk)− h(dk|θk)∫ dk+1

dk

h(x|θk)dx

 = 0. (7.42)

As can be seen, setting the derivative shown in Equation (7.42) to zero cannot be solved

analytically due to the presence of the integral. For this reason we resort to a gradient

descent algorithm to solve µt+1
k numerically as follows:

• iteration 0 : initialization of µt+1
k = µtk

• repeat until convergence:

µt+1
k := µt+1

k − α ∂

∂µk
LL(D̊|Θ) (7.43)

where α represents the step size, sometimes called the learning rate in the machine

learning community. Large values of α tend to make the gradient descent converge

faster but it may prevent it from finding the optimal solution. Small values increase

the chance to find a good solution, but at the expense of a slow convergence.

−4 −2 0 2 4

−
15

0
−

10
0

−
50

0
50

10
0

15
0

 µ

G
ra

di
en

t f
un

ct
io

n~
 µ

Figure 7.12: Gradient function of the parameter µ2 of the mixture model of Figure 7.1

At each iteration, we choose the best gradient according to our LL function in order

to reach a local maximum. As an example, let us compute the optimal value of µ2 for



Chapter 7. Cluster-based multivariate discretization 144

the truncated mixture model shown in Figure 7.1. Figure 7.12 depicts the curve of the

gradient function related to the computation of µ2 following Equation (7.42). As we

know, the optimal value is the one that sets this equation to 0. Therefore, we can clearly

deduce that the optimal solution corresponds to the mean-value µ2 ' 1.5, which fits with

the original value shown in Figure 7.1.

Now, let us examine the maximization of LL(D̊|Θ) w.r.t. σk. As discussed previously,

the search value will be the one that sets the following first order partial derivative equal

to zero:

∂LL(D̊|Θ)

∂σk
=

N∑
m=1

Qt+1
m (z

(m)
k )

− 1

σk
+

1

σ3
(̊x

(m)
i0
− µk)2 −

∂

∂σk

∫ dk+1

dk

h(x|θk)dx∫ dk+1

dk

h(x|θk)dx

 = 0.

(7.44)

By considering the same change of variables K as that used for µk, the derivative of the

integral of Equation (7.44) is given as follows:

∂

∂σk

∫ dk+1−µk
σk

dk−µk
σk

F
′
(K)dK = −

(
dk+1 − µk

σ2
k

)
F
′
(
dk+1 − µk

σk

)
+

(
dk − µk
σ2
k

)
F
′
(
dk − µk
σk

)
= −

(
dk+1 − µk

σk

)
h(dk+1|θk) +

(
dk − µk
σk

)
h(dk|θk).

(7.45)

Substituting this result into Equation (7.44) and simplifying by σk everywhere, we get:

N∑
m=1

Qt+1
m (z

(m)
k )

−1 +
1

σ2
k

(̊x
(m)
i0
− µk)2 +

(dk+1 − µk)h(dk+1|θk)− (dk − µk)h(dk|θk)∫ dk+1

dk

h(x|θk)dx

 = 0.

(7.46)

Notice that Equation (7.46) looks like the derivative equation of the untruncated mixture

case (see Equation (7.24)), but it is augmented with an additional term related to the

normalization factor. Unfortunately, due to its integral, this term prevents having a

close-form formula for the optimal value of σt+1
k . Therefore, we resort again to a gradient

descent to solve σt+1
k numerically. As for µt+1

k , we start the descent by setting σt+1
k ← σtk.

Figure 7.13 illustrates the computation of σt+1
2 of the truncated mixture model shown in

Figure 7.1. From the gradient curve, we can conclude that the optimal value of σt+1
2 is

around 0.85, which represents the unique optimal solution (where the gradient is equal

to 0).



Chapter 7. Cluster-based multivariate discretization 145

0 5 10 15 20

0
50

10
0

15
0

20
0

25
0

 σ

gr
ad

ie
nt

 fu
nc

tio
n~

 σ

Figure 7.13: Gradient function of the parameter σ2 of the mixture model of Figure 7.1

Finally, there remains to maximize the truncation (or cut point) parameter dk between

the k − 1th and the kth in the mixture model. Here, it is important to keep in mind

that, unlike the other parameters, the optimal computation of dk involves at the same

time two Gaussians. Differentiating the log-likelihood w.r.t. dk gives:

∂LL(D̊|Θ)

∂dk
=

N∑
m=1

Qt+1
m (z

(m)
k−1)

−
∂

∂dk

∫ dk

dk−1

h(x|θk−1)dx∫ dk

dk−1

h(x|θk−1)dx



−Qt+1
m (z

(m)
k )


∂

∂dk

∫ dk+1

dk

h(x|θk)dx∫ dk+1

dk

h(x|θk)dx

 = 0.

Then the above equation is equivalent to:

∂LL(D̊|Θ)

∂dk
=

N∑
m=1

Qt+1
m (z

(m)
k−1)

−
∂

∂dk

∫ dk−µk−1
σk−1

dk−1−µk−1
σk−1

F
′
(K)dK

∫ dk

dk−1

h(x|θk−1)dx



−Qt+1
m (z

(m)
k )


∂

∂dk

∫ dk+1−µk
σk

dk−µk
σk

F
′
(K)dK

∫ dk+1

dk

h(x|θk)dx

 = 0

(7.47)



Chapter 7. Cluster-based multivariate discretization 146

Deriving F (.) w.r.t. dk in both the k − 1th and thkth truncated Gaussians gives:

N∑
m=1

−Qt+1
m (z

(m)
k−1)

h(dk|θk−1)∫ dk

dk−1

h(x|θk−1)dx

+Qt+1
m (z

(m)
k )

h(dk|θk)∫ dk+1

dk

h(x|θk)dx
= 0. (7.48)

Like both previous update equations, the current one cannot be solved in an analytic

way. That is the reason why a numeric optimization using a gradient descent algorithm

is carried out to approximate the optimal dk value. As in the truncated case, we assume

that the estimated dk value lies inside interval [µk−1, µk]. Otherwise, if the estimated

value of dk is either higher than µk or lower than µk−1, we force it to be equal to either

µk−1 or µk.

7.3 Conclusion

In this chapter, we have proposed two versions of a multivariate discretization algorithm

designed for the BN structure learning task. It takes into account the dependences

among the random variables acquired during learning. As seen, this task is really hard,

since it should require the discretization of many variables at the same time, which

appears to be untractable, especially for complex network G (with many nodes and

arcs). To alleviate the combinatorics and the computational burden of the multivariate

discretization, we have suggested to perform a local search algorithm that iteratively fixes

the discretizations of all the continuous variables but one and optimizes the discretization

of the latter until some stopping criterion is met. The conditional independences between

variables have been taken into account during the discretization process by considering

a discretization given the Markov blanket of each continuous variable.

It should be emphasized that our approach assumes that observations of each continuous

variable are distributed following a truncated Gaussian mixture model. As such, the

optimal discretization is then obtained by computing the best set of truncation intervals

(or cut points) of the different components (or Gaussians) in the mixture model. To

do so, we have proposed two versions of our approach, both of them relying on the use

of the EM algorithm, which is know to be efficient for addressing such a task. Our

first approach performs the discretization task by relying on a two-step approach: i) it

starts by estimating from dataset D̊ the set of parameters of an untruncated Gaussian

mixture model (instead of a truncated one) using the EM algorithm; and ii) the set of

cut point are then identified by solving a quadratic equation aiming to minimize the

loss of information shifting from untruncated to truncated Gaussians. Unlike the first

version, our second approach relies on the direct estimation of the truncated mixture

model parameters using another variant of the EM algorithm and some gradient descent

algorithms.



Chapter 7. Cluster-based multivariate discretization 147

In the next chapter, we perform an experimental study of our proposed approaches on

real and synthetic datasets to prove their efficiency.



Chapter 8

Evaluation of the multivariate

discretization algorithms

In this chapter, we highlight the effectiveness of our proposed truncated and untruncated

multivariate discretization methods by comparing them with the algorithms provided

in [RZWL13] and [FG96], hereafter called Ruichu and Friedman respectively. It should

be noted from the beginning that Step 4 of Algorithm 9 (see the previous chapter) was

performed using a simple Tabu search method. For the comparisons, three criteria have

been taken into account:

i) the quality of the structure learnt by the algorithm (which strongly depends on

the discretization). Arc deletion/orientation/adding errors are considered as a loss

of information that results from the discretization process;

ii) the computation time;

iii) the quality of the learnt CPT parameters, which has been evaluated by the BN

prediction power on the values taken by some variables given observations.

