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Discipline : MATHÉMATIQUES
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Chapter 1

General synthesis

1.1 Introduction

The objective pursued in this work is to develop and study, from a theoretical point of

view, an explicit scheme for the simulation of non viscous compressible flows, modelled

either by the barotropic Euler equations or by the full Eulerequations for an ideal gas.

Our basic choice is to use an explicit variant of implicit andsemi-implicit schemes that

were developed and studied recently in the framework of the simulation of compressible

flows at all speeds [17, 29, 26, 27]; in these latter works, theimplicit scheme is studied

as a first step in the mathematical analysis of pressure correction schemes, which extend

algorithms that are classical in the incompressible framework; these are based on (inf-

supstable) staggered discretizations. In our approach, the upwinding techniques which

are implemented for stability reasons are performed for each equation separately and with

respect to the material velocity only. This is in contradiction with the most common strat-

egy adopted for hyperbolic systems, where upwinding is built from the wave structure of

the system (seee.g.[61, 6] for surveys). However, it yields algorithms which are used

in practice (seee.g. the so-called AUSM family of schemes [45, 44]), because of their

generality (a closed-form solution of Riemann problems is not needed), their implemen-

tation simplicity and their efficiency, thanks to an easy construction of the fluxes at the

cell faces. But these schemes are scarcely studied from a theoretical point of view; one

of our main concerns here will thus be to bring, as far as possible, theoretical arguments

supporting our numerical developments.

We give in this chapter a review of the results obtained for the explicit version of the

1
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schemes in the case of the (inviscid) Euler equations, and refer to [28] for a review of the

results of the implicit and semi–implicit versions, to [26,27] for the detailed proofs of

the results, and to [18] for the implementation of the pressure correction scheme in the

case of a drift-diffusion model for two phase flows.

The chapter is organized as follows. We start by the description of the staggered

meshes which are used for the discretization in space, usingeither a finite volume – non-

conforming finite element or a full “MAC-type” finite volume scheme. We then study the

scheme for the barotropic Euler equations in Section 1.3, for the full Euler equations in

Section 1.4, and for the radial compressible flows in Section1.5. Finaly, some numerical

results are given in Section 1.6 to confort theoretical results.

1.2 Meshes and unknowns

LetM be a decomposition of the domainΩ, supposed to be regular in the usual sense of

the finite element literature (e.g.[10]). The cells may be:

- for a general domainΩ, either convex quadrilaterals (d = 2) or hexahedra (d = 3)

or simplices, both type of cells being possibly combined in asame mesh,

- for a domain the boundaries of which are hyperplanes normalto a coordinate axis,

rectangles (d = 2) or rectangular parallelepipeds (d = 3) (the faces of which, of

course, are then also necessarily normal to a coordinate axis).

By E andE(K) we denote the set of all(d − 1)-facesσ of the mesh and of the element

K ∈ M respectively. The set of faces included in the boundary ofΩ is denoted byEext
and the set of internal ones (i.e.E \ Eext) is denoted byEint; a faceσ ∈ Eint separating the

cellsK andL is denoted byσ = K|L. The outward normal vector to a faceσ of K is

denoted bynK,σ. ForK ∈ M andσ ∈ E , we denote by|K| the measure ofK and by|σ|
the(d− 1)-measure of the faceσ. For1 ≤ i ≤ d, we denote byE (i) ⊂ E andE (i)

ext ⊂ Eext
the subset of the faces ofE andEext respectively which are perpendicular to theith unit

vector of the canonical basis ofRd.

The space discretization is staggered, using either the Marker-And Cell (MAC) scheme

[25, 24], or nonconforming low-order finite element approximations, namely the Ran-

nacher and Turek element (RT) [57] for quadrilateral or hexahedric meshes, or the lowest

degree Crouzeix-Raviart (CR) element [11] for simplicial meshes.

Explicit Staggered Schemes for Compressible Flows 2
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For all these space discretizations, the degrees of freedomfor the pressure, the density

and the internal energy (i.e. the discrete pressure, density and internal energy unknowns)

are associated to the cells of the meshM, and are denoted by:

{
pK , ρK , eK , K ∈ M

}
.

Let us then turn to the degrees of freedom for the velocity (i.e. the discrete velocity

unknowns).

- Rannacher-Turek or Crouzeix-Raviart discretizations – The degrees of freedom

for the velocity components are located at the center of the faces of the mesh,

and we choose the version of the element where they representthe average of the

velocity through a face. The set of degrees of freedom reads:

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.

- MAC discretization – The degrees of freedom for theith component of the velocity

are defined at the centre of the facesσ ∈ E (i), so the whole set of discrete velocity

unknowns reads:
{
uσ,i, σ ∈ E (i), 1 ≤ i ≤ d

}
.

We now introduce a dual mesh, which will be used for the finite volume approximation

of the time derivative and convection terms in the momentum balance equation.

- Rannacher-Turek or Crouzeix-Raviart discretizations – For the RT or CR dis-

cretizations, the dual mesh is the same for all the velocity components. When

K ∈ M is a simplex, a rectangle or a cuboid, forσ ∈ E(K), we defineDK,σ as

the cone with basisσ and with vertex the mass center ofK (see Figure 1.1). We

thus obtain a partition ofK in m sub-volumes, wherem is the number of faces of

the mesh, each sub-volume having the same measure|DK,σ| = |K|/m. We extend

this definition to general quadrangles and hexahedra, by supposing that we have

built a partition still of equal-volume sub-cells, and withthe same connectivities;

note that this is of course always possible, but that such a volumeDK,σ may be no

longer a cone; indeed, ifK is far from a parallelogram, it may not be possible to

build a cone havingσ as basis, the opposite vertex lying inK and a volume equal

to |K|/m. The volumeDK,σ is referred to as the half-diamond cell associated to

Explicit Staggered Schemes for Compressible Flows 3
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Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=
K
|Lǫ = D

σ |D
σ ′

Figure 1.1: Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart ele-
ments.

K andσ.

For σ ∈ Eint, σ = K|L, we now define the diamond cellDσ associated toσ by

Dσ = DK,σ ∪ DL,σ; for an external faceσ ∈ Eext ∩ E(K), Dσ is just the same

volume asDK,σ.

- MAC discretization – For the MAC scheme, the dual mesh depends onthe com-

ponent of the velocity. For each component, the MAC dual meshonly differs from

the RT or CR dual mesh by the choice of the half-diamond cell, which, forK ∈ M
andσ ∈ E(K), is now the rectangle or rectangular parallelepiped of basisσ and of

measure|DK,σ| = |K|/2.

We denote by|Dσ| the measure of the dual cellDσ, and byǫ = Dσ|Dσ′ the face

separating two diamond cellsDσ andDσ′ .

Finally, we need to deal with the impermeability (i.e.u ·n = 0) boundary condition.

Since the velocity unknowns lie on the boundary (and not inside the cells), these condi-

tions are taken into account in the definition of the discretespaces. To avoid technicalities

in the expression of the schemes, we suppose throughout thisthesis that the boundary is

a.e.normal to a coordinate axis, (even in the case of the RT or CR discretizations), which

Explicit Staggered Schemes for Compressible Flows 4
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allows to simply set to zero the corresponding velocity unknowns:

for i = 1, . . . , d, ∀σ ∈ E (i)
ext, uσ,i = 0. (1.1)

Therefore, there are no degrees of freedom for the velocity on the boundary for the MAC

scheme, and there are onlyd − 1 degrees of freedom on each boundary face for the CR

and RT discretizations, which depend on the orientation of the face. In order to be able to

write a unique expression of the discrete equations for bothMAC and CR/RT schemes,

we introduce the set of facesE (i)
S associated to the degrees of freedom of each component

of the velocity (S stands for “scheme”):

E (i)
S =

∣
∣
∣
∣
∣

E (i) \ E (i)
ext for the MAC scheme,

E \ E (i)
ext for the CR or RT scheme.

Similarly, we unify the notation for the set of dual faces forboth schemes by defining:

Ẽ (i)
S =

∣
∣
∣
∣
∣

Ẽ (i) \ Ẽ (i)
ext for the MAC scheme,

Ẽ \ Ẽ (i)
ext for the CR or RT scheme,

where the symbol̃refers to the dual mesh; for instance,Ẽ (i) is thus the set of faces of the

dual mesh associated to theith component of the velocity, and̃E (i)
ext stands for the subset

of these dual faces included in the boundary. Note that, for the MAC scheme, the faces

of Ẽ (i) are perpendicular to a unit vector of the canonical basis ofRd, but not necessarily

to theith one.

Note that general domains can easily be addressed (of course, with the CR or RT

discretizations) by redefining, through linear combinations, the degrees of freedom at the

external faces, so as to introduce the normal velocity as a new degree of freedom.

Explicit Staggered Schemes for Compressible Flows 5
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1.3 The compressible barotropic Euler equations

We address in this section the so-called barotropic Euler equations, which consist in the

following system of partial differential equations:

∂t ρ+ div(ρu) = 0, (1.2a)

∂t (ρu) + div(ρu⊗ u) +∇p = 0, (1.2b)

p = ℘(ρ) = ργ . (1.2c)

This problem is posed over an open bounded connected subsetΩ of Rd, 1 ≤ d ≤ 3,

of boundary∂Ω, and a finite time interval(0, T ). The variablet stands for the time,ρ,

u = (u1, . . . , ud) andp are the density, velocity and pressure in the flow. The three above

equations are respectively the mass balance, the momentum balance and the equation

of state of the fluid, which is supposed to take the form℘(s) = sγ, whereγ ≥ 1 is a

coefficient which is specific to the fluid considered. This system must be supplemented

by initial conditions forρ andu, denoted byρ0 andu0, and we assumeρ0 > 0. It must

also be supplemented by a suitable boundary condition, which we suppose to be:

u · n = 0,

at any time anda.e.on∂Ω, wheren stands for the normal vector to the boundary.

Let us denote byEk the kinetic energyEk = 1
2
|u|2. Taking the inner product of

(1.2b) byu yields, after formal compositions of partial derivatives and using (1.2a):

∂t(ρEk) + div
(
ρEk u

)
+∇p · u = 0. (1.3)

This relation is referred to as the kinetic energy balance.

Let us now define the functionP, from (0,+∞) toR, as a primitive ofs 7→ ℘(s)/s2;

this quantity is often called the elastic potential. LetH be the function defined byH(s) =

sP(s), ∀s ∈ (0,+∞), which, for the specific equation of state used here, yields:

H(s) = sP(s) =







sγ

γ − 1
if γ > 1,

s ln(s) if γ = 1.

(1.4)

Explicit Staggered Schemes for Compressible Flows 6
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Since℘ is an increasing function,H is convex. In addition, it may easily be checked that

ρH′(ρ)−H(ρ) = ℘(ρ). Therefore, by a formal computation, detailed for instancein [26,

Appendix], multiplying (1.2a) byH′(ρ) yields:

∂t
(
H(ρ)

)
+ div

(
H(ρ)u

)
+ p div(u) = 0. (1.5)

Let us denote byS the quantityS = ρEk +H(ρ). Summing (1.3) and (1.5), we get:

∂tS + div
(
(S + p)u

)
= 0. (1.6)

In fact, to avoid invoking unrealistic regularity assumptions, such a computation should

be done on the regularized equations (obtained by adding diffusion perturbation terms),

and, when making these regularization terms tend to zero, positive measures appear at

the left-hand-side of (1.6), so that we get in the distribution sense:

∂tS + div
(
(S + p)u

)
≤ 0. (1.7)

The quantityS is an entropy of the system, and an entropy solution to (1.2) is thus

required to satisfy:

∀ϕ ∈ C∞
c

(
Ω× [0, T )

)
, ϕ ≥ 0,

∫ T

0

∫

Ω

[
−S∂tϕ− (S + p)u ·∇ϕ

]
dx dt−

∫

Ω

S0 ϕ(x, 0) dx ≤ 0, (1.8)

with S0 =
1
2
ρ0|u0|2 +H(ρ0). Then, since the normal velocity is prescribed to zero at the

boundary, integrating (1.7) overΩ yields:

d

dt

∫

Ω

[1

2
ρ |u|2 +H(ρ)

]
dx ≤ 0. (1.9)

Sinceρ ≥ 0 by (1.2a) (and the associated initial and boundary conditions) and the func-

tion s 7→ H(s) is bounded by below and increasing at least fors large enough, Inequality

(1.9) provides an estimate on the solution.