We designed the datasets as follows: we first selected a (discrete) BN. Then we generated

continuous datasets containing from 1000 to 10000 records in the following way: for each

random variable Xi, we mapped its finite set of values into a set of consecutive intervals

{[dk−1, dk)}
|Xi|
k=1 of arbitrary lengths. Then, we assigned a truncated Gaussian to each

interval, the parameters (µk, σk) of which were randomly chosen. Finally, to generate a

continuous record, we first generated a discrete record from the discrete BN using a logic

sampling algorithm. Then, this record was mapped into a continuous one by sampling

from the truncated Gaussians. Overall, 400 continuous datasets were generated.

To compare the BN structures produced by Ruichu, Friedman and our approach, those

were converted into their Markov equivalence class, i.e., into a partially directed DAG

148



Chapter 8. Evaluation of multivariate discretization algorithm 149

(CPDAG). Such a transformation increases the quality of comparisons since two BNs

encode the same distribution if and only if they belong to the same equivalence class.

The CPDAGs were then compared w.r.t. their Recall, Precision and F-score (see their

respective definitions in Chapter 6). These metrics describe how well the dependences

between variables are preserved by learning/discretization. In addition, the quality of

the structure learning results has also been tested on real-world BNs which have been

taken from the BN repository using the aforementioned criteria.

We compared the discretizations w.r.t. the quality of the produced CPTs. To do so, we

used real-world datasets taken from the UCI repository (mentioned in Table 8.4) which

contained both continuous and integer random variables. It should be emphasized that

the purpose of such a validation method consists in testing the efficiency of the learnt

discrete distribution in the prediction task by estimating how accurately a predictive

model (learnt from the obtained discrete data) will perform in practice. Remind that in

any prediction task, the model is usually obtained from a dataset on which the training

task is run, and a dataset of unknown instances against which the learnt model is tested

(called also testing dataset)1. Given this principle, two subdatasets to "test" and “train”

the model were obtained respectively by splitting each UCI database into 2/3 for training

and 1/3 for testing.

8.1 Evaluations on synthetic Bayesian networks

For the first set of experiments, on synthetic datasets, we randomly generated discrete

BNs following the guidelines given in [ICR04]. Those contained from 10 to 30 nodes and

from 17 to 56 arcs. Each node had at most 6 parents and its domain size was randomly

chosen between 2 and 5. The CPTs of these BNs represented the πjk of the preceding

chapter.

To make the comparison study more efficient, we varied many parameters related to the

generated BNs each time we computed the considered criteria as follows:

• the number of nodes: 10, 15, 20, 35 and 30,

• the number of arcs: 17-28, 29-34, 35-44, >44,

• maximum in-degree (or parents) per node: lower or greater than 4 parents.

Note that the last two parameters have been considered together because they entail the

same information, which is related to the complexity of the BN. As discussed previously,

in this part of our evaluations, we provide a comparison study in terms of structure
1 In other words, this technique gives an insight on how well the learnt model will generalize to an

independent dataset



Chapter 8. Evaluation of multivariate discretization algorithm 150

quality resulting from each discretization algorithm and the runtime taken by the latter.

All experiments were performed on a 3 GHz Intel Core2 computer with 3GB of mem-

ory running a Debian 4.3 Linux box. The studied discretization algorithms have been

implemented using R and C++.

8.1.1 Benchmarks on datasets generated from random BNs

Figure 8.1 shows the average Recall (filled lines), Precision (dashed lines) and F-score

over the 400 generated databases. As can be observed, both proposed truncated and

untruncated approaches (denoted by TMGCD and MGCD respectively) outperform the

others state-of-the-art algorithms for all dataset sizes and and for all numbers of nodes.

We can clearly remark that both proposed approaches obtain almost the same structure

results. This is expected from the beginning since the untruncated approach tries to

perform an approximation of the original truncated distribution using the proposed two-

step methods (probability estimation and cut points calculation). Yet, there is still

a slight improvement shown by the untruncated method. The Recall and Precision

obtained by our approaches are actually about 10% higher than Ruichu (with a slight

advantage for the MGCD approach for some data sizes) and more than 40% higher

than Friedman for all data sizes and node numbers. Regarding the F-score values, it is

slightly lower but still significant. The performance of our approaches w.r.t. Ruichu can

be explained by that fact that, unlike Ruichu, we fully take into account the conditional

dependence/arcs each time we perform the discretization of any node in G. Remember

that Ruichu’s algorithm discretizes each node independently from the rest, hence leading

to an important information loss in terms of conditional dependences between variables.

Our performance w.r.t. Friedman can be explained by our choice of exploiting clustering

rather than an entropy-based approach which, as shown in the preceding chapter, is not

very suitable for the task of BN structure learning.

One important point that can be noted from the experiments’ curves is that the com-

parisons between all the tested discretization approaches seem to be mostly independent

from the number of node in G: they give almost the same results for all the values taken

by this parameter.

Table 8.1 provides computation time ratios (other method’s runtime / TMGCD method’s

runtime). As can be seen, our truncated method outperforms slightly both the MGCD

and Ruichu approaches with an average of 1.63 and 1.83 respectively (but it is signifi-

cantly better than Ruichu in terms of structure quality). The difference is more significant

w.r.t. Friedman since we are around 6.20 times faster than this one while at the same

time being more than 40% higher in terms of structure quality (F-score). The time issue

related to Friedman’s approach can be explained by the fact that it tests each mid-point



Chapter 8. Evaluation of multivariate discretization algorithm 151

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

Figure 8.1: Recall-Precision and F-score for Benchmarks with 10, 15, 20, 25 and 30
nodes. The results are given for TMGCD (firebrick), MGCD (blue), Ruichu (gold) and

Friedman (darkolivegreen)
.



Chapter 8. Evaluation of multivariate discretization algorithm 152

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

Figure 8.2: Recall/Precision and F-score for Benchmarks with a maximum number
of parents lower than or equal to 4 and a number of arcs in G between: 17-28, 29-34,
35-44, and >44. The results are given for TMGCD (firebrick), MGCD (blue), Ruichu

(gold) and Friedman (darkolivegreen)
.



Chapter 8. Evaluation of multivariate discretization algorithm 153

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

Figure 8.3: Recall/Precision and F-score for Benchmarks with a maximum number
of parents greater than 4 and a number of arcs in G between: 17-28, 29-34,35-44,and
>44. The results are given for TMGCD (firebrick), MGCD (blue), Ruichu (gold) and

Friedman (darkolivegreen)
.



Chapter 8. Evaluation of multivariate discretization algorithm 154

#Nodes Dataset size MGCD Ruichu Friedman

10

1000 1.21± 0.38 1.09± 0.49 3.39± 3.45
5000 1.52± 0.58 1.94± 85 6.33± .59
7500 1.78± 0.65 2.18± 95 7.38± 5.9
10000 1.78± 0.52 2.10± 1.11 7.20± 4.43

15

1000 1.05± 0.31 1.08± 0.46 4.21± 4.57
5000 1.6± 0.54 1.62± 0.72 6.37± 5.05
7500 1.94± 1.03 1.94± 1.04 7.68± 5.65
10000 2.13± 1.01 2.28± 1.28 8.18± 6.7

20

1000 1.21± 0.34 1.24± 0.6 4.68± 4.39
5000 1.76± 0.56 2.06± 0.75 7.07± 4.8
7500 1.95± 1.03 2.31± 1.57 8.16± 6.63
10000 2.02± 0.96 2.3± 1.66 8.53± 6.16

25

1000 1.21± 0.45 1.04± 0.5 4.08± 3.72
5000 1.59± 0.38 2.02± 0.78 6.16± 4.13
7500 1.77± 0.61 2± 0.81 6.21± 4.28
10000 1.86± 0.71 2.17± 0.98 6.34± 4.1

30

1000 1.22± 0.29 1.13± 0.43 3.92± 3.07
5000 1.59± 0.66 1.78± 0.73 5.61± 4.64
7500 1.72± 0.65 2.13± 1.12 6.17± 4.07
10000 1.87± 0.6 2.2± 0.96 6.38± 3.93

Table 8.1: Runtime ratio comparisons between the discretization approaches by vary-
ing the number of nodes in G

.

among the continuous values. Therefore, when the data contains a large number of val-

ues for a continuous variable, this procedure becomes extremely expensive. This problem

can be clearly seen in Table 8.1 where the time ratio between TMGCD and Friedman’s

approach increases w.r.t. the data sizes.

Regarding the complexity parameters variations (see Figures 8.2 8.3), our proposed ap-

proaches usually outperform the rest of the algorithms for all used criteria. When the

max-indegree is smaller than or equal to 4 (Figure 8.2), MGCD and TMGCD outperform

Ruichu’s algorithm with respectively ∼ 10% and ∼ 5% in terms of Recall and ∼15% and

∼10% in terms of Precision when the number of arcs is between 17 and 28. In the same

context, the differences w.r.t. Friedman (for all criteria) are very important since they

are greater than 40% for all dataset sizes. Given these results, it should be noted that the

complexity of the BNs, when the max-indegree is smaller than 4 does not exert an im-

portant impact on the resulting structure qualities (since they are almost equal whatever

the number of arcs). However, by varying max-indegree higher than 4 (see Figure 8.3),

this property is ruled out and the F-score values decrease when the complexity increases.

In such a case, except for Ruichu, in which the results do not depend on the BN complex-

ity since the discretization of each variable is performed independently from the rest, the

number of arcs has an impact on the structure quality since we observe a decrease from

60%, 54% and 37% (in terms of F-score) for MGCD, TMGCD and Friedman respectively



Chapter 8. Evaluation of multivariate discretization algorithm 155

#Arcs Dataset size MGCD Ruichu Friedman

17-28

1000 1.19± 0.4 1.11± 0.46 3.63± 3.22
5000 1.55± 0.48 1.81± 0.72 6.15± 3.93
7500 1.78± 0.84 1.95± 0.95 7.3± 5.32
10000 1.88± 0.78 2.21± 1.05 7.04± 4.57

29-34

1000 1.15± 0.34 1.07± 0.47 5.34± 5.23
5000 1.67± 0.58 1.94± 0.65 7.45± 5.92
7500 1.77± 0.87 1.93± 0.7 7.55± 6.57
10000 1.98± 0.83 2.19± 1.39 8.91± 7.08

35-44

1000 1.2± 0.35 1.23± 0.64 4.00± 3.93
5000 1.73± 0.64 2± 0.72 5.99± 4.8
7500 1.95± 0.84 2.46± 1.55 6.84± 5.16
10000 2.03± 0.94 2.37± 1.51 6.72± 4.85

>44

1000 1.18± 0.3 1.03± 0.32 4.23± 3.12
5000 1.71± 0.48 1.74± 0.95 6.67± 4.45
7500 2± 0.82 2.15± 1.38 7.62± 4.72
10000 2.09± 0.71 2.12± 1 7.85± 4.35

Table 8.2: Runtime ratio comparisons between then discretization approaches by
varying the number of nodes in G.

when the number of arcs is between 17 and 28 to 30%, 26%, 5% when the complexity

becomes greater than 45 arcs in G (this variation slightly varies for the rest of data sizes).

These results highlight one important problem of the multivariate discretization ap-

proach, which is related to the BN complexity. In fact, when the complexity of the BN

increases (in terms of arcs and indegrees), this incurs a strong overhead on the computa-

tion and propagation process of each new discretization in G, leading therefore to a fast

convergence to a local optimum solution. This impact can be clearly seen on the left side

curves of Figure 8.3, where the Recall rates (or True Positive Rate) decrease when the

complexity increases (because we loose a lot of information).

8.1.2 Benchmarks on continuous datasets from real BNs

In this section we consider three benchmark networks (presented in Table 8.3) taken

from the BN repository [Scu09]. Samples of sizes ranging from 1000 to 10000 have

been generated from the benchmark networks by varying the percentage of continuous

variables α as follows: α = 0.1, α = 0.3 and α = 0.6. This variation is performed

in order to study in details the behaviors of each discretization algorithm when the

number of continuous variables changes in the same network. Note that all the variables

in the benchmark BNs are discrete at the beginning. This is the reason why, to be

able to apply the studied learning algorithms, for each experiment, we select randomly

a set of variables (given the α value) in each network and we generate N continuous

observations from their domains using a logic sampling algorithm. It should be noted

that in these experimentations we have defined a timeout of 30 minutes. This means



Chapter 8. Evaluation of multivariate discretization algorithm 156

Details BN ASIA SACHS CHILD
Number of nodes 8 11 20
Number of arcs 8 17 25

Number of parameters 18 178 230
Average Markov blanket size 2.5 3.09 3

Average degree 2 3.09 1.25
Maximum in-degree 2 3 2

Table 8.3: Characteristics of the real-world BNs used.

that when the algorithm exceeds the defined runtime duration, we stop the discretization

process and we denote its result by "-". Figure 8.4 depicts the obtained results for the

ASIA benchmark. As can be seen, when α = 0.1 our approaches and Ruichu obtain

almost the same results in terms of structure quality. Regarding Friedman’s approach,

it always obtains the lowest results. By increasing the number of continuous variables,

the difference in terms of F-score between both MGCD and TMGCD and the state-of-

the-art algorithms becomes significant, i.e., they reach 13% and 10% w.r.t. to Ruichu

respectively when the dataset size is equal to 10000 and 38% and 42% comparing to

Friedman. Given these results, we should mention that Ruichu and Friedman prove

to be sensitive to the variations in the number of continuous variables because their

reliabilities decrease (in terms of F-score) from 82% and 81% (when α = 0.1) to 78%

and 50% (when α = 0.6) respectively, while our approaches remain stable.

Regarding the results of the SACHS network (see Figure 8.6), which is represented with a

more complex graph than ASIA2, our approaches always outperform the other methods

(see the F-score curves). The result differences between the different approaches as

well as the reliability of each one change according to the percentage of continuous

variables. For instance, the F-score values decrease from 81%, 81%, 78% and 77% when

α = 0.1 for MGCD, TMGCD, Ruichu and Friedman respectively to 70%, 66%, 43%

and 45% when α = 0.6. By taking into account the results obtained for the ASIA

and SACHS benchmarks, we can clearly remark the impact of the BN complexity (see

Table 8.3) on the reliability of the discretization, since the results obtained for the SACHS

network are considerably lower than those related to ASIA. This relationship between the

discretization reliability and the BN complexity is reinforced by the results characterizing

the CHILD network (which is more complex than ASIA and SACHS). Observing the

curves shown in Figure 8.5, we can see that our approaches are better than the other

algorithms in the majority of cases. The difference between MGCD and both Ruichu and

Friedman reach 33% and 48% in terms of F-score respectively when the dataset size is

equal to 1000 and α = 0.6. This difference is slightly lower for the rest of the parameters

values. From these results, a considerable deterioration with some instability of the

structure qualities can be clearly seen, especially for the state-of-the-art approaches, in

which the F-score values reach the low rates of 40% and 29% for Ruichu and Friedman
2We talk about complexity in terms of arcs and parameters numbers needed to represent the network.



Chapter 8. Evaluation of multivariate discretization algorithm 157

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

Figure 8.4: Recall/Precision and F-score for the ASIA datasets with α=10%, α=30%
and α=60% of continuous variables. The results are given for TMGCD (firebrick),

MGCD (blue), Ruichu (gold) and Friedman (darkolivegreen)

respectively. These deterioration results characterizing the classical methods are mainly

due to the difficulty shown by Friedman in terms of discretization computation (using

the entropy metric) and propagation when the network contains a lot of arcs. Regarding

Ruichu’s method, the univariate character of this approach ignores one of the most

valuable information that can be exploited in the discretization process: that which is

represented by the set of dependence/arcs learnt in the BN. These problems can be

clearly seen in the set of Recall/Precision curves of Figure 8.5, where the Recall rates

obtained by both Friedman and Ruichu do not exceed in the best cases 58% for all α

and dataset sizes.