The purpose of this section is to build an explicit scheme forthe numerical solution

of System (1.2), and prove the following results:

- a discrete kinetic energy balance (i.e. a discrete analogue of (1.3)) is established

Explicit Staggered Schemes for Compressible Flows 7
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on dual cells, while a discrete potential elastic balance (i.e. a discrete analogue of

(1.5)) is established on primal cells.

Note however that, because of residual terms appearing in the potential elastic bal-

ance, contrary to what is obtained for implicit and semi-implicit variants of the

present scheme [15, 26], these equations do not seem to yieldthe stability of the

scheme (i.e. a discrete global entropy conservation analogue to Equation (1.9)), at

least without supposing drastic limitations of the time step.

- In one space dimension, the limit of any convergent sequence of solutions to the

scheme is shown to be a weak solution to the continuous problem, and thus to

satisfy the Rankine-Hugoniot conditions.

- Finally, passing to the limit in the discrete kinetic energy and elastic potential bal-

ances, such a limit is also shown to satisfy the entropy inequality (1.8), see Theorem

1.3.6 below.

1.3.1 The scheme

Let us consider a partition0 = t0 < t1 < . . . < tN = T of the time interval(0, T ),

which we suppose uniform for the sake of simplicity, and letδt = tn+1 − tn for n =

0, 1, . . . , N − 1 be the (constant) time step. We consider an explicit-in-time scheme,

which reads in its fully discrete form, for0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

F n
K,σ = 0, (1.10a)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ, (1.10b)

For1 ≤ i ≤ d, ∀σ ∈ E (i)
S ,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ,i − ρnDσ

unσ,i) +
∑

ǫ∈Ẽ(Dσ)

F n
σ,ǫu

n
ǫ,i + |Dσ| (∇p)n+1

σ,i = 0,

(1.10c)

where the terms introduced for each discrete equation are defined hereafter.

Equation (1.10a) is obtained by the discretization of the mass balance equation (1.2a)

over the primal mesh, andF n+1
K,σ stands for the mass flux acrossσ outwardK, which,

Explicit Staggered Schemes for Compressible Flows 8
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because of the impermeability condition, vanishes on external faces and is given on the

internal faces by:

∀σ = K|L ∈ Eint, F n
K,σ = |σ| ρnσ unK,σ, (1.11)

whereunK,σ is an approximation of the normal velocity to the faceσ outwardK. This

latter quantity is defined by:

unK,σ =

∣
∣
∣
∣
∣
∣

unσ,i e
(i) · nK,σ for σ ∈ E (i) in the MAC case,

u
n
σ · nK,σ in the CR and RT cases,

(1.12)

wheree(i) denotes thei-th vector of the orthonormal basis ofRd. The density at the face

σ = K|L is approximated by the upwind technique:

ρnσ =

∣
∣
∣
∣
∣
∣

ρnK if unK,σ ≥ 0,

ρnL otherwise.
(1.13)

We now turn to the discrete momentum balance (1.10c), which is obtained by dis-

cretizing the momentum balance equation (1.2b) on the dual cells associated to the faces

of the mesh. For the discretization of the time derivative, we must provide a definition

for the valuesρn+1
Dσ

andρnDσ
, which approximate the density on the faceσ at timetn+1 and

tn respectively. They are given by the following weighted average:

for σ = K|L ∈ Eint, for k = n andk = n + 1, |Dσ| ρkDσ
= |DK,σ| ρkK + |DL,σ| ρkL.

(1.14)

Let us then turn to the discretization of the convection term. The first task is to define the

discrete mass flux through the dual faceǫ outwardDσ, denoted byF n
σ,ǫ; the guideline for

its construction is that a finite volume discretization of the mass balance equation over

the diamond cells, of the form

∀σ ∈ E , |Dσ|
δt

(ρn+1
Dσ

− ρnDσ
) +

∑

ǫ∈E(Dσ)

F n
σ,ǫ = 0, (1.15)

must hold in order to be able to derive a discrete kinetic energy balance (see Section 1.3.2

below). For the MAC scheme, the flux on a dual face which is located on two primal faces

is the mean value of the sum of fluxes on the two primal faces, and the flux of a dual face
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located between two primal faces is again the mean value of the sum of fluxes on the two

primal faces [30]. In the case of the CR and RT schemes, for a dual faceǫ included in the

primal cellK, this flux is computed as a linear combination (with constantcoefficients,

i.e. independent of the face and the cell) of the mass fluxes through the faces ofK, i.e.

the quantities(F n+1
K,σ )σ∈E(K) appearing in the discrete mass balance (1.10a). We refer to

[1, 17] for a detailed construction of this approximation. Let us remark that a dual face

lying on the boundary is then also a primal face, and the flux across that face is zero.

Therefore, the valuesun+1
ǫ,i are only needed at the internal dual faces, and we make the

upwind choice for their discretization:

for ǫ = Dσ|D′
σ, unǫ,i =

∣
∣
∣
∣
∣
∣

unσ,i if F n
σ,ǫ ≥ 0,

unσ′,i otherwise.
(1.16)

The last term(∇p)n+1
σ,i stands for thei-th component of the discrete pressure gradient

at the faceσ. The gradient operator is built as the transpose of the discrete operator for the

divergence of the velocity, the discretization of which is based on the primal mesh. Let

us denote the divergence ofu
n+1 overK ∈ M by (divu)n+1

K ; its natural approximation

reads:

for K ∈ M, (divu)n+1
K =

1

|K|
∑

σ∈E(K)

|σ| un+1
K,σ . (1.17)

Consequently, the components of the pressure gradient are given by:

for σ = K|L ∈ Eint, (∇p)n+1
σ,i =

|σ|
|Dσ|

(pn+1
L − pn+1

K ) nK,σ · e(i), (1.18)

this expression being derived thanks to the following duality relation with respect to the

L2 inner product:

∑

K∈M

|K| pn+1
K (divu)n+1

K +

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| un+1
σ,i (∇p)n+1

σ,i = 0. (1.19)

Note that, because of the impermeability boundary conditions, the discrete gradient is not

defined at the external faces.

Finally, the initial approximations forρ andu are given by the average of the initial
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conditionsρ0 andu0 on the primal and dual cells respectively:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E (i)
S , u0σ,i =

1

|Dσ|

∫

Dσ

(u0(x))i dx.

(1.20)

Note that, thanks to the upwind choice in the mass balance equation (1.10a), ifρn is

positive in (1.10a), then so isρn+1 under the following CFL condition:

δt ≤ |K|
∑

σ∈E(K) |σ| (unK,σ)
+
, (1.21)

where, fora ∈ R, a+ = max(a, 0). Since, by assumption,ρ0 is positive, under Condition

(1.21), the discrete density thus remains positive at all times.

1.3.2 Kinetic energy balance and elastic potential identity

We begin by deriving a discrete kinetic energy balance equation, as was already done for

the implicit and fractional time step scheme described in [26]. We follow the same lines

as in the classical derivation of the kinetic energy balanceequation (1.3) in the continuous

setting: the discrete kinetic energy balance is obtained bymultiplying the (ith component

of the) momentum balance equation (1.10c) associated to thefaceσ by un+1
σ,i , summing

over the components and using the mass balance equation (1.10a) twice.

Lemma 1.3.1(Discrete kinetic energy balance).

A solution to the system(1.10)satisfies the following equality, for1 ≤ i ≤ d, σ ∈ E (i)
S

and0 ≤ n ≤ N − 1:

1

2

|Dσ|
δt

[

ρn+1
Dσ

(un+1
σ,i )2−ρnDσ

(unσ,i)
2
]

+
1

2

∑

ǫ∈E(Dσ)

F n
σ,ǫ (u

n
ǫ,i)

2+|Dσ| (∇p)n+1
σ,i un+1

σ,i = −Rn+1
σ,i ,

(1.22)
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with:

Rn+1
σ,i =

1

2

|Dσ|
δt

ρn+1
Dσ

(un+1
σ,i − unσ,i)

2 +
1

2

∑

ǫ=Dσ|Dσ′∈E(Dσ)

(F n
Dσ ,ǫ

)−(unσ′,i − unσ,i)
2

−
∑

ǫ=Dσ|Dσ′∈E(Dσ)

(F n
Dσ,ǫ

)−(unσ′,i − unσ,i) (u
n+1
σ,i − unσ,i), (1.23)

where, fora ∈ R, a− ≥ 0 is defined bya− = −min(a, 0).

Equation (1.22) is a discrete analogue of Equation (1.3), with an upwind discretiza-

tion of the convection term. The remainder termRn+1
σ,i is non-negative under the follow-

ing CFL condition:

∀σ ∈ E (i)
S , δt ≤ |Dσ| ρn+1

Dσ
∑

ǫ∈E(Dσ)

(F n
σ,ǫ)

−
. (1.24)

Similarly, the solution to the scheme (1.10) satisfies a discrete version of the elastic

potential identity (1.5), which we now state.

Lemma 1.3.2(Discrete potential balance). LetH be defined by(1.4). A solution to the

system(1.10)satisfies the following equality, forK ∈ M and0 ≤ n ≤ N − 1:

|K|
δt

[

H(ρn+1
K )−H(ρnK)

]

+
∑

σ∈E(K)

|σ| H(ρnσ) u
n
K,σ+|K| pnK(divun)K = −Rn+1

K , (1.25)

with:

Rn+1
K =

1

2

|K|
δt

H′′(ρnK,1) (ρ
n+1
K − ρnK)

2 +
∑

σ∈E(K)

|σ| unK,σ H′′(ρnK,2) ρ
n
σ (ρ

n+1
K − ρnK)

+
1

2

∑

σ=K|L∈E(K)

|σ| (unK,σ)
− H′′(ρnσ) (ρ

n
K − ρnL)

2, (1.26)

whereρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, andρnσ ∈ |[ρnK , ρnL]| for all σ ∈ E(K), where, fora, b ∈
R, we denote by|[a, b]| the interval|[a, b]| = {θa+ (1− θ)b, θ ∈ [0, 1]}.

Unfortunately, it does not seem thatRn+1
K ≥ 0 in any case, and so we are not able

to prove a discrete counterpart of the total entropy estimate (1.9), which would yield a

stability estimate for the scheme. However, under a condition for a time step which is
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only slightly more restrictive than a CFL-condition, and under some stability assumptions

for the solutions to the scheme, we are able to show that this remainder term tends to zero

in L1(Ω× (0, T )), which allows to conclude, in the 1D case, that a convergent sequence

of solutions satisfies the entropy inequality (1.8): this isthe result stated in Theorem 1.3.6

below.

1.3.3 Passing to the limit in the scheme

The objective of this section is to show, in the one dimensional case, that if a sequence of

solutions is controlled in suitable norms and converges to alimit, this latter necessarily

satisfies a (part of the) weak formulation of the continuous problem.