Chapter 8. Evaluation of multivariate discretization algorithm 158

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

Figure 8.5: Recall/Precision band F-score for the CHILD datasets with α=10%,
α=30% and α=60% of continuous variables. The results are given for TMGCD (fire-

brick), MGCD (blue), Ruichu (gold) and Friedman (darkolivegreen)

8.2 Evaluation of the learnt BN CPTs quality

In this section, we describe the experimentations designed to test the soundness of the

CPTs returned by each discretization algorithm using a set of real-world databases that

have been taken from the UCI repository. To do so, many evaluation criteria can be

used in this context. Among them we can mention the Kullblack-Leibler distance which

allows to measure the divergence between the learnt and the original distributions (by

means of equation (8.1)3) and the prediction power resulting from the learnt CPTs (in

a supervised classification task). Unfortunately, the first option (the Kullback-Leibler

divergence computation) is doomed to be unfeasible in our case since the number of
3As the DLKL decreases, the probability distributions are more and more similar.



Chapter 8. Evaluation of multivariate discretization algorithm 159

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

R
ec

al
l/P

re
ci

si
on

2000 4000 6000 8000 10000

0.
2

0.
4

0.
6

0.
8

Size datasets

F
−

sc
or

e

Figure 8.6: Recall/Precision and F-score for the SACHS datasets with 10%, 30% and
60% of continuous variables. The results are given for TMGCD (firebrick), MGCD

(blue), Ruichu (gold) and Friedman (darkolivegreen)

modalities (or intervals) learnt by each discretization method are not necessarily equal

to those entailed by the original probability distribution.

DLKL(P ||Q) =
∑
i

P (xi) log
P (xi)

Q(xi)
(8.1)

8.2.1 Prediction accuracy results

In this section, we compare the discretizations w.r.t. the quality of the produced CPTs.

Our experimentations are run on the 8 databases given in Table 8.4 from website:

https://archive.ics.uci.edu/ml/datasets.html. Remind that each database is split

into a learning (2/3) and a test (1/3) databases. For each record in the latter, we compute



Chapter 8. Evaluation of multivariate discretization algorithm 160

Name Default Task Attribute Types # Instances # Attributes
Robot Navigation Classification Real 5456 3
Image Segmentation Classification Real 2310 19
EEG Eye State Classification Integer/Real 14980 15
Telescope4 Classification Real 19020 12
Letters recognition Classification Integer 20000 17
Banknote authentication Classification Real 1372 5
TEBHR5 Class/Regress/Clus6 Real 45781 4

Table 8.4: Used UCI datasets

the value (learnt by each of the 4 algorithms on the learning database) of the class target

variables given the observations about the explanatory variables. The evaluation of the

supervised classification task (using the BN model) is been carried out by computing the

following three criteria:

• the classification rate (CR): in a supervised classification problem, when we build

a classifier model, we want to look at the accuracy of that latter by computing

the number of correct predictions from all prediction made (as the greater the

classification rate, the more reliable classifier). The classification rate is given by

the following equation:

CR =
Instances classified correctly

All classified instances
(8.2)

• the area under ROC curves: it is represented by a graphical plot that illustrates

the accuracy of a binary classifier system. As shown in Figure 8.7, the ROC curve

is obtained by plotting the true positive rate (TPR) against the false positive rate

(FPR) for all classified instances. For instance, let us consider a two-class classifi-

cation problem (or binary classification), in which the outcome of each considered

instance is either positive (+) or negative (-). In such a case, if the result from

the prediction is (+) and the original value is also (+), then it is said to be a true

positive (TP); however if the actual value is (-) then it is considered as a false

positive (FP). The coordinates (FPRi and TPRi) of each point in the curve of

Figure 8.7 are calculated as follows:

FPRi =
Number of negative among the i first predictions

Total number of negative
(8.3)

TPRi =
Number of positive among the i first predictions

Total number of positive
(8.4)

• the F-score metric: it is calculated in the same manner as the one considered in

the structure case.



Chapter 8. Evaluation of multivariate discretization algorithm 161

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC = 0.83

Figure 8.7: ROC curve with an area=0.83

As we can see in Tables 8.5, 8.6 and 8.7, except for the datasets Banknote and Image seg-

mentation, our algorithms outperforms the other methods, especially Ruichu, which fails

to have correct predictions due to its univariate discretization not taking into account the

conditional dependences among the random variables and especially those between the

explanatory variables and the class one. For instance, the classification rate difference

between MGCD and Ruichu is significantly higher in both small and high dimensional

datasets, since they reach 9.78% and 8.16% for respectively Robot Navigation (3 vari-

ables) and Image Segmentation (19 variables). These differences are also significant in

terms of ROC curve and F-score metrics (see Tables 8.7 and 8.7). Regarding the Fried-

man’s results, they are closer to ours given Banknote, Image Segmentation and TEBHR

but they are significantly lower than ours for the rest of databases: MGCD is higher with

9.9%, 9% and 8% for respectively Robot Navigation, EEG Eye State and Telescope. It

should be noted that, unlike its results in terms of structure, the prediction power shown

by Friedman’s approach can be explained by the fact that the entropy measure can be

considered as a very well suited metric for the classification task (which is also used by

many supervised classification algorithms such as the decision tree) because it tries to

find the set of cut points that enhance the entropy measure of the class given the rest of

variables, increasing therefore the efficiency of the classifier. But we should remind that

we are significantly better than Friedman in terms of structure quality and run times

computation. Our cluster-based approaches perform efficiently both structure learning

and class classification problems.

8.3 Conclusion

In this chapter, we have performed an experimental study on the multivariate discretiza-

tion approaches developed in the preceding chapter. We compared them with two



Chapter 8. Evaluation of multivariate discretization algorithm 162

Databases MGCD TMGCD Ruichu Friedman
Robot Navigation 88.03 85.76 78.32 76.65

Image Segmentation 90.19 85.47 82.03 90.82
Eye 64.22 65.34 59.49 61.24

Telescope 76.00 76.32 75.21 72.33
Letters recognition 60.14 46.42 45.85 -

Banknote 89.27 88.84 80.04 89.48
TEBHR 100 100 100 100

Table 8.5: Resulting classification rates using the UCI datasets

Databases MGCD TMGCD Ruichu Friedman
Robot Navigation 0.979 0.969 0.858 0.88

Image Segmentation 0.98 0.98 0.96 0.98
Eye 0.70 0.70 0.6 0.61

Telescope 0.83 0.83 0.79 0.75
Letters recognition 0.95 0.9 0.9 -

Banknote 0.92 0.94 0.79 0.89
TEBHR 1 1 1 1

Table 8.6: Resulting ROC are using the UCI datasets

Databases MGCD TMGCD Ruichu Friedman
Robot Navigation 0.87 0.84 0.72 0.68

Image Segmentation 0.89 0.84 0.81 0.9
EEG Eye State 0.63 0.64 0.35 0.6

Telescope 0.74 0.74 0.72 0.69
Letters recognition 0.6 0.47 0.46 -

Banknote 0.89 0.88 0.8 0.89
TEBHR7 1 1 1 1

Table 8.7: Resulting F-score rates using the UCI datasets

state-of-the-art algorithms: Ruichu (univariate approach) and Friedman (multivariate

approach). The experimentations were carried out using synthetic datasets generated

from both random and real world BNs. In addition, real-world datasets (taken from

the UCI repository), have been used to test the quality of the CPTs resulting from each

discretization.

As shown in the previous sections, the original way by which the conditional indepen-

dences between variables have been taken into consideration during the discretization

process has enabled our methods to significantly outperform the state-of-the-art algo-

rithms. This improvement has been shown in terms of structure quality: unlike the

other methods, our approaches have allowed to efficiently learn the set of conditional

dependences/arcs between random variables, minimizing therefore the information loss

(which has been measured in terms of Precision, Recall and F-sore).



Chapter 8. Evaluation of multivariate discretization algorithm 163

The reliability of our methods in terms of CPTs parameters quality has been demon-

strated throughout the computation of the prediction power related to each discretization

by using a set of real world datasets that do no made any assumption about the vari-

ables distribution (which make the evaluation more reliable). As shown, our approaches

allow to perform efficiently the supervised classification task since they outperform in

the majority of the datasets the other methods in terms of classification rate, area under

ROC curve and F-score measures. In all cases (structure and prediction), the reliability

of our approaches compared to the other methods comes precisely from the way by which

the conditional independences are taken into consideration, but also from the proposed

methods to compute the set of cut points of each interval. In this context, the significant

difference w.r.t. Ruichu has been explained by the fact that the latter does not take

into consideration the set of conditional dependences/arcs learnt during the BN learning

phase, since it performs a simple univariate discretization. Regarding Friedman, despite

the multivariate feature of this method, it fails to obtain good results (especially in terms

of structure quality) because of the bad choice of the entropy criterion to perform its

multivariate discretization in the BN learning context.



Chapter 9

Conclusion and Future Works

9.1 Conclusion

Performing the diagnosis of severe nuclear accident scenarios from sensors’ partial obser-

vations is a challenging task. In that respect, the Fukushima nuclear accident highlighted

several issues. Notably, the experts of the domain were confronted with the difficulty of

giving a detailed explanation of the appropriate severe accident scenarios that gave rise

to the observed phenomena (following the accident). To cope with this problem, several

simulations of possible accidental scenarios have been conducted using the ASTEC soft-

ware packages in order to obtain a good approximation (or reconstruction) of the most

probable scenario that induced the available observations (vessel level, pressure in the

containment, rejected iodine amount, containment break, etc.). In this context, ASTEC

simulations have focused mainly on the best known accident scenarios that could occur

in any pressurized water reactor (PWR) that may lead to the core melting. However,

this approach was inefficient because, as is well known, the diagnosis task needs a back-

ward induction on the time scale of the accident to determine exactly what happened in

the PWR rather than performing a prognosis analysis (as the ASTEC simulation does).

More precisely, the difficulty of applying such an approach in this diagnosis application

results from at least three reasons:

i) the existence of an infinity of accident scenarios that could be imagined in a given

PWR;

ii) the uncertainty related to many phenomena that may occur during the accident

(chemical reactions, containment failure, etc.), which are not easily represented

with the ASTEC code;

iii) the lack of assignment of a credibility degree (or a probability) to the different

possible scenarios at the end of the diagnosis process.

164



Chapter 9 Conclusion and Future Works 165

To cope with these issues, BNs and their inference engines seem better suited for helping

Decision Makers make the best diagnosis of the accident scenario given the partial avail-

able observations. We believe that they could have helped limit significantly the severe

consequences of the accident.

Bayesian networks (BN) allow to represent the different accident scenarios with a graph-

ical structure whose nodes represent the random variables involved in the different phe-

nomena inside the reactor. They enable the compact representation of the system under

study by means of a graphical and probabilistic formalism, easily understandable by any

user. In addition, they are supplied with fast inference engines that enable to answer

efficiently various types of probabilistic queries (computation of marginal, a priori, a

posteriori probabilities, of most probable explanations, of maximum a posteriori, etc.),

which perfectly suits our diagnosis purpose. This is the reason why we have decided to

work with this predictive model.

As discussed in Chapter 3, in the past twenty years, numerous efforts have been devoted

to learn both BN’s graphical structure and the parameters of their conditional probabil-

ity tables from datasets. As a consequence, these algorithms can be considered as a good

support helping to learn automatically the BN from the simulated dataset without nec-

essarily needing the domain expert knowledge. However, there exist important critical

applications for which no current BN learning algorithm proves to be satisfactory. Such

a situation occurs in our diagnosis case because some deterministic relations between

some variables exist in the data. In this context, deterministic relations essentially rep-

resent equations modeling the various phenomena occurring in a damaged nuclear power

plant during a severe accident (e.g., ideal law gas). The presence of such relations in the

dataset makes BNs learning a complex task since the faithfulness property, on which rely

the majority of the learning algorithms, is ruled out, i.e., the equivalence between the

conditional independences represented by graph G and those of the true distribution P

fails to hold. In this case, learning algorithms can fail to recover a correct BN structure.

The problem of BN structure learning from data containing deterministic relations has

been studied in details in Chapters 4 and 5. For solving this issue, we have provided an

algorithm, which relies on very effective dedicated rules whose mathematical correctness

has been proven. The general architecture of the approach we proposed is as follows:

it first constructs the skeleton of the BN, i.e., its graphical structure in which arcs are

substituted by edges; then our algorithm converts this structure into a directed acyclic

graph which is subsequently refined by a greedy search. At each step of the algorithm,

we have introduced our own rules to cope with deterministic relations. Those exploit

both valuable information coming from deterministic nodes and other useful properties

entailed by BNs. Exploiting these rules, we have been able to improve significantly

the structure learning quality compared to the state-of-the-art methods. This has been

highlighted in the experimental study of Chapter 6.



Chapter 9 Conclusion and Future Works 166

Unfortunately, BN structure learning in the presence of deterministic relations is only

one of the problems raised by severe accident diagnosis. Another one results from the

existence of a mixture of continuous and discrete variables in the dataset, which forms

an obstacle on the effectiveness of BNs learning algorithms. A a matter of fact, BN

learning and inference involve only discrete variables. One common way to address

this issue consists in preprocessing the dataset by first discretizing continuous variables

and, then, in resorting to classical BN learning algorithms. However, as discussed in

Chapter 5, such a method is inefficient since the conditional dependences/arcs learnt

during the structure learning phase are not taken into consideration, which prevents the

BN learning algorithm to be fully effective.

In Chapter 7, we therefore advocated to discretize while learning the BN structure and

we proposed two new algorithms that take into consideration all the conditional de-

pendences/arc learnt so far, thereby minimizing the information loss. Unfortunately,

multivariate discretization is very hard to perform when many variables are involved.

So, in order to be scalable and to reduce as much as possible the computational over-

head incurred by multivariate discretization on the learning process, we have proposed to

perform a local search algorithm rather than a global one, discretizing only one variable

at a time while maintaining the discretization of the rest fixed. Iterating this process, we

reach “local” optima. Regarding the conditional independences between variables, they

have been taken into account by considering the discretization modalities of the Markov

blanket of each continuous variable. As proven in Chapter 7, this makes the considered

continuous variables independent from the discretization of the rest of the model.

To compute the number of intervals in the discretization of the continuous variables

as well as their boundaries (or cut points), our algorithms assume that the continuous

variables are distributed w.r.t. a truncated Gaussian mixture model, i.e., each interval is

represented by its own truncated normal distribution. As such, in our case, the discretiza-

tion process consists in finding the optimal parameters of the considered discretization.

To do so, we have proposed two different algorithms, both of them relying on the use of

the EM algorithm to perform the discretization task:

• the first version consists to first estimate the set of parameters of an untruncated

(instead of a truncated) mixture model using the EM algorithm. In a second step, it

computes the best corresponding set of cut points by solving a quadratic equation.

• the second version directly estimates the truncated mixture model parameters using

another variant of the EM algorithm with a gradient descent algorithm.

The efficiency of both proposed approaches has been shown in the experimental study

performed in Chapter 8. The improvement of our algorithms w.r.t. the state-of-the-art



Chapter 9 Conclusion and Future Works 167

methods has been shown both in terms of the quality of the learnt structure and that of

the learnt probability distribution (better predictive model).

9.2 Future works

Since our problem comes from a real-world application, several extensions of our pro-

posed algorithms can be considered, which aim to enhance our approaches by taking into

consideration others constraints related to the diagnosis process that were not considered

in our scope. In the following, we describe some of the possible extensions, and we begin

by the structure learning algorithm.

First, the proposed BN structure learning algorithms were essentially tested on synthetic

datasets which have been sampled from random BNs. The main reasons for using such

datasets were that it allowed us:

i) to generate CPTs representing deterministic relations between variables;

ii) to vary many important parameters related to the BN (the number of deterministic

nodes, the complexity of the BN, etc.);

iii) to have a ground truth that could be exploited to assess the quality of the BNs

produced by our algorithms.

However, it would of course be important to investigate in more details the behavior of

our structure learning algorithms on real-world datasets. In this context, the datasets

generated with ASTEC would be a very good choice to strongly validate the performance

of our algorithm. We should emphasize here that we could not perform such experiments

due to the absence of complete databases containing the possible accident scenarios that

may occur in a PWR. Note that the datasets used during our work and from which

the previous problems have been revealed (related to the structure learning and to the

discretization process), represent a very simple case of accidents that cannot be exploited

to perform a complete experimental study. Second, the only source of unfaithfulness that

has been considered in our scope came from the presence of deterministic nodes in G.
However in many real-world application domains (and very likely in ours), others causes

of unfaithfulness of P may occur, notably the equivalence partitions and the pseudo-

independent relations. The latter should be taken into account because they may induce

many errors during the BN structure learning (if they exist in D). Finally, we believe

that the representation of the temporal evolution of the severe nuclear accident should

also be taken into account by using dynamic BNs rather than a static one. Besides the

dynamic aspect of the severe accidents, the latter are characterized by a non-stationary

process over time. For instance, the Hydrogen (H2) amount released at time t is less



Chapter 9 Conclusion and Future Works 168

important than the one induced by the molten core-concrete interactions at time t +

n. Hence, we believe that an extended version of the BN structure learning algorithm

taking into consideration the non-stationarity of the process may significantly improve

the prognosis/diagnosis analysis.