The 1D version of the scheme which is studied in this section may be obtained from

Scheme (1.10) by taking the MAC variant of the scheme, using only one horizontal stripe

of grid cells, supposing that the vertical component of the velocity (the degrees of free-

dom of which are located on the top and bottom boundaries) vanishes, and that the mea-

sure of the vertical faces is equal to 1. For the sake of readability, however, we completely

rewrite this 1D scheme, and, to this purpose, we first introduce some adaptations of the

notations to the one dimensional case. For anyK ∈ M, we denote byhK its length

(so hK = |K|); when we writeK = [σσ′], this means that eitherK = (xσ, xσ′) or

K = (xσ′ , xσ); if we need to specify the order,i.e.K = (xσ, xσ′) with xσ < xσ′ , then

we writeK = [
−→
σσ′]. For an interfaceσ = K|L between two cellsK andL, we define

hσ = (hK + hL)/2, so, by definition of the dual mesh,hσ = |Dσ|. If we need to specify

the order of the cellsK andL, sayK is left of L, then we writeσ =
−−→
K|L. With these

notations, the explicit scheme (1.10) may be written as follows in the one dimensional

setting:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,

(1.27a)

∀K = [
−→
σσ′] ∈ M,

|K|
δt

(ρn+1
K − ρnK) + F n

σ′ − F n
σ = 0, (1.27b)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ . (1.27c)
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∀σ =
−−→
K|L ∈ Eint,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + F n
Lu

n
L − F n

Ku
n
K + pn+1

L − pn+1
K = 0,

(1.27d)

The mass flux in the discrete mass balance equation is given, forσ ∈ Eint, byF n
σ = ρnσu

n
σ,

where the upwind approximation for the density at the face,ρnσ, is defined by (1.13). In

the momentum balance equation, the application of the procedure described in Section

1.3.1 yields for the density associated to the dual cellDσ with σ = K|L and for the mass

fluxes at the dual face located at the center of the meshK = [
−→
σσ′]:

for k = n andk = n+ 1, ρkDσ
=

1

2 |Dσ|
(|K| ρkK + |L| ρkL), F n

K =
1

2
(F n

σ + F n
σ′),

(1.28)

and the approximation of the velocity at this face is upwind:unK = unσ if F n
K ≥ 0 and

unK = unσ′ otherwise.

Definition 1.3.3(Regular sequence of discretizations).

We define a regular sequence of discretizations(M(m), δt(m))m∈N as a sequence of

meshes, time steps and numerical diffusion coefficients satisfying:

(i) both the time stepδt(m) and the sizeh(m) of the meshM(m), defined by

h(m) = supK∈M(m) hK , tend to zero asm→ ∞,

(ii) there existsθ > 0 such that:

θ ≤ hK
hL

≤ 1

θ
, ∀m ∈ N andK, L ∈ M(m) sharing a face,

Let such a regular sequence of discretizations be given, andρ(m), p(m) andu(m) be

the solution given by the scheme (1.27) with the meshM(m) and the time stepδt(m). To

the discrete unknowns, we associate piecewise constant functions on time intervals and

on primal or dual meshes, so the densityρ(m), the pressurep(m) and the velocityu(m) are
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defined almost everywhere onΩ× (0, T ) by:

ρ(m)(x, t) =
N−1∑

n=0

∑

K∈M

(ρ(m))nK XK(x)X(n,n+1](t), (1.29a)

u(m)(x, t) =
N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
(x)X(n,n+1](t), (1.29b)

p(m)(x, t) =
N−1∑

n=0

∑

K∈M

(p(m))nK XK(x)X(n,n+1](t), (1.29c)

whereXK , XDσ
andX(n,n+1] stand for the characteristic function of the intervalsK, Dσ

and(tn, tn+1] respectively.

For discrete functionsq andv defined on the primal and dual mesh, respectively, we

define a discreteL1((0, T ); BV(Ω)) norm by:

‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ=K|L∈Eint

|qnL − qnK |, ‖v‖T ,x,BV =

N∑

n=0

δt
∑

ǫ=Dσ|Dσ′∈Ẽint

|vnσ′ − vnσ |,

and a discreteL1(Ω; BV((0, T ))) norm by:

‖q‖T ,t,BV =
∑

K∈M

|K|
N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

|Dσ|
N−1∑

n=0

|vn+1
σ − vnσ |.

For the consistency result that we are seeking (Theorem 1.3.4 below), we have to assume

that a sequence of discrete solutions
(
ρ(m), p(m), u(m)

)

m∈N
satisfiesρ(m) > 0 andp(m) >

0, ∀m ∈ N (which may be a consequence of the fact that the CFL stabilitycondition

(1.21) is satisfied), and is uniformly bounded inL∞((0, T )× Ω)3, i.e.:

0 < (ρ(m))nK ≤ C and0 < (p(m))nK ≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N,

(1.30)

and:

|(u(m))nσ| ≤ C, ∀σ ∈ E (m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (1.31)

whereC is a positive real number. Note that, by definition of the initial conditions of the

scheme, these inequalities imply that the functionsρ0, e0 andu0 belong toL∞(Ω). We
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also have to assume that a sequence of discrete solutions satisfies the following uniform

bounds with respect to the discrete BV-norms:

‖ρ(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (1.32)

and:

‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (1.33)

We are not able to prove the estimates (1.30)–(1.33) for the solutions of the scheme;

however, such inequalities are satisfied by the “interpolation” (for instance, by taking the

cell average) of the solution to a Riemann problem, and are observed in computations (of

course, as far as possible,i.e.with a limited sequence of meshes and time steps).

A weak solution to the continuous problem satisfies, for anyϕ ∈ C∞
c

(
Ω× [0, T )

)
:

−
∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂xϕ
]

dx dt−
∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (1.34a)

−
∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ
]

dx dt−
∫

Ω

ρ0(x) u0(x)ϕ(x, 0) dx = 0, (1.34b)

p = ργ . (1.34c)

Note that these relations are not sufficient to define a weak solution to the problem, since

they do not imply anything about the boundary conditions. However, they allow to derive

the Rankine-Hugoniot conditions; hence if we show that theyare satisfied by the limit of

a sequence of solutions to the discrete problem, this implies, loosely speaking, thatthe

scheme computes correct shocks(i.e.shocks where the jumps of the unknowns and of the

fluxes are linked to the shock speed by Rankine-Hugoniot conditions). This is the result

we are seeking and which we now state.

Theorem 1.3.4(Consistency of the one-dimensional explicit scheme, barotropic case).

LetΩ be an open bounded interval ofR. We suppose that the initial data satisfiesρ0 ∈
L∞(Ω) andu0 ∈ L∞(Ω). Let(M(m), δt(m))m∈N be a regular sequence of discretizations

in the sense of Definition1.3.3, and(ρ(m), p(m), u(m))m∈N be the corresponding sequence

of solutions. We suppose that this sequence satisfies the estimates(1.30)–(1.32) and

converges inLp(Ω×(0, T ))3, for 1 ≤ p <∞, to(ρ̄, p̄, ū) ∈ L∞(Ω×(0, T ))3. We suppose

in addition that both sequences(ρ(m))m∈N and (1/ρ(m))m∈N are uniformly bounded in
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L∞(Ω× (0, T )).

Then the limit(ρ̄, p̄, ū) satisfies the system(1.34).

Main ideas of the proof– It is clear that with the assumed convergence for the sequence

of solutions, the limit satisfies the equation of state. The proof of this theorem is thus

obtained by passing to the limit in the scheme, first for the mass balance equation and then

for the momentum balance equation. This is performed by considering a smooth function

ϕ over the domainΩ, defining its interpolateϕM over the cells and its interpolateϕE over

the edges. Then one first multiplies the discrete mass balance equation (1.27b) by the

valueϕK of the interpolate ofϕ onK, sum over the cells and time steps, and, introducing

the discrete time and space derivatives ofϕ and noting that they tend uniformly to the

continuous time and space derivatives ofϕ, pass to the limit on all terms to recover

(1.34a). Similarly, one multiplies the discrete momentum equation (1.27d) by the value

ϕσ of ϕ onσ, sum over the edges and time steps, and again pass to the limiton all terms

to recover (1.34b). The details of this proof may be found in Chapter 2, Theorem 2.4.2.

�

We now turn to the entropy condition (1.8). To this purpose, we need to introduce the

following additional condition for a sequence of discretizations:

lim
m→+∞

δt(m)

minK∈M(m) hK
= 0. (1.35)

Note that this condition is slightly more restrictive that astandard CFL condition. It

allows to bound the remainder term in the discrete elastic potential balance as stated in

the following lemma.

Lemma 1.3.5. Let Ω be an open bounded interval ofR. Let (M(m), δt(m))m∈N be a

sequence of discretizations such that the time stepδt(m) tends to zero asm → ∞, and

(ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose thatthis

sequence satisfies the estimates(1.30)–(1.31). In addition, we assume that(ρ(m))m∈N

satisfies the following uniform BV estimate:

‖ρ(m)‖T ,t,BV ≤ C, ∀m ∈ N, (1.36)
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and, forγ < 2 only, is uniformly bounded by below,i.e. that there existsc > 0 such that:

c ≤ (ρ(m))nK , ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (1.37)

Let us suppose that the CFL condition(1.35)hold. LetR(m) be defined by:

R(m) =
N−1∑

n=0

δt
∑

K∈M

(Rn+1
K )−,

withRn+1
K given by(1.26). Then:

lim
m→+∞

R(m) = 0.

Then we are in position to state the following consistency result.

Theorem 1.3.6(Entropy consistency, barotropic case). Under the assumptions of Theo-

rem1.3.4and Lemma1.3.5, the limit(ρ̄, p̄, ū) satisfies the entropy condition(1.8).

Main ideas of the proof – The proof of this theorem is again based on a passage to the

limit in discrete equations, namely the discrete kinetic balance equation (1.22) and the

elastic potential balance (1.25). This computation is veryclose to the proof of consistency

of the scheme for the full Euler equations with the total energy balance,i.e. the proof

of Theorem 1.4.1 below. We refer to Chapter 2, Theorem 2.4.4 for the details of this

computation. �

1.4 The full Euler equations

Let us now turn to the full compressible Euler equations, which read:

∂tρ+ div(ρu) = 0, (1.38a)

∂t(ρu) + div(ρu⊗ u) +∇p = 0, (1.38b)

∂t(ρE) + div(ρE u) + div(pu) = 0, (1.38c)

p = (γ − 1) ρ e, E =
1

2
|u|2 + e, (1.38d)
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wheret stands for the time,ρ,u, p,E ande are the density, velocity, pressure, total energy

and internal energy respectively, andγ > 1 is a coefficient specific to the considered

fluid. The problem is supposed to be posed overΩ× (0, T ), whereΩ is an open bounded

connected subset ofRd, 1 ≤ d ≤ 3, and(0, T ) is a finite time interval.

System (1.38) is complemented by initial conditions forρ, e andu, denoted byρ0,

e0 andu0 respectively, withρ0 > 0 ande0 > 0, and by a boundary condition which we

suppose to beu ·n = 0 at any time anda.e.on∂Ω, wheren stands for the normal vector

to the boundary.

Let us suppose that the solution is regular. Substracting the kinetic energy balance

equation (1.3) from the total energy balance (1.38c), we obtain the internal energy bal-

ance equation:

∂t(ρe) + div(ρeu) + p div(u) = 0. (1.39)

Since,

- thanks to the mass balance equation, the first two terms in the left-hand side of

(1.39) may be recast as a transport operator:∂t(ρe)+div(ρeu) = ρ [∂te+u ·∇e],

- and, from the equation of state, the pressure vanishes whene = 0,

this equation implies, ife ≥ 0 at t = 0 and with suitable boundary conditions, thate

remains non-negative at all times.

We wish to build an explicit version of the staggered implicit and semi-implicit

schemes that have already been studied for the Euler equations [27]. As already men-

tioned in [27], discretizing (1.39) instead of the total energy balance (1.38c) presents two

advantages:

- first, it avoids the space discretization of the total energy, which is rather unnatural

for staggered schemes since the degrees of freedom for the velocity and the scalar

variables are not collocated,

- second, a suitable discretization of (1.39) may yield, “byconstruction” of the

scheme, the positivity of the internal energy.