Regarding the discretization problem, other possible extensions of our algorithms can be

incorporated. First, it is important to make our discretization approach more generic

through, for instance, the use of non-parametric probability estimation methods rather

than a truncated mixture model. Another possibility to make our discretization ap-

proaches more generic consists in replacing our assumption about the distribution of the

observations within each interval by a mixture of truncated (or untruncated) Gaussian

models rather than only one Gaussian. Second, the way by which conditional indepen-

dences between variables are taken into account using the Markov blanket reaches its

limit when the number of variables composing the blanket becomes large. In such a

case, memory consumption becomes too large and the algorithms fails for that reason.

It would therefore be of interest to produce new algorithms that do not need to store in

memory as many parameters as those induced by the Markov blanket. Finally, merg-

ing our BN structure learning algorithm with deterministic relations and those with the

discretization approaches is a necessity in our diagnosis case, since the Tabu search used

in our discretization algorithm does not suit the cases where the faithfulness property

is lost. Recall that the main issue in such a case is that our approach starts by learn-

ing the skeleton (undirected graph) of the BN while the discretization approach needs

a completely oriented graph to perform the parameters estimation. So, new algorithms

should be developed in this direction.



Bibliography

[AC96] Silvia Acid and Luis M. De Campos. An algorithm for finding mini-

mum d-separating sets in belief networks. In Uncertainty in Artificial

Intelligence (UAI), pages 3–10, 1996.

[AD03] D. Allen and A. Darwiche. New advances in inference by recursive con-

ditioning. In Uncertainty in Artificial Intelligence (UAI), pages 2–10,

2003.

[AGM06] Joaquín Abellán, Manuel Gómez-Olmedo, and Serafín Moral. Some vari-

ations on the PC algorithm. In Workshop on Probabilistic Graphical

Models (PGM), pages 1–8, 2006.

[Aka70] Hirotugu Akaike. Statistical predictor identification. Annals of the In-

stitute of Statistical Mathematics, 22(1):203–217, 1970.

[BDTP03] F. Bacchus, S. Dalmao, and T. Toniann Pitassi. DPLL with caching: A

new algorithm for #sat and Bayesian inference. In Electronic Colloquium

on Computational Complexity (ECC), 2003.

[BHKL91] PP Bonissone, M Henrion, LJ Kanal, and JF Lemmer. Equivalence

and synthesis of causal models. In Uncertainty in Artificial Intelligence

(UAI), volume 6, page 255, 1991.

[Bou04] Marc Boullé. Khiops: A statistical discretization method of continu-

ous attributes. The Journal of Machine Learning Research, 55(1):53–69,

2004.

[Bou06] M. Boullé. MODL: a Bayes optimal discretization method for continuous

attributes. The Journal of Machine Learning Research, 65(1):131–165,

2006.

[Bun91] Wray Buntine. Theory refinement on bayesian networks. In Uncertainty

in Artificial Intelligence (UAI), pages 52–60. Morgan Kaufmann Pub-

lishers Inc., 1991.

169



Bibliography 170

[C+75] United States Nuclear Regulatory Commission et al. Reactor safety

study. an assessment of accident risks in us commercial nuclear power

plants. executive summary. Technical report, United States Nuclear Reg-

ulatory Commission, 1975.

[CC90] R Martin Chavez and Gregory F Cooper. A randomized approximation

algorithm for probabilistic inference on bayesian belief networks. Net-

works, 20(5):661–685, 1990.

[CD08] M. Chavira and A. Darwiche. On probabilistic inference by weighted

model counting. Artificial Intelligence Journal, 172(6-7):772–799, 2008.

[CGK+02] J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu. Learning Bayesian

networks from data: An information-theory based approach. Artificial

Intelligence Journal, 137(1-2):43–90, 2002.

[CGOM08] A Cano, M Gómez-Olmedo, and S Moral. A score based ranking of

the edges for the pc algorithm. In Workshop on Probabilistic Graphical

Models (PGM), pages 41–48. Citeseer, 2008.

[CH92a] G. F. Cooper and E. Herskovits. Bayesian method for the induction

of probabilistic networks from data. The Journal of Machine Learning

Research, 9:309–347, 1992.

[CH92b] Gregory F Cooper and Edward Herskovits. A bayesian method for the

induction of probabilistic networks from data. The Journal of Machine

Learning Research, 9(4):309–347, 1992.

[CH96] David Maxwell Chickering and David Heckerman. Efficient approxima-

tions for the marginal likelihood of incomplete data given a bayesian

network. In Uncertainty in Artificial Intelligence (UAI), pages 158–168.

Morgan Kaufmann Publishers Inc., 1996.

[Chi95a] David Maxwell Chickering. A transformational characterization of equiv-

alent bayesian network structures. In Uncertainty in Artificial Intelli-

gence (UAI), pages 87–98. Morgan Kaufmann Publishers Inc., 1995.

[Chi95b] David Maxwell Chickering. A transformational characterization of equiv-

alent bayesian network structures. In Uncertainty in Artificial Intelli-

gence (UAI), pages 87–98. Morgan Kaufmann Publishers Inc., 1995.

[Chi02a] David Maxwell Chickering. Learning equivalence classes of Bayesian-

network structures. Journal of Machine Learning Research, 2:445–498,

February 2002.



Bibliography 171

[Chi02b] David Maxwell Chickering. Optimal structure identification with greedy

search. Journal of Machine Learning Research, 3:507–554, November

2002.

[CM14] Diego Colombo and Marloes H Maathuis. Order-independent constraint-

based causal structure learning. The Journal of Machine Learning Re-

search, 15(1):3741–3782, 2014.

[Dar01] A. Darwiche. Recursive conditioning. Artificial Intelligence Journal,

125(1-2):5–41, 2001.

[Daw79] A Philip Dawid. Conditional independence in statistical theory. Journal

of the Royal Statistical Society. Series B (Methodological), pages 1–31,

1979.

[DD02] Denver Dash and Marek J Druzdzel. Robust independence testing for

constraint-based learning of causal structure. In Uncertainty in Artificial

Intelligence (UAI), pages 167–174. Morgan Kaufmann Publishers Inc.,

2002.

[Dec99] Rina Dechter. Bucket elimination: A unifying framework for reasoning.

Artificial Intelligence Journal, 113(1):41–85, 1999.

[Die96] F.J. Diez. Local conditioning in Bayesian networks. Artificial Intelligence

Journal, 87:1–20, 1996.

[DJM+10] P. Daniusis, D. Janzing, J. Mooij, J. Zscheischler, B. Steudel, K. Zhang,

and B. Schölkopf. Inferring deterministic causal relations. In Uncertainty

in Artificial Intelligence (UAI), pages 143–150, 2010.

[DKS95] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised

discretization of continuous features. In The International Conference

on Machine Learning (ICML), pages 194–202, 1995.

[DLR77] A. P Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical

Society,, pages 1–38, 1977.

[ENFS02] Gal Elidan, Matan Ninio, Nir Friedman, and Dale Shuurmans. Data

perturbation for escaping local maxima in learning. In AAAI Conference

on Artificial Intelligence, pages 132–139, 2002.

[FG96] N. Friedman and M. Goldszmidt. Discretizing continuous attributes

while learning Bayesian networks. In The International Conference on

Machine Learning (ICML), pages 157–165, 1996.



Bibliography 172

[FHJ08] Andrew Fast, Michael Hay, and David Jensen. Improving accuracy of

constraint-based structure learning. Technical report, Technical report

08-48, University of Massachusetts Amherst, Computer Science Depart-

ment, 2008.

[FI93] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-

valued attributes for classification learning. In International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 1022–1029, 1993.

[FJ00] A. Faÿ and J.-Y. Jaffray. A justification of local conditioning in Bayesian

networks. International Journal of Approximate Reasoning (IJAR),

24(1):59–81, 2000.

[FJ09] Andrew Fast and David Jensen. Constraint relaxation for learning the

structure of bayesian networks. Technical report, Technical Report 09-18,

Computer Science Department, University of Massachusetts, Amherst,

2009.

[GJ06] Christophe Gonzales and N. Jouve. Learning bayesian networks structure

using markov networks. In Workshop on Probabilistic Graphical Models

(PGM), pages 147–154, 2006.

[Glo90] Fred Glover. Tabu search part ii. ORSA Journal on computing, 2(1):4–

32, 1990.

[GP01] Steven B Gillispie and Michael D Perlman. Enumerating markov equiv-

alence classes of acyclic digraph models. In Uncertainty in Artificial

Intelligence (UAI), pages 171–177. Morgan Kaufmann Publishers Inc.,

2001.

[GVP90] D. Geiger, T. Verma, and J. Pearl. Identifying independence in Bayesian

networks. Networks, 20:507–534, 1990.

[Hec95] D. Heckerman. A tutorial on learning with Bayesian networks. Technical

Report TR-95-06, Microsoft Research, 1995.

[HGC95] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian net-

works: The combination of knowledge and statistical data. The Journal

of Machine Learning Research, 20:197–243, 1995.

[ICR04] J. S. Ide, F. G. Cozman, and F. T. Ramos. Generating random Bayesian

networks with constraints on induced width. In European Conference on

Artificial Intelligence (ECAI), pages 323–327, 2004.

[JHS10] D. Janzing, P. Hoyer, and B. Schölkopf. Telling cause from effect based

on high-dimensional observations. In The International Conference on

Machine Learning (ICML), pages 479–486, 2010.



Bibliography 173

[J.L07] J.Lemeire. Learning Causal Models of Multivariate Systems and the

Value of it for the Performance Modeling of Computer Programs. PhD

thesis, 2007.

[JLO90] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in

causal probabilistic networks by local computations. Computational

Statistics Quarterly, 4:269–282, 1990.

[JLZW09] S. Jiang, X. Li, Q. Zheng, and L. Wang. Approximate equal frequency

discretization method. InGlobal Congress on Intelligent Systems (GCIS),

pages 514–518, 2009.

[JOL89] Finn V. Jensen, Kristian G. Olesen, and Steffen L. Lauritzen. Bayesian

updating in recursive graphical models by local computations. Technical

Report R 89-15, Aalborg University (DK), 1989.

[Ker92] R. Kerber. ChiMerge: Discretization of numeric attributes. In AAAI

Conference on Artificial Intelligence, pages 123–128, 1992.

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Prin-

ciples and Techniques - Adaptive Computation and Machine Learning.

The MIT Press, 2009.

[KK99] W. Kwedlo and M. Krȩtowski. An evolutionary algorithm using multi-

variate discretization for decision rule induction. In Principles of Data

Mining and Knowledge Discovery (PKDD), pages 392–397, 1999.

[KKR13] Keiji Kanazawa, Daphne Koller, and Stuart J. Russell. Stochas-

tic simulation algorithms for dynamic probabilistic networks. CoRR,

abs/1302.4965, 2013.

[KS96] Daphne Koller and Mehran Sahami. Toward optimal feature selection. In

International Conference on Machine Learning (ICML), pages 284–292,

1996.

[LB94] W. Lam and F. Bacchus. Learning Bayesian belief networks: An ap-

proach based on the MDL principle. Computational Intelligence, 10:269–

293, 1994.

[LMCL12] J. Lemeire, S. Meganck, F. Cartella, and T. Liu. Conservative

independence-based causal structure learning in absence of adjacency

faithfulness. International Journal of Approximate Reasoning (IJAR),

53(9):1305–1325, 2012.

[Luo06] W. Luo. Learning Bayesian networks in semi-deterministic systems. In

The Canadian Conference on Artificial Intelligence, volume 4013 of Lec-

ture notes in computer science, pages 230–241, 2006.



Bibliography 174

[LW89] S.L. Lauritzen and N. Wermuth. Graphical models for associations be-

tween variables, some of which are qualitative and some quantitative.

Annals of Statistics, 17(1):31–57, 1989.

[Mar03] Dimitris Margaritis. Learning Bayesian network model structure from

data. PhD thesis, US Army, 2003.

[MC98] S. Monti and G.F. Cooper. A multivariate discretization method for

learning Bayesian networks from mixed data. In Uncertainty in Artificial

Intelligence (UAI), pages 404–413, 1998.

[MC99] S. Monti and G.F. Cooper. A latent variable model for multivariate

discretization. In Association for Information Systems (AIS), pages 249–

254, 1999.

[Mee95] Christopher Meek. Causal inference and causal explanation with back-

ground knowledge. In Uncertainty in Artificial Intelligence (UAI), pages

403–410. Morgan Kaufmann Publishers Inc., 1995.

[MGJCC14] Ahmed Mabrouk, Christophe Gonzales, Karine Jabet-Chevalier, and Eric

Chojnaki. An Efficient Bayesian Network Structure Learning Algorithm

in the Presence of Deterministic Relations. In European Conference on

Artificial Intelligence (ECAI), volume 263 of Frontiers in Artificial In-

telligence and Applications, pages 567–572, August 2014.

[MJ99] A.L. Madsen and F.V. Jensen. LAZY propagation: A junction tree

inference algorithm based on lazy inference. The journal of Artificial

Intelligence Research, 113(1–2):203–245, 1999.

[MRS01] S. Moral, R. Rumi, and A. Salmeron. Mixtures of truncated exponentials

in hybrid Bayesian networks. In European Conference on Symbolic and

Quantitative Approaches to Reasoning with Uncertainty (ECSQARU),

volume 2143 of Lecture Notes in Artificial Intelligence, pages 156–167,

2001.

[Nil98] D Nilsson. An efficient algorithm for finding the M most probable con-

figurations in probabilistic expert systems. Statistics and Computing,

8(2):159–173, 1998.

[PD04] J. D. Park and A. Darwiche. Complexity results and approximation

strategies for MAP explanations. The Journal of Artificial Intelligence

Research, 21:101–133, 2004.

[Pea87] Judea Pearl. Evidential reasoning using stochastic simulation of causal

models. Artificial Intelligence Journal, 32(2):245–257, 1987.



Bibliography 175

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kauffmann, 1988.

[Pea00] J. Pearl. Causality: Models, Reasoning and Inference. Cambridge Uni-

versity Press, Cambridge, England, 2000.

[PP86] J. Pearl and A. Paz. Graphoids: Graph-based logic for reasoning about

relevance relations or when would x tell you more about y if you already

know z? In European Conference on Artificial Intelligence (ECAI), pages

55–61, Brighton, UK, 1986.

[PV91a] J. Pearl and T.S. Verma. A theory of inferred causation. In Principles

of Knowledge Representation and Reasoning (KR), 1991.

[PV+91b] Judea Pearl, Thomas Verma, et al. A theory of inferred causation. Mor-

gan Kaufmann San Mateo, CA, 1991.

[Rat03] C. Ratanamahatana. CloNI: Clustering of sqrt(n)-interval discretization.

In nternational Conference on Data Mining Including Building Applica-

tion for CRM & Competitive Intelligence, 2003.

[RdMAC08] S. Rodrigues de Morais, A. Aussem, and M. Corbex. Handling almost-

deterministic relationships in constraint-based Bayesian network discov-

ery: Application to cancer risk factor identification. In European Sym-

posium on Artificial Neural Networks (ESANN), pages 101–106, 2008.

[RZS06] Joseph Ramsey, Jiji Zhang, and Peter Spirtes. Adjacency-faithfulness

and conservative causal inference. In Uncertainty in Artificial Intelligence

(UAI), pages 401–408, 2006.

[RZWL13] C. Ruichu, H. Zhifeng, W. Wen, and W. Lijuan. Regularized Gaussian

mixture model based discretization for gene expression data association

mining. Applied intelligence, 39(3):607–613, 2013.

[S+78] Gideon Schwarz et al. Estimating the dimension of a model. The annals

of statistics, 6(2):461–464, 1978.

[SBK05] T. Sang, P. Beame, and H. A. Kautz. Performing Bayesian inference by

weighted model counting. In AAAI Conference on Artificial Intelligence,

2005.

[Scu09] Marco Scutari. Learning bayesian networks with the bnlearn r package.

arXiv preprint arXiv:0908.3817, 2009.