However, for solutions with shocks, Equation (1.39) is not equivalent to (1.38c);

more precisely speaking, at the locations of shocks, positive measures should appear,

at the right-hand side of Equation (1.39). Discretizing (1.39) instead of (1.38c) may thus

yield a scheme which does not compute the correct weak discontinuous solutions; in par-

ticular, the numerical solutions may present (smeared) shocks which do not satisfy the
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Rankine-Hugoniot conditions associated to (1.38c). The essential result of this section is

to provide solutions to circumvent this problem. To this purpose, we closely mimic the

above performed formal computation:

- we start from the discrete kinetic energy balance (1.22), and remark that the residual

terms at the right-hand side do no tend to zero with the space and time steps (they

are the discrete manifestations of the above mentioned measures),

- we thus compensate these residual terms by corrective terms in the internal energy

balance.

We provide a theoretical justification of this process by showing that, in the 1D case, if

the scheme is stable and converges to a limit (in a sense to be defined), this limit satisfies

a weak form of (1.38c) which implies the correct Rankine-Hugoniot conditions.

1.4.1 The scheme

With the same notations as in Section 1.3.1, we consider an explicit-in-time numerical

scheme for the discretization of the Euler equations,i.e. System (1.38). In its fully dis-

crete form, this scheme reads, for0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

F n
K,σ = 0, (1.40a)

∀K ∈ M,
|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

F n
K,σe

n
σ + |K| pnK (divu)nK = Sn

K ,

(1.40b)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (1.40c)

For1 ≤ i ≤ d, ∀σ ∈ E (i)
S ,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ,i − ρnDσ

unσ,i) +
∑

ǫ∈Ẽ(Dσ)

F n
σ,ǫu

n
ǫ,i + |Dσ| (∇p)n+1

σ,i = 0.

(1.40d)

Equations (1.40a) and (1.40d) are the same as the discrete mass and momentum bal-

ance equations (1.10a) and (1.10c) of the barotropic model and were described in Section
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1.3.1. Equation (1.40b) is an approximation of the internalenergy balance over the pri-

mal cellK. The positivity of the convection operator is ensured if we use an upwinding

technique for this term [42]:

for σ = K|L ∈ Eint, enσ =

∣
∣
∣
∣
∣
∣

enK if F n
K,σ ≥ 0,

enL otherwise.

The discrete divergence of the velocity,(divu)nK , is defined by (1.17) and the discrete

pressure gradient by (1.18), so that the discrete gradient and divergence operators are

dual with respect to theL2 inner product, as stated in (1.19). The right-hand side,Sn
K , is

derived using consistency arguments in the next section.

Finally, the initial approximations forρ andu are given by (1.20) and the initial

condition fore is the following one:

∀K ∈ M, e0K =
1

|K|

∫

K

e0(x) dx. (1.41)

Since, by assumption,e0 ≥ 0, the (discrete) initial condition for the internal energy is

positive. Using standard argument, thanks to the fact that,in the third term of (1.40b),

pnK is proportional toenK (precisely speaking,pnK = (γ − 1) ρnK e
n
K), we prove that the

internal energy remains positive at all times assuming (1.21) and the following additional

CFL condition:

δt ≤ |K|
γ
∑

σ∈E(K)

|σ| (unK,σ)
+
, ∀K ∈ M, (1.42)

provided thatSn
K is positive, which is the case under another CFL condition (see Inequal-

ity (1.45) in the next section).

1.4.2 The discrete kinetic energy balance equation and the correc-

tive source terms

By Lemma 1.3.1, we know that a discrete kinetic balance holds, with, at the right-hand

side, some residual terms. The next step is now to define corrective terms in the internal

energy balance, with the aim to recover a consistent discretization of the total energy

balance. The first idea to do this could be just to sum the (discrete) kinetic energy balance

Explicit Staggered Schemes for Compressible Flows 21



NGUYEN Tan-Trung

with the internal energy balance: it is indeed possible for acollocated discretization. But

here, we face the fact that the kinetic energy balance is associated to the dual mesh, while

the internal energy balance is discretized on the primal one. The way to circumvent this

difficulty is to remark that we do not really need a discrete total energy balance; in fact,

we only need to recover (a weak form of) this equation when themesh and time steps tend

to zero. To this purpose, we choose the quantities(Sn
K) in such a way as to somewhat

compensate the terms(Rn
σ,i) given by (1.23):

∀K ∈ M, Sn+1
K =

d∑

i=1

Sn+1
K,i with Sn+1

K,i =
1

2
ρn+1
K

∑

σ∈E(K)∩E
(i)
S

|DK,σ|
δt

(
un+1
σ,i −unσ,i

)2

+
∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅,

ǫ=Dσ|Dσ′ , Fn
σ,ǫ≤0

αK,ǫ

[ |F n
σ,ǫ|
2

(unσ,i − unσ′,i)
2 + F n

σ,ǫ

(
un+1
σ,i − unσ,i

)
(unσ,i − unσ′,i)

]

.

The coefficientαK,ǫ is fixed to1 if the faceǫ is included inK, and this is the only situation

to consider for the RT and CR discretizations. For the MAC scheme, some dual faces are

included in the primal cells, but some lie on their boundary;for such a boundary edgeǫ,

we denote byNǫ the set of cellsM such thatM̄ ∩ ǫ 6= ∅ (the cardinal of this set is always

4), and computeαK,ǫ by:

αK,ǫ =
|K|

∑

M∈Nǫ
|M | . (1.43)

For a uniform grid, this formula yieldsαK,ǫ = 1/4.

The expression of the terms(Sn+1
K )K∈M is justified by the passage to the limit in the

scheme (for a one-dimensional problem) performed in Section 1.4.3. We can first note

that:
∑

K∈M

Sn+1
K −

d∑

i=1

∑

σ∈E
(i)
S

Rn+1
σ,i = 0. (1.44)

Indeed, the first part ofSn+1
K,i , thanks to the expression (1.28) of the density at the face

ρn+1
Dσ

, results from a dispatching of the first part of the residual over the two adjacent
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cells:

1

2

|Dσ|
δt

ρn+1
Dσ

(
un+1
σ,i − unσ,i

)2
=

1

2

|DK,σ|
δt

ρn+1
K

(
un+1
σ,i − unσ,i

)2

︸ ︷︷ ︸

affected to K

+
1

2

|DL,σ|
δt

ρn+1
L

(
un+1
σ,i − unσ,i

)2

︸ ︷︷ ︸

affected to L

.

The same argument holds for the terms associated to the dual faces, which explains, in

particular, the definition of the coefficientsαK,ǫ. The scheme thus conserves the discrete

equivalent of the integral of the total energy over the computational domain.

Using Young’s inequality and remarking that, for all the considered discretizations,

∑

σ∈E(K)∩E
(i)
S

|DK,σ| = |K|,

we obtain thatSn+1
K,i in non-negative provided that the following CFL condition holds:

δt ≤ |DK,σ| ρn+1
K

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

αK,ǫ (F
n
σ,ǫ)

−
, ∀K ∈ M. (1.45)

Under the conditions (1.42) and (1.45), the solution given by the scheme thus satisfies

ρ ≥ 0 ande ≥ 0, and sop ≥ 0 by the equation of state. The conservation by the scheme

of the integral of the total energy over the computational domain thus yield a control on

the solution.

1.4.3 Passing to the limit in the scheme (1D case)

The objective of this section is to show, in the one dimensional case, that, if a sequence of

solutions is controlled in suitable norms and converges to alimit, this latter necessarily

satisfies a weak formulation of the continuous problem. Withthe notations of Section
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1.3.3, the one-dimensional version of the explicit scheme (1.40) reads:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx, e0K =
1

|K|

∫

K

e0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,

(1.46a)

∀K = [
−→
σσ′] ∈ M,

|K|
δt

(ρn+1
K − ρnK) + F n

σ′ − F n
σ = 0, (1.46b)

∀K = [
−→
σσ′] ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) + F n

σ′enσ′ − F n
σ e

n
σ + pnK(u

n
σ′ − unσ) = Sn

K ,

(1.46c)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K . (1.46d)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + F n
Lu

n
L − F n

Ku
n
K + pn+1

L − pn+1
K = 0,

(1.46e)

where the mass fluxF n
σ is defined by (1.11)–(1.13). In the convection terms of the

internal energy balance, the approximation forenσ is upwind with respect toF n
σ (i.e., for

σ =
−−→
K|L ∈ Eint, enσ = enK if F n

σ ≥ 0 andenσ = enL otherwise). The corrective termSn
K

reads,∀K = [σ′ → σ]:

Sn+1
K =

|K|
4 δt

ρnK
[
(un+1

σ −unσ)2+(un+1
σ′ −unσ′)2

]
+
|F n

K |
2

(unσ−unσ′)2−|F n
K |(unσ−unσ) (unσ−unσ′),

(1.47)

where the notationK = [σ′ → σ] means that the flow goes fromσ′ to σ (i.e., if F n
K ≥ 0,

K = [
−→
σ′σ] and, ifF n

K ≤ 0,K = [
−→
σσ′]).

To the discrete unknowns, we associate piecewise constant functions on time intervals

and on primal or dual cells, so the densityρ, the pressurep, and the velocityu are defined

almost everywhere onΩ× (0, T ) by (1.29), ande is defined a.e. by:

e(x, t) =

N−1∑

n=0

∑

K∈M

enK XK(x) X(n,n+1](t).

For the consistency result that we are seeking (Theorem 1.4.1 below), we have to

assume that a sequence of discrete solutions
(
ρ(m), p(m), e(m), u(m)

)

m∈N
satisfiesρ(m) ≥

0, p(m) ≥ 0, ande(m) ≥ 0, ∀m ∈ N (which may be a consequence of the fact that the CFL
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stability conditions (1.21), (1.42) and (1.45) are satisfied), and is uniformly bounded in

L∞((0, T )× Ω)4, i.e.:

∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N,

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C and 0 < (e(m))nK ≤ C, (1.48)

and:

|(u(m))nσ| ≤ C, ∀σ ∈ E (m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (1.49)

whereC stands for a positive real number. We have to also assume thata sequence

of discrete solutions satisfies the following uniform bounds with respect to the discrete

BV-norms:

‖ρ(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (1.50)

and:

‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (1.51)

A weak solution to the continuous problem satisfies, for anyϕ ∈ C∞
c

(
[0, T )× Ω

)
:

−
∫

Ω×(0,T )

[

ρ ∂tϕ+ ρ u ∂xϕ
]

dx dt−
∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (1.52a)

−
∫

Ω×(0,T )

[

ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ
]

dx dt−
∫

Ω

ρ0(x) u0(x)ϕ(x, 0) dx = 0, (1.52b)

−
∫

Ω×(0,T )

[

ρE ∂tϕ+ (ρE + p) u ∂xϕ
]

dx dt−
∫

Ω

ρ0(x)E0(x)ϕ(x, 0) dx = 0,

(1.52c)

p = (γ − 1)ρ e, E =
1

2
u2 + e, E0 =

1

2
u20 + e0. (1.52d)

As in the barotropic case, these relations are not sufficientto define a weak solution to the

problem, but they allow to derive the Rankine-Hugoniot conditions; therefore, if we show

that they are satisfied by the limit of a sequence of solutionsto the discrete problem, we

can expect thatthe scheme computes correct shocks, as stated in the following theorem.

Theorem 1.4.1(Consistency of the one-dimensional explicit scheme, Euler case).

LetΩ be an open bounded interval ofR. We suppose thatρ0, u0 ande0 are functions of
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L∞(Ω). Let (M(m), δt(m))m∈N be a sequence of discretizations, which we suppose regu-

lar in the sense of Definition1.3.3. Let(ρ(m), p(m), e(m), u(m))m∈N be the corresponding

sequence of solutions. We suppose that this sequence satisfies the estimates(1.48)–(1.51)

and converges inLr((0, T )× Ω)4, for 1 ≤ r <∞, to (ρ̄, p̄, ē, ū) ∈ L∞((0, T )× Ω)4.

Then the limit(ρ̄, p̄, ē, ū) satisfies the system(1.52).

Main ideas of the proof– The proof that the limit(ρ̄, p̄, ū) satisfies (1.52a) and (1.52b)

is the same as in the barotropic case. In addition, the fact that (ρ̄, p̄, ē) satisfies the

equation of state is straightforward, in view of the supposed convergence. We thus only

need to prove that(ρ̄, p̄, ē, ū) satisfies (1.52c). In order to do so, the technique is the

same as for the proving the entropy inequality in the barotropic case. For a given smooth

functionϕ, on one hand, we multiply the discrete kinetic energy equation (1.3) byδt ϕn
σ,

whereϕn
σ is an interpolate ofϕ at the faceσ and attn, and sum over the faces and the

time steps. On the other hand, we multiply the discrete internal energy equation (1.39)

by δt ϕn
K , whereϕn

K is an interpolate ofϕ onK at tn, and sum over the primal cells and

the time steps. Finally, summing the two obtained relations, a bit of algebra allows to

conclude; we refer to Chapter 3, Theorem 3.4.2 for the detailed computation. �

1.5 Radial compressible flows

In this section, we focus on the study of the barotropic and full Euler equations in case

of radial explosions and implosions where blast waves propagate in radial and spherical

trajectories for two and three-dimensional flows, respectively. Let us consider the system

of barotropic Euler equations under the non-conservative form:

∂tρ+
1

rα
∂r(r

αρu) = 0 (1.53a)

∂t(ρu) +
1

rα
∂r(r

αρu2) + ∂rp = 0 (1.53b)

p = ℘(ρ) = ργ (1.53c)

wherer is the radial direction,t is time,ρ, u andp are the density, radial velocity and

pressure in the flow, andγ ≥ 1 is a coefficient specific to the considered fluid. The

parameterα depends on the space dimension of the problem. Forα = 0, we reproduce

the one-dimensional flow which was surveyed in Section 1.3 and 1.4. The casesα = 1
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andα = 2 correspond to the two and three-dimensional problems in cylindrical and

spherical symmetry coordinate, respectively. The problemis supposed to be posed over

Ω × (0, T ), whereΩ = [0,+∞) and(0, T ) is a finite time interval. This system must

be supplemented by initial conditions forρ andu, denoted byρ0 andu0, and we assume

ρ0 > 0. It must also be supplemented by a suitable boundary condition where the radial

velocity vanishes at any time on∂Ω.

A weak solution to the continuous problem (1.53) satisfies, for anyϕ ∈ C∞
c

(
Ω ×

[0, T )
)
:

−
∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂rϕ
]

rα dr dt−
∫

Ω

ρ0(x)ϕ(x, 0) r
α dr = 0, (1.54a)

−
∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂rϕ
]

rα + p ∂r(r
αϕ) dr dt

−
∫

Ω

ρ0(x) u0(x)ϕ(x, 0) r
α dr = 0,

(1.54b)

p = ργ . (1.54c)

Let us denote byEk the kinetic energyEk = 1
2
u2. Taking the product of (1.54b) by

u yields, after formal compositions of partial derivatives and using (1.54a):

∂t(ρEk) +
1

rα
∂r
(
rαρEk u

)
+ u ∂rp = 0. (1.55)

We now define the elastic potentialP, functionH and the entropyS = ρEk+H(ρ) as

in Section 1.3. Multiplying the mass balance (1.53a) byH′(ρ) yields the elastic potential

equation:

∂t
(
H(ρ)

)
+

1

rα
∂r
(
rαH(ρ) u

)
+

1

rα
p ∂r(r

αu) = 0. (1.56)

Summing (1.55) and (1.56), we obtain the entropy equation:

∂tS +
1

rα
∂r
(
rα(S + p) u

)
= 0. (1.57)

In fact, to avoid invoking unrealistic regularity assumptions, such a computation should

be done on regularized equations (obtained by adding diffusion perturbation terms), and,

when making these regularization terms tend to zero, positive measures appear at the
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left-hand-side of (1.57), so that we get in the distributionsense:

∂tS +
1

rα
∂r
(
rα(S + p) u

)
≤ 0. (1.58)

The quantityS is an entropy of the system, and an entropy solution to (1.53)is thus

required to satisfy:

∀ϕ ∈ C∞
c

(
Ω× [0, T )

)
, ϕ ≥ 0,

∫ T

0

∫

Ω

[
−S∂tϕ− (S + p) u ∂rϕ

]
rα dr dt−

∫

Ω

S0 ϕ(r, 0) r
α dr ≤ 0, (1.59)

with S0 = 1
2
ρ0u

2
0 + H(ρ0). Then, since the radial velocity is prescribed to zero at the

boundary, integrating (1.58) overΩ yields:

d

dt

∫

Ω

[1

2
ρ u2 +H(ρ)

]
rα dr ≤ 0. (1.60)

Sinceρ ≥ 0 by (1.53a) (and the associated initial and boundary conditions) and the

function s 7→ H(s) is bounded by below and increasing at least fors large enough,

Inequality (1.60) provides an estimate on the solution.

Let us now turn to the Euler equations on cylindrical and spherical coordinate systems

under the non-conservative form:

∂tρ+
1

rα
∂r(r

αρu) = 0 (1.61a)

∂t(ρu) +
1

rα
∂r(r

αρu2) + ∂rp = 0 (1.61b)

∂t(ρE) +
1

rα
∂r(r

αρEu) +
1

rα
∂r(r

αpu) = 0 (1.61c)

E =
1

2
u2 + e (1.61d)

p = (γ − 1)ρe (1.61e)

whereE ande stand for the total and internal energy respectively, andγ > 1 is a co-

efficient specific to the considered fluid. The problem is supposed to be posed over

Ω × (0, T ), whereΩ = [0;+∞) and(0, T ) is a finite time interval. Substracting the re-

lation (1.55) from the total energy balance (1.61c), we obtain the internal energy balance
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equation:

∂t(ρe) +
1

rα
∂r(r

αρeu) +
1

rα
p ∂r(r

αu) = 0. (1.62)

Since,

- thanks to the mass balance equation, the first two terms in the left-hand side of

(1.62) may be recast as a transport operator:∂t(ρe)+
1
rα
∂r(r

αρeu) = ρ [∂te+u ∂re],

- and, from the equation of state, the pressure vanishes whene = 0,

this equation implies, ife ≥ 0 at t = 0 and with suitable boundary conditions, thate

remains non-negative at all times.

A weak solution to the continuous problem (1.61) satisfies, for anyϕ ∈ C∞
c

(
Ω ×

[0, T )
)
:

−
∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂rϕ
]

rα dr dt−
∫

Ω

ρ0(x)ϕ(x, 0) r
α dr = 0, (1.63a)

−
∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂rϕ
]

rα + p ∂r(r
αϕ) dr dt

−
∫

Ω

ρ0(x) u0(x)ϕ(x, 0) r
α dr = 0,

(1.63b)

−
∫ T

0

∫

Ω

[

ρE ∂tϕ+ (ρE + p) u ∂rϕ
]

rα dr dt−
∫

Ω

ρ0(x)E0(x)ϕ(x, 0) r
α dr = 0,

(1.63c)

p = (γ − 1)ρ e, E =
1

2
u2 + e, E0 =

1

2
u20 + e0. (1.63d)

The purpose of this section is to build explicit scheme(s) for the numerical solutions

of System (1.53) and (1.61) and prove the following results:

• Discrete kinetic energy balance with some residual (i.e. a discrete analogue of

(1.55)) on dual cells.

• Discrete elastic potential equation with some rest terms (i.e.a discrete analogue of

(1.56)) on primal cells for the barotropic Euler equations.These rest terms, natu-

rally arising from computations at discrete level, are controlled by a CFL condition

to obtain the discrete version of entropy condition (1.59)

• Discrete internal energy balances with some residual (i.e. a discrete analogue of

(4.11)) on primal cells for the Euler equations. In the contrary to rest terms in the
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elastic potential equation, the residual here are imposed to complement rest terms

in the discrete kinetic energy balance at the limit, when mesh size and time step

tend to zero, in order to recover the total energy equation.

• Finally, passing to the limit in all equations and supposingthe convergence of

scheme(s), those limits are weak solutions of the continuous problem(s), and thus

satisfy the Rankine-Hugoniot conditions. In particular, they are entropy solutions

to the barotropic Euler equations.

1.5.1 Meshes and unknowns

All of the notations in this section are inherited from Section 1.3.3. Hereafter, we in-

troduce new notations adapting to the cylindrical and spherical coordinate systems. The

volume ofK denoted by|VK | reads

|VK| =
rα+1
σ′ − rα+1

σ

α + 1
, ∀K = [

−→
σσ′] ∈ M, (1.64)

while the volume ofDσ denoted by|Vσ| can be selected based on the way we define the

dual radiusrσ. In the spirit of ISIS, the mean value of volumes of two primalcellsK and

L gives the volume of the dual cellDσ

|Vσ| =
|VK |+ |VL|

2
, ∀σ = K|L ∈ Eint. (1.65)

In this way, the primal radiusrK reads

rK =
α+1

√

rα+1
σ + rα+1

σ′

2
, ∀K = [σσ′] ∈ M. (1.66)

Otherwise, givenrK = (rσ + rσ′)/2, ∀K ∈ M, we define the volume ofDσ as the

integral on[rK , rL]

|Vσ| =
rα+1
L − rα+1

K

α+ 1
, ∀σ =

−−→
K|L ∈ Eint. (1.67)

The volume ofK ∩Dσ denoted by|VK,σ|, in both choices of|Vσ|, is given by

|VK,σ| =
|VK |
2
, ∀K ∈ M, ∀σ ∈ E . (1.68)
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Both definitions for the volumes of dual cells, in fact, givesthe same numerical solution,

up to a very small tolerance, when mesh size and time step tendto zero. Therefore, in

this section, we work only with the mean value volume case.

1.5.2 The barotropic Euler equations

1.5.2.1 The scheme

Let us consider a partition0 = t0 < t1 < . . . < tN = T of the time interval(0, T ),

which we suppose uniform for the sake of simplicity, and letδt = tn+1 − tn for n =

0, 1, . . . , N − 1 be the (constant) time step. We consider an explicit-in-time scheme,

which reads in its fully discrete form, for0 ≤ n ≤ N − 1:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,

(1.69a)

∀K = [
−→
σσ′] ∈ M,

|VK |
δt

(ρn+1
K − ρnK) + F n

σ′ − F n
σ = 0, (1.69b)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ. (1.69c)

∀σ =
−−→
K|L ∈ Eint,

|Vσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + F n
Lu

n
L − F n

Ku
n
K + rασ (p

n+1
L − pn+1

K ) = 0.

(1.69d)

where the terms introduced for each discrete equation are defined hereafter.

Equation (1.69b) is obtained by the discretization of the mass balance equation (1.53a)

over the primal mesh, andF n
σ stands for the discrete mass flux acrossσ outwardK,

which, because of the impermeability condition, vanishes on ∂Ω and is given on the

internal edges by:

∀σ = K|L ∈ Eint, F n
σ = rασρ

n
σu

n
σ, (1.70)
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where the upwind approximation for the density at the edge,ρnσ, is defined by

ρnσ =

∣
∣
∣
∣
∣
∣

ρnK if unσ ≥ 0,

ρnL otherwise.
(1.71)

We now turn to the discrete momentum balance (1.69d), which is obtained by dis-

cretizing the momentum balance equation (1.53b) on the dualcells associated to the faces

of the mesh. For the discretization of the time derivative, we need to provide a definition

for the valuesρn+1
Dσ

andρnDσ
, which approximate the density on the faceσ at timetn+1 and

tn respectively. They are given by the following weighted average:

for σ = K|L ∈ Eint, for k = n andk = n+ 1, |Vσ| ρkDσ
= |VK,σ| ρkK + |VL,σ| ρkL.