[SEHK11] D. Song, C.H. Ek, K. Huebner, and D. Kragic. Multivariate discretiza-

tion for Bayesian network structure learning in robot grasping. In The



Bibliography 176

International Conference on Robotics and Automation (ICRA), pages

1944–1950, 2011.

[SGS01] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and

Search. Bradford Book, 2nd edition, 2001.

[Sha86] R.D. Shachter. Evaluating influence diagrams. Operations Research,

34(6):871–882, 1986.

[Sha96] G. Shafer. Probabilistic expert systems. SIAM, 1996.

[She97] P.P. Shenoy. Binary join trees for computing marginals in the Shenoy-

Shafer architecture. International Journal of Approximate Reasoning

(IJAR), 17(1):1–25, 1997.

[SP90] Ross D. Shachter and Mark A. Peot. Simulation approaches to general

probabilistic inference on belief networks. In Uncertainty in Artificial In-

telligence (UAI), UAI ’89, pages 221–234, Amsterdam, The Netherlands,

The Netherlands, 1990. North-Holland Publishing Co.

[SSM+96] P. Spirtes, R. Scheines, C. Meek, T. Richardson, C. Glymour, H. Hoi-

jtink, and A. Boomsma. TETRAD 3: Tools for Causal Modeling – User’s

Manual, 1996.

[ST99] Harald Steck and Volker Tresp. Bayesian belief networks for data min-

ing. In Workshop on Data Mining and Data Warehousing als Grundlage

moderner entscheidungsunterstützender Systeme, pages 145–154. Cite-

seer, 1999.

[SW11] P.P. Shenoy and J.C. West. Inference in hybrid Bayesian networks using

mixtures of polynomials. International Journal of Approximate Reason-

ing (IJAR), 52(5):641–657, 2011.

[TAS03] Ioannis Tsamardinos, Constantin F Aliferis, and Alexander Statnikov.

Time and sample efficient discovery of markov blankets and direct causal

relations. In ACM SIGKDD International conference on Knowledge Dis-

covery and Data Mining, pages 673–678. ACM, 2003.

[TASS03] Ioannis Tsamardinos, Constantin F Aliferis, Alexander R Statnikov, and

Er Statnikov. Algorithms for large scale markov blanket discovery. In

Florida Artificial Intelligence Research Society Conference (FLAIRS),

volume 2, 2003.

[TBA06] I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-

climbing Bayesian network structure learning algorithm. The Journal of

Machine Learning Research, 65(1):31–78, 2006.



Bibliography 177

[TK05] M. Teyssier and D. Koller. Ordering-based search: A simple and effective

algorithm for learning bayesian networks. In Uncertainty in Artificial

Intelligence (UAI), pages 584–590, Edinburgh, Scottland, UK, July 2005.

[vDvdGT03a] Steven van Dijk, Linda C. van der Gaag, and Dirk Thierens. A skeleton-

based approach to learning bayesian networks from data. In Knowledge

Discovery in Databases: PKDD 2003, 7th European Conference on Prin-

ciples and Practice of Knowledge Discovery in Databases, pages 132–143,

2003.

[vDVDGT03b] Steven van Dijk, Linda C Van Der Gaag, and Dirk Thierens. A skeleton-

based approach to learning bayesian networks from data. In Knowledge

Discovery in Databases: PKDD, pages 132–143. Springer, 2003.

[WL04] Man Leung Wong and Kwong Sak Leung. An efficient data mining

method for learning bayesian networks using an evolutionary algorithm-

based hybrid approach. IEEE Transactions on Evolutionary Computa-

tion, 8(4):378–404, 2004.

[XG08] Xianchao Xie and Zhi Geng. A recursive method for structural learning

of directed acyclic graphs. J. Mach. Learn. Res., 9:459–483, jun 2008.

[YM05] Sandeep Yaramakala and Dimitris Margaritis. Speculative markov blan-

ket discovery for optimal feature selection. In International conference

on Data Mining (ICDM), pages 4–pp. IEEE, 2005.

[ZRR98] D.A. Zighed, S. Rabaséda, and R. Rakotomalala. FUSINTER: a method

for discretization of continuous attributes. International Journal of Un-

certainty, Fuzziness and Knowledge-Based Systems, 6(03):307–326, 1998.


	Contents
	1 General introduction
	I State of the art
	2 Bayesian networks
	2.1 Definition of Bayesian networks
	2.2 Graphical properties of Bayesian networks
	2.2.1 d-separation
	2.2.2 I-map, D-map and P-map properties
	2.2.3 Markov blanket

	2.3 Markov equivalence class
	2.4 Probabilistic inference
	2.5 Reasoning with BN
	2.5.1 Conditional probability query (CP)
	2.5.2 Most probable explanation (MPE)
	2.5.3 Maximum a posteriori (MAP)

	2.6 Conclusion

	3 Learning Bayesian networks
	3.1 Parameters learning
	3.1.1 Preliminary definitions
	3.1.2 Maximum likelihood estimation
	3.1.3 Bayesian estimation

	3.2 Structure learning
	3.2.1 Assumptions made by Bayes net structure learning algorithms
	3.2.2 Preliminary definitions
	3.2.3 Constraint-based approaches
	3.2.3.1 Statistical tests for conditional independence
	3.2.3.2 PC and IC algorithms
	3.2.3.3 Problem of variable ordering dependence
	3.2.3.4 PC-stable
	3.2.3.5 Variations on the PC Algorithm
	3.2.3.6 MMPC approach
	3.2.3.7 Fast-IAMB approach

	3.2.4 Score-based approaches
	3.2.4.1 Possible search spaces
	3.2.4.2 The scoring functions
	3.2.4.3 Heuristics search approaches

	3.2.5 Hybrid approaches

	3.3 Conclusion

	4 Bayes Net structure learning in the absence of faithfulness
	4.1 The causes of unfaithfulness
	4.1.1 Deterministic relationships
	4.1.2 Information equivalence
	4.1.3 Equivalent partitions

	4.2 Absence of faithfulness when learning the Bayes Net structure
	4.2.1 When learning the skeleton
	4.2.2 When orienting the skeleton

	4.3 Related work
	4.4 Conclusion


	II Contributions
	5 An efficient Bayes Net structure learning in the presence of deterministic relations 
	5.1 A concrete case of unfaithfulness in the nuclear field
	5.2 A new learning algorithm suited for deterministic relations
	5.2.1 Assumptions
	5.2.2 Deterministic nodes detection with an entropy function
	5.2.3 First phase: learning the BN's skeleton
	5.2.3.1 Edges deletion with deterministic nodes
	5.2.3.2 Reducing the sizes of the conditioning sets during G2 tests

	5.2.4 Second phase: orientation and refinement

	5.3 Conclusion

	6 Evaluation on Benchmark Bayesian networks
	6.1 Principles of the benchmark evaluation
	6.2 Using simulated datasets from synthetic Bayesian networks
	6.2.1 The evaluation of the whole network structure
	6.2.2 Evaluation of substructures around deterministic nodes

	6.3 Conclusion

	7 Cluster-based multivariate discretization 
	7.1 Basics on BN Structure Learning and Discretization
	7.2 A New Multivariate Discretization-Learning Algorithm
	7.2.1 Assumptions
	7.2.2 Discretization Criterion
	7.2.3 Two proposed versions for multivariate discretization
	7.2.4 Discretization exploiting the BN structure
	7.2.4.1 EM algorithm preliminaries

	7.2.5 Gaussian Mixture model-based discretization
	7.2.5.1 Parameters estimation with EM algorithm
	7.2.5.2 Determination of the Cut Points
	7.2.5.3 Score and Number of Cut Points
	7.2.5.4 Summary

	7.2.6 Truncated mixture Gaussian model based discretization
	7.2.6.1 Truncated mixture model parameters estimating with EM


	7.3 Conclusion

	8 Evaluation of the multivariate discretization algorithms
	8.1 Evaluations on synthetic Bayesian networks
	8.1.1 Benchmarks on datasets generated from random BNs
	8.1.2 Benchmarks on continuous datasets from real BNs

	8.2 Evaluation of the learnt BN CPTs quality
	8.2.1 Prediction accuracy results

	8.3 Conclusion

	9 Conclusion and Future Works
	9.1 Conclusion
	9.2 Future works

	Bibliography