(1.72)

where|VK,σ| = |VK|/2, ∀K ∈ M. The discrete mass fluxF n
K in the discretization of the

convection term reads

∀K = [σσ′] ∈ M, F n
K =

1

2
(F n

σ + F n
σ′), (1.73)

Therefore, we obtain the discrete mass balance equation on dual cells:

∀σ =
−−→
K|L ∈ E , |Vσ|

δt
(ρn+1

Dσ
− ρnDσ

) + F n
L − F n

K = 0, (1.74)

Let us remark that a dual edge lying on the boundary is then also a primal edge, and

the flux across that face is zero. Thanks to the discrete mass flux on dual cells, the

approximation ofunK is given by the upwinding technique:

∀K =
−−→
σ|σ′ ∈ M, unK =

∣
∣
∣
∣
∣
∣

unσ if F n
K ≥ 0,

unσ′ otherwise.
(1.75)

We denote(∂rp)n+1
σ and(∂ru)

n+1
K , respectively, the discrete derivatives of pressure at the

edgeσ and the velocity on primal cellK. The last term in Equation (1.69d) known as

the discrete version of pressure derivative on the dual cellDσ is built as the transpose of

velocity derivative on the primal cellK. The natural approximation for the derivative of

Explicit Staggered Schemes for Compressible Flows 32



NGUYEN Tan-Trung

the velocity on primal cells reads

∀K =
−−→
σ|σ′ ∈ M, (∂ru)

n+1
K =

1

hK

(
rασ′ un+1

σ′ − rασ u
n+1
σ

)
. (1.76)

Consequently, the discrete derivative of pressure at the edgeσ is given by

∀σ =
−−→
K|L ∈ Eint, (∂rp)

n+1
σ =

1

hσ
rασ
(
pn+1
L − pn+1

K

)
. (1.77)

Hence, we obtain the duality relation between derivatives of pressure and velocity:

∑

K∈M

hK p
n+1
K (∂ru)

n+1
K +

∑

σ∈Eint

hσ u
n+1
σ (∂rp)

n+1
σ = 0. (1.78)

Note that, because of the impermeability boundary conditions, the discrete pressure

derivative is not defined at the external edges.

Finally, the initial approximations forρ andu are given by the average of the initial

conditionsρ0 andu0 on the primal and dual cells respectively:

∀K ∈ M, ρ0K =
1

|VK |

∫

K

ρ0(r) r
α dr,

∀σ ∈ Eint, u0σ =
1

|Vσ|

∫

Dσ

u0(r) r
α dr.

(1.79)

Note that, thanks to the upwind choice in the mass balance equation (1.71) and the

assumption on the positivity ofρ0, under the following CFL condition:

δt ≤ |VK |
rασ′ (unσ′)+ + rασ (unσ)

−
, (1.80)

the discrete density obtained in (1.69) remains positive atall times.

1.5.2.2 Discrete kinetic energy and elastic potential balances

In the similar way to Section 1.3.2, the discrete kinetic energy equation and elastic po-

tential balance are stated in two following lemma:

Lemma 1.5.1(Discrete kinetic energy balance).

A solution to the system(1.69) satisfies the following equality,∀n ∈ {0, . . . , N − 1},
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∀σ =
−−→
K|L ∈ Eint,K =

−−→
σ′|σ, andL =

−−→
σ|σ′′:

1

2

|Vσ|
δt

[

ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)
2
]

+
1

2

[
F n
L (unL)

2 − F n
K (unK)

2
]
+ |Vσ| (∂rp)n+1

σ un+1
σ

= −Rn+1
σ , (1.81)

with:

Rn+1
σ =

1

2

|Vσ|
δt

ρn+1
Dσ

(un+1
σ − unσ)

2 +
1

2

[
(F n

L )
−(unσ′′ − unσ)

2 + (F n
K)

−(unσ′ − unσ)
2
]

− (F n
L )

−(unσ′′ − unσ) (u
n+1
σ − unσ)− (F n

K)
+(unσ′ − unσ) (u

n+1
σ − unσ), (1.82)

where, fora ∈ R, a− ≥ 0 is defined bya− = −min(a, 0). This remainder term is

non-negative under the following CFL condition:

∀σ =
−−→
K|L ∈ Eint, δt ≤ |Vσ| ρn+1

Dσ

(F n
L )

− + (F n
K)

+
. (1.83)

Lemma 1.5.2(Discrete potential balance). LetH be defined by(1.4). A solution to the

system(1.69)satisfies the following equality, forK =
−−→
σ|σ′ ∈ M, σ =

−−→
P |K, σ′ =

−−→
K|Q

and0 ≤ n ≤ N − 1:

|VK |
δt

[

H(ρn+1
K )−H(ρnK)

]

+ rασ′ H(ρnσ′) unσ′ − rασ H(ρnσ) u
n
σ + |VK| pnK(∂run)K = −Rn+1

K .

(1.84)

In this relation, the remainder term is defined by:

Rn+1
K =

1

2

|VK|
δt

H′′(ρnK,1) (ρ
n+1
K −ρnK)2+

(
rασ′ ρnσ′ unσ′ −rασ ρnσ unσ

)
(ρn+1

K −ρnK)H′′(ρnK,2)

+
1

2

[

rασ′ (unσ′)− (ρnQ − ρnK)
2H′′(ρnσ′) + rασ (u

n
σ)

+ (ρnP − ρnK)
2H′′(ρnσ)

]

, (1.85)

with ρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, ρnσ ∈ |[ρnK , ρnP ]| andρnσ′ ∈ |[ρnK , ρnQ]|, where, fora, b ∈ R,

we denote by|[a, b]| the interval|[a, b]| = {θa+ (1− θ)b, θ ∈ [0, 1]}.

Unfortunately, it does not seem thatRn+1
K ≥ 0 in any case, and so we are not able

to prove a discrete counterpart of the total entropy estimate (1.60), which would yield a

stability estimate for the scheme. However, under a condition for a time step which is

only slightly more restrictive than a CFL-condition, and under some stability assumptions
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for the solutions to the scheme, we are able to show that the possible non-positive part of

this remainder term tends to zero inL1(Ω× (0, T )), which allows to conclude, in the 1D

case, that a convergent sequence of solutions satisfies the entropy inequality (1.59): this

is the result stated in Lemma 1.5.4 below.

1.5.2.3 Passing to the limit in the scheme

Theorem 1.5.3(Consistency of the explicit scheme).

LetΩ be an open bounded interval ofR. We suppose that the initial data satisfiesρ0 ∈
L∞(Ω) andu0 ∈ L∞(Ω). Let (M(m), δt(m))m∈N be a sequence of discretizations such

that both the time stepδt(m) and the sizeh(m) of the meshM(m) tend to zero asm→ ∞,

and (ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose that

this sequence satisfies the estimates(1.30)–(1.32)and converges inLp(Ω× (0, T ))3, for

1 ≤ p <∞, to (ρ̄, p̄, ū) ∈ L∞(Ω× (0, T ))3.

Then the limit(ρ̄, p̄, ū) satisfies the system(1.54).

Main ideas of the proof – We refer to Chapter 4, Theorem 4.3.5 for the detail of this

proof. �

Note that the discreteL1(Ω; BV((0, T ))) norm in this case reads:

‖q‖T ,t,BV =
∑

K∈M

|VK |
N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

|Vσ|
N−1∑

n=0

|vn+1
σ − vnσ |.

We now turn to the entropy condition (1.59). To this purpose,we need to introduce

the following additional condition for a sequence of discretizations:

lim
m→+∞

δt(m)

minK∈M(m) hK
= 0. (1.86)

Note that this condition is slightly more restrictive that astandard CFL condition. It

allows to bound the remainder term in the discrete elastic potential balance as stated in

the following lemma.

Lemma 1.5.4. Let Ω be an open bounded interval ofR. Let (M(m), δt(m))m∈N be a

sequence of discretizations such that the time stepδt(m) tends to zero asm → ∞, and
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(ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose thatthis

sequence satisfies the estimates(1.30)–(1.31). In addition, we assume that(ρ(m))m∈N

satisfies the following uniform BV estimate:

‖ρ(m)‖T ,t,BV ≤ C, ∀m ∈ N, (1.87)

and, forγ < 2 only, is uniformly bounded by below,i.e. that there existsc > 0 such that:

c ≤ (ρ(m))nK , ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (1.88)

Let us suppose that the CFL condition(1.86)hold. LetR(m) be defined by:

R(m) =

N−1∑

n=0

δt
∑

K∈M

(Rn+1
K )−,

withRn+1
K given by(1.85). Then:

lim
m→+∞

R(m) = 0.

Then we are now in position to state the following consistency result.

Theorem 1.5.5(Entropy consistency, barotropic case). Let the assumptions of Theorem

1.5.3hold. Let us suppose in addition that the considered sequence of discretization satis-

fies(1.86), and that(ρ(m))m∈N satisfies the BV estimate(1.87)and, forγ < 2, the uniform

control (1.88)of 1/ρ(m) . Then the limit(ρ̄, p̄, ū) satisfies the entropy condition(1.59).

Main ideas of the proof – We refer to Chapter 2, Theorem 4.3.7 for the detail of this

proof. �

1.5.3 The full Euler equations

1.5.3.1 The scheme

The derivation of the explicit-in-time scheme for the Eulerequations is obtained in the

same manner to the barotropic Euler equations (Section 1.5.2.1). The fully discrete form
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of the scheme reads, for0 ≤ n ≤ N − 1:

∀K ∈ M, ρ0K =
1

|VK |

∫

K

ρ0(x) r
α dr, e0K =

1

|VK |

∫

K

e0(x) r
α dr,

∀σ ∈ Eint, u0σ =
1

|Vσ|

∫

Dσ

u0(x) r
α dr,

(1.89a)

∀K = [
−→
σσ′] ∈ M,

|VK |
δt

(ρn+1
K − ρnK) + F n

σ′ − F n
σ = 0, (1.89b)

∀K = [
−→
σσ′] ∈ M,

|VK |
δt

(ρn+1
K en+1

K − ρnKe
n
K) + F n

σ′enσ′ − F n
σ e

n
σ + pnK(r

α
σ′unσ′ − rασu

n
σ) = Sn

K ,

(1.89c)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (1.89d)

∀σ =
−−→
K|L ∈ Eint,

|Vσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + F n
Lu

n
L − F n

Ku
n
K + rασ (p

n+1
L − pn+1

K ) = 0.

(1.89e)

Equations (1.89b) and (1.89e) are introduced in Section 1.5.2.1. Equation (1.89c) is an

approximation of the internal energy balance over the primal cell K. The positivity of

the convection operator is ensured thanks to the upwinding choice forenσ:

∀σ =
−−→
K|L ∈ Eint, enσ =

∣
∣
∣
∣
∣
∣

enK if F n
σ ≥ 0,

enL otherwise.

The last term on the left-hand side is a natural approximation of the velocity derivative

on primal cells which is given by (4.27). The right-hand side, Sn
K , is derived by using

consistency arguments in the next section. Finally, the initial approximations fore is

given by the average of the initial conditionse0 on the primal cells.
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1.5.3.2 Corrective source terms

With the same idea as in Section 1.4.2, the source term(Sn
K) is chosen to compensate the

terms(Rn+1
σ ) given by (1.85):

∀K ∈ M, K = [
−→
σσ′], Sn

K =
|VK |
4 δt

ρnK
[
(unσ − un−1

σ )2 + (unσ′ − un−1
σ′ )2

]

+
|F n−1

K |
2

(un−1
σ − un−1

σ′ )2 + F n−1
K (un−1

σ′ − un−1
σ ) (unK − un−1

K ), (1.90)

whereunK − un−1
K is a downwind choice with respect toF n−1

K :

∀K =
−−→
σ|σ′ ∈ M, unK − un−1

K =

∣
∣
∣
∣
∣
∣

unσ′ − un−1
σ′ if F n−1

K ≥ 0,

unσ − un−1
σ otherwise.

The definition of(Sn
K)K∈M allows to prove that, under a CFL condition, the scheme

preserves the positivity ofe.

Lemma 1.5.6.Let us suppose that, for1 ≤ n ≤ N and for allK = σ|σ′ ∈ M, we have:

δt ≤ |VK |
γ
[
rασ′ (unσ′)+ + rασ (unσ)

−
] and δt ≤ |VK | ρnK∣

∣F n−1
σ + F n−1

σ′

∣
∣
. (1.91)

Then the internal energy(en)0≤n≤N given by the scheme(1.89)is positive.

1.5.3.3 Passing to the limit in the scheme

Theorem 1.5.7(Consistency of the explicit scheme).

LetΩ be an open bounded interval ofR. We suppose that the initial data satisfiesρ0 ∈
L∞(Ω), p0 ∈ BV(Ω), e0 ∈ L∞(Ω) and u0 ∈ L∞(Ω). Let (M(m), δt(m))m∈N be a

sequence of discretizations such that both the time stepδt(m) and the sizeh(m) of the mesh

M(m) tend to zero asm → ∞, and let(ρ(m), p(m), e(m), u(m))m∈N be the corresponding

sequence of solutions. We suppose that this sequence satisfies the estimates(4.45)–(4.48)

and converges inLp(Ω× (0, T ))4, for 1 ≤ p <∞, to (ρ̄, p̄, ē, ū) ∈ L∞(Ω× (0, T ))4.

Then the limit(ρ̄, p̄, ē, ū) satisfies the system(1.63).

Main ideas of the proof – We refer to Chapter 3, Theorem 4.4.2 for the detail of this

proof. �
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1.6 Some numerical results

We test here the explicit schemes on some one dimensional model problems.

1.6.1 The barotropic case

In this section, we give some numerical results for the barotropic equations, takingp = ρ2

as equation of state. Note that in this case, the system is equivalent (up to a constant pro-

portionality coefficient in the equation of state) to the shallow water equations, replacing

ρ by the water heighth. We test the explicit scheme studied above, which we denote

by ρ → p → u, since the pressure is updated before solving the momentum balance

equation; we also test the “naive” explicit scheme obtainedby evaluating all terms other

than the time derivative at timetn, which we denote byρ → u → p (the pressure is

then updated after the computation of the velocity rather than after the computation of

the density).

We consider a one–dimensional Riemann problem with the following values for the

left and right states:ρL = 1., ρR = 10., uL = 5. anduR = 7.5, which yields a solu-

tion with a left shock and a right rarefaction wave. We plot the computed density and

velocity at timeT = 0.025 on figures 1.2 and 1.3 respectively. From these results, it ap-

pears clearly that the so-called “naive” scheme generates discontinuities in the rarefaction

wave, and further experiments show that this phenomenon is not cured by a reduction of

the time and space step; this seems to be connected to the factthat, for this variant, we

cannot prove that the limits of converging sequences satisfy the entropy condition (and

they probably do not). When trying to do so, in our proof and from a purely technical

point of view, the trouble comes from the fact that the pressure gradient term which ap-

pears in the kinetic energy balance readsu
n+1

∇pn and it seems difficult to make the

counterpart (i.e. pndiv(un+1)), with the corresponding time levels, appear in the elastic

potential balance, starting from a mass balance with a convection term written withun;

hence a discretization of the momentum balance equation with an updated pressure gra-

dient term∇pn+1, and thus the inversion of steps in the algorithm, to get the “reference

variant” proposed in this chapter. This latter scheme seemsto converge to the right so-

lution, and it is confirmed by a numerical convergence study letting the space and time

steps tend to zero, which show an approximatively first-order rate of convergence.
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(a)ρ → p → u (b) ρ → u → p

Figure 1.2: Barotropic Euler equations, density

(a)ρ → p → u (b) ρ → u → p

Figure 1.3: Barotropic Euler equations, velocity

1.6.2 The full Euler equations

Let us now turn to the full Euler equations. We use the test case referred as Test 4 in

[61, Chapter 4], which is a Riemann problem with the following initial states:ρL =

ρR = 1., uL = uR = 0., pL = 0.01 andpR = 100. Here again, we test the scheme

that was analysed in Section 1.4, which we denote byρ → e → p → u (the order in

which we compute the unknowns at timen + 1) and compare it to the “naive” scheme,

denoted byρ → u → u → p, obtained by discretizing the Euler equations (1.38) in the

corresponding order.

The density, velocity, internal energy and pressure obtained atT = 0.035, together

with the analytical solution, are plotted on Figures 1.4, 1.5, 1.6 and 1.7 respectively.

For the naive scheme, the same behaviour as for the barotropic case (i.e. the presence
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of discontinuities in the rarefaction wave) is observed, while, once again, the reference

variant of the algorithm yields correct results. The order of the scheme is numerically

found to be 1 for the variables with no jump at the discontinuities (these arep andu)

and 1/2 for those with a jump, namelyρ ande. However, the diffusive character of the

scheme is evidenced at the contact discontinuity; the implementation of a more accurate

discretization, based on a MUSCL-like technique, is underway.

In addition, we also tested the scheme obtained by neglecting the corrective terms

(SK)K∈M in the internal energy balance; results (not plotted here) seem to show that

this scheme does converge, but toward a limit which is clearly not a weak solution to

the Euler equations (in particular, with jumps which do not satisfy the Rankine-Hugoniot

conditions).

(a)ρ → e → p → u (b) ρ → u → e → p

Figure 1.4: Full Euler equations, density

1.6.3 Radial compressible flows

We address the Riemann problem studied in [61, Chapter 17] toassess the behaviour of

the scheme on the explosion. The chosen initial statesρins = 1, uins = 0; pins = 1,

ρout = 0.125, uout = 0 and pout = 0.1 gives a circular shock wave travelling away

from the centre, a circular contact surface travelling in the same direction and a circular

rarefaction travelling towards the origin. The three-dimensional solutions Figure 1.8 in-

cluding density, velocity, pressure and internal energy obtained along the radial line that

is coincident with thex–axis at the final time are compatible with the reference solutions

in [61, Figure 17.7].

Explicit Staggered Schemes for Compressible Flows 41



NGUYEN Tan-Trung

(a)ρ → e → p → u (b) ρ → u → e → p

Figure 1.5: Full Euler equations, velocity

(a)ρ → e → p → u (b) ρ → u → e → p

Figure 1.6: Full Euler equations, internal energy

1.7 Conclusion

We present in this thesis an explicit scheme based on staggered meshes for the hyperbolic

system of the compressible flows. This algorithm uses a very simple first-order upwind-

ing strategy which consists, equation by equation, to implement an upwind discretization

with respect of the material velocity of the convection term.

• For the barotropic Euler equations: under CFL-like conditions based on the mate-

rial velocity only (by opposition to the celerity of waves),our scheme preserves the

positivity of the density and the pressure, and has been shown to be consistent for

1D problems, in the sense that, if a sequence of numerical solutions obtained with

more and more refined meshes (and, accordingly, smaller and smaller time steps)

converges, then the limit is a weak entropy solution to the continuous problem.
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(a)ρ → e → p → u (b) ρ → u → e → p

Figure 1.7: Full Euler equations, pressure

• For the full Euler equations: our scheme solves the internalenergy balance instead

of the total energy balance, and thus turns out to be non-conservative: indeed,

the total energy conservation law is only recovered at the limit of vanishing time

and space steps, thanks to the addition of corrective sourceterms in the discrete

internal energy balance. Under CFL-like conditions based on the material velocity

only, this scheme preserves the positivity of the density, the internal energy and the

pressure (in other words, the scheme preserves the convex ofadmissible states), and

its solution satisfies a conservation property (in fact, as often at the discrete level,

non-increase) of the integral of the total energy over the computational domain.

Finally, the scheme has been shown to be consistent for 1D problems, in the sense

that, if a sequence of numerical solutions obtained with more and more refined

meshes (and, accordingly, smaller and smaller time steps) converges, then the limit

is a weak solution to the continuous problem.

• For the radial compressible flows: this case is, in fact, an extension of 1D flows

on two and three-dimensional spaces where the acoustic waves propagate in radial

and spherical trajectories. From the theoretical and numerical point of views, our

scheme still gives the same properties as stated above for the barotropic and full

Euler equations. The obtained results depend only on the volume and the connec-

tivity of the mesh. Therefore, our scheme can apply on wider classes of problems,

for instance, the axisymmetric flow with non-zero angular velocity component.
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(a) density (b) velocity

(c) pressure (d) internal energy

Figure 1.8: Euler equations on spherical coordinate systems, all solutions

Numerical studies show that the proposed algorithm is stable, even if the largest time

step before blow-up is smaller than suggested by the above-mentioned CFL conditions.

This behaviour had to be expected, since these CFL conditions only involve the velocity

(and not the celerity of the acoustic waves): indeed, was this the only limitation, we

would have obtained an explicit scheme stable up to the incompressible limit. However,

the mechanisms leading to the blow-up of the scheme (or, conversely, the way to fix the

time step to ensure stability) remain to be understood.

In addition, numerical experiments show that some oscillations appear near stagna-

tion points, where the numerical diffusion brought by the upwinding vanishes. These

oscillations are damped by a small amount of artificial (physical-like) viscosity, and this

suggests to implement techniques consisting in adding to the scheme such a diffusion

term, with a viscosity monitored by ana posteriori(i.e. performed in view of the results

of the previous time step) analysis of the solution, as the so-called entropy-viscosity tech-

nique. Besides, such an extension should allow to design a more accurate scheme, based
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on higher-order numerical fluxes. This work is underway.

Since the proposed scheme uses very simple numerical fluxes,it is well suited to large

multi-dimensional parallel computing applications, and such studies are now beginning

at IRSN. Still for the same reasons (and, in particular, because the construction of the

discretization does not require the solution of the Riemannproblem), it seems that the

presented approach offers natural extensions to more complex problems, such as reacting

flows; this development is foreseen at IRSN, for applications to explosion hazards.
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Chapter 2

The barotropic Euler equations

2.1 Introduction

We address in the work the numerical solution of the so-called barotropic Euler equations,

which read:

∂tρ+ div(ρu) = 0, (2.1a)

∂t(ρu) + div(ρu⊗ u) +∇p = 0, (2.1b)

p = ℘(ρ) = ργ , (2.1c)

wheret stands for the time,ρ, u andp are the density, velocity and pressure in the flow,

andγ ≥ 1 is a coefficient specific to the considered fluid. The problem is supposed to be

posed overΩ× (0, T ), whereΩ is an open bounded connected subset ofRd, 1 ≤ d ≤ 3,

and(0, T ) is a finite time interval. This system must be supplemented byinitial conditions

for ρ andu, denoted byρ0 andu0, and we assumeρ0 > 0. It must also be supplemented

by a suitable boundary condition, which we suppose to be:

u · n = 0

at any time anda.e.on∂Ω, wheren stands for the normal vector to the boundary.

Let us denote byEk the kinetic energyEk = 1
2
|u|2. Taking the inner product of

(2.1b) byu yields, after formal compositions of partial derivatives and using the mass
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balance (2.1a):

∂t(ρEk) + div
(
ρEk u

)
+∇p · u = 0. (2.2)

This relation is referred to as the kinetic energy balance.

Let us now define the functionP, from (0,+∞) toR, as a primitive ofs 7→ ℘(s)/s2;

this quantity is often called the elastic potential. LetH be the function defined byH(s) =

sP(s), ∀s ∈ (0,+∞). For the specific equation of state℘ used here, we obtain:

H(s) = sP(s) =







sγ

γ − 1
if γ > 1,

s ln(s) if γ = 1.

(2.3)

Since℘ is an increasing function,H is convex. In addition, it may easily be checked that

ρH′(ρ) − H(ρ) = ℘(ρ). Therefore, by a formal computation, detailed in the appendix,

multiplying (2.1a) byH′(ρ) yields:

∂t
(
H(ρ)

)
+ div

(
H(ρ)u

)
+ p div(u) = 0. (2.4)

Let us denote byS the quantityS = ρEk +H(ρ). Summing (2.2) and (2.4), we get:

∂tS + div
(
(S + p)u

)
= 0. (2.5)

In fact, to avoid invoking unrealistic regularity assumption, such a computation should

be done on regularized equations (obtained by adding diffusion perturbation terms), and,

when making these regularization terms tend to zero, positive measures appear at the

left-hand-side of (2.5), so that we get in the distribution sense:

∂tS + div
(
(S + p)u

)
≤ 0. (2.6)

The quantityS is an entropy of the system, and an entropy solution to (2.1) is thus

required to satisfy:

∀ϕ ∈ C∞
c

(
Ω× [0, T )

)
, ϕ ≥ 0,

∫ T

0

∫

Ω

[
−S∂tϕ− (S + p)u ·∇ϕ

]
dx dt−

∫

Ω

S0 ϕ(x, 0) dx ≤ 0, (2.7)
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with S0 =
1
2
ρ0|u0|2 +H(ρ0). Then, since the normal velocity is prescribed to zero at the

boundary, integrating (2.6) overΩ yields:

d

dt

∫

Ω

[1

2
ρ |u|2 +H(ρ)

]
dx ≤ 0. (2.8)

Sinceρ ≥ 0 by (2.1a) (and the associated initial and boundary conditions) and the func-

tion s 7→ H(s) is bounded by below and increasing at least fors large enough, Inequality

(2.8) provides an estimate on the solution.

The purpose of this chapter is to build an explicit scheme forthe numerical solution

of System (2.1). This scheme is, in fact, the explicit variant of a recent all-Mach-number

pressure correction scheme [15, 26] implemented in the open-source software ISIS [33],

and is developed with the aim to offer an efficient alternative for quickly varying unsta-

tionary flows, with a characteristic Mach number in the rangeor greater than the unity.

The proposed algorithm thus keeps the space discretizations used in this context, namely

staggered finite volume or finite element discretizations. This discretization precludes the

use of Riemann solvers (seee.g.[61, 19, 6] for textbooks on this latter technique), and

we thus implement the most naive upwinding, with respect to the material velocity only

(similarly, but with a simpler upwinding algorithm, to whatis proposed in the collocated

context in the AUSM method [45, 44]). The pressure gradient is defined as the transpose

of the natural velocity divergence, and is thus centered. Last but not least, the velocity

convection term is built in such a way to allow to derive a discrete kinetic energy balance.

We prove for this scheme the following results:

- a discrete kinetic energy balance (i.e. a discrete analogue of (2.2)) is established

on dual cells, while a discrete potential elastic balance (i.e. a discrete analogue of

(2.4)) is established on primal cells.

Note however that, because of residual terms appearing in the potential elastic bal-

ance, contrary to what is obtained for implicit and semi-implicit variants of the

present scheme [15, 26], these equations do not seem to yieldthe stability of the

scheme (i.e. a discrete global entropy conservation analogue to Equation (2.8)), at

least unless supposing drastic limitations of the time step.

- Second, in one space dimension, the limit of any convergentsequence of solutions

to the scheme is shown to be a weak solution to the continuous problem, and thus

to satisfy the Rankine-Hugoniot conditions.
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- Finally, passing to the limit in the discrete kinetic energy and elastic potential bal-

ances, such a limit is also shown to satisfy the entropy inequality (2.7).

This chapter is structured as follows. We begin with the presentation the scheme

(Section 2.2), then the discrete kinetic and elastic potential balances are given in Sec-

tion 2.3. The next section is dedicated to the proof, in 1D, ofthe consistency of the

scheme (Section 2.4). We then present some numerical tests,to assess the behaviour of

the algorithm (Section 2.5). The discrete kinetic energy and elastic potential balances are

obtained as particular cases of more general results applying to the explicit finite volume

discretization of transport operators, which are established in Appendix 2.7. Finally, the

conclusion and perspectives are given in Section 2.6.

2.2 The scheme

We refer to Chapter 1, Section 1.2 for the space discretization. For the discretization

in time, let us consider a partition0 = t0 < t1 < . . . < tN = T of the time interval

(0, T ), which we suppose uniform for the sake of simplicity, and letδt = tn+1 − tn for

n = 0, 1, . . . , N − 1 be the (constant) time step. We consider an explicit-in-time scheme,

which reads in its fully discrete form, for0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

F n
K,σ = 0, (2.9a)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ, (2.9b)

For1 ≤ i ≤ d, ∀σ ∈ E (i)
S ,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ,i − ρnDσ

unσ,i) +
∑

ǫ∈Ẽ(Dσ)

F n
σ,ǫu

n
ǫ,i + |Dσ| (∇p)n+1

σ,i = 0,

(2.9c)

where the terms introduced for each discrete equation are defined hereafter.

Equation (2.9a) is obtained by the discretization of the mass balance equation (2.1a)

over the primal mesh, andF n+1
K,σ stands for the mass flux acrossσ outwardK, which,

because of the impermeability condition, vanishes on external faces and is given on the
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internal faces by:

∀σ = K|L ∈ Eint, F n
K,σ = |σ| ρnσ unK,σ, (2.10)

whereunK,σ is an approximation of the normal velocity to the faceσ outwardK. This

latter quantity is defined by:

unK,σ =

∣
∣
∣
∣
∣
∣

unσ,i e
(i) · nK,σ for σ ∈ E (i) in the MAC case,

u
n
σ · nK,σ in the CR and RT cases,

(2.11)

wheree(i) denotes thei-th vector of the orthonormal basis ofRd. The density at the face

σ = K|L is approximated by the upwind technique:

ρnσ =

∣
∣
∣
∣
∣
∣

ρnK if unK,σ ≥ 0,

ρnL otherwise.
(2.12)

We now turn to the discrete momentum balance (2.9c), which isobtained by dis-

cretizing the momentum balance equation (2.1b) on the dual cells associated to the faces

of the mesh. For the discretization of the time derivative, we must provide a definition

for the valuesρn+1
Dσ

andρnDσ
, which approximate the density on the faceσ at timetn+1 and

tn respectively. They are given by the following weighted average:

for σ = K|L ∈ Eint, for k = n andk = n + 1, |Dσ| ρkDσ
= |DK,σ| ρkK + |DL,σ| ρkL.

(2.13)

Let us then turn to the discretization of the convection term. The first task is to define the

discrete mass flux through the dual faceǫ outwardDσ, denoted byF n
σ,ǫ; the guideline for

its construction is that a finite volume discretization of the mass balance equation over

the diamond cells, of the form

∀σ ∈ E , |Dσ|
δt

(ρn+1
Dσ

− ρnDσ
) +

∑

ǫ∈E(Dσ)

F n
σ,ǫ = 0, (2.14)

must hold in order to be able to derive a discrete kinetic energy balance (see Section 2.3

below). For the MAC scheme, the flux on a dual face which is located on two primal

faces is the mean value of the sum of fluxes on the two primal faces, and the flux of a

dual face located between two primal faces is again the mean value of the sum of fluxes
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on the two primal faces [30]. In the case of the CR and RT schemes, for a dual faceǫ

included in the primal cellK, this flux is computed as a linear combination (with constant

coefficients,i.e. independent of the face and the cell) of the mass fluxes through the faces

of K, i.e. the quantities(F n+1
K,σ )σ∈E(K) appearing in the discrete mass balance (2.9a). We

refer to [1, 17] for a detailed construction of this approximation. Let us remark that a

dual face lying on the boundary is then also a primal face, andthe flux across that face is

zero. Therefore, the valuesun+1
ǫ,i are only needed at the internal dual faces, and we make

the upwind choice for their discretization:

for ǫ = Dσ|D′
σ, unǫ,i =

∣
∣
∣
∣
∣
∣

unσ,i if F n
σ,ǫ ≥ 0,

unσ′,i otherwise.
(2.15)

The last term(∇p)n+1
σ,i stands for thei-th component of the discrete pressure gradient

at the faceσ. The gradient operator is built as the transpose of the discrete operator for the

divergence of the velocity, the discretization of which is based on the primal mesh. Let

us denote the divergence ofu
n+1 overK ∈ M by (divu)n+1

K ; its natural approximation

reads:

for K ∈ M, (divu)n+1
K =

1

|K|
∑

σ∈E(K)

|σ| un+1
K,σ . (2.16)

Consequently, the components of the pressure gradient are given by:

for σ = K|L ∈ Eint, (∇p)n+1
σ,i =

|σ|
|Dσ|

(pn+1
L − pn+1

K ) nK,σ · e(i), (2.17)

this expression being derived thanks to the following duality relation with respect to the

L2 inner product:

∑

K∈M

|K| pn+1
K (divu)n+1

K +
d∑

i=1

∑

σ∈E
(i)
S

|Dσ| un+1
σ,i (∇p)n+1

σ,i = 0. (2.18)

Note that, because of the impermeability boundary conditions, the discrete gradient is not

defined at the external faces.

Finally, the initial approximations forρ andu are given by the average of the initial
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conditionsρ0 andu0 on the primal and dual cells respectively:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E (i)
S , u0σ,i =

1

|Dσ|

∫

Dσ

(u0(x))i dx.

(2.19)

The following positivity result is a classical consequenceof the upwind choice in the

mass balance equation.

Lemma 2.2.1(Positivity of the density). Let ρ0 be given by(2.19). Then, sinceu0 is

assumed to be a positive function,ρ0 > 0 and, under theCFL condition:

δt ≤ |K|
∑

σ∈E(K) |σ| max(unK,σ, 0)
, ∀K ∈ M, for 0 ≤ n ≤ N − 1, (2.20)

the solution to the scheme satisfiesρn > 0, for 1 ≤ n ≤ N .

2.3 Discrete kinetic energy and elastic potential balances

We begin by deriving a discrete kinetic energy balance equation, as was already done

for the implicit and fractional time step scheme described in [26]. Equation (2.21) is

a discrete analogue of Equation (2.2), with an upwind discretization of the convection

term.

Lemma 2.3.1(Discrete kinetic energy balance).

A solution to the system(2.9)satisfies the following equality, for1 ≤ i ≤ d, σ ∈ E (i)
S and

0 ≤ n ≤ N − 1:

1

2

|Dσ|
δt

[

ρn+1
Dσ

(un+1
σ,i )2−ρnDσ

(unσ,i)
2
]

+
1

2

∑

ǫ∈E(Dσ)

F n
σ,ǫ (u

n
ǫ,i)

2+|Dσ| (∇p)n+1
σ,i un+1

σ,i = −Rn+1
σ,i ,

(2.21)
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with:

Rn+1
σ,i =

1

2

|Dσ|
δt

ρn+1
Dσ

(un+1
σ,i − unσ,i)

2 +
1

2

∑

ǫ=Dσ|Dσ′∈E(Dσ)

(F n
Dσ ,ǫ

)−(unσ′,i − unσ,i)
2

−
∑

ǫ=Dσ|Dσ′∈E(Dσ)

(F n
Dσ,ǫ

)−(unσ′,i − unσ,i) (u
n+1
σ,i − unσ,i), (2.22)

where, fora ∈ R, a− ≥ 0 is defined bya− = −min(a, 0). This remainder term is

non-negative under the following CFL condition:

∀σ ∈ E (i)
S , δt ≤ |Dσ| ρn+1

Dσ∑

ǫ∈E(Dσ)
(F n

σ,ǫ)
−
. (2.23)

Proof. The proof of this lemma is obtained by multiplying the (ith component of the)

momentum balance equation (2.9c) associated to the faceσ by the unknownun+1
σ,i , and

invoking Lemma 2.7.2 of the appendix.

Similarly, the solution to the scheme (2.9) satisfies a discrete version of the elastic

potential identity (2.4), which we now state.

Lemma 2.3.2(Discrete potential balance). LetH be defined by(2.3). A solution to the

system(2.9)satisfies the following equality, forK ∈ M and0 ≤ n ≤ N − 1:

|K|
δt

[

H(ρn+1
K )−H(ρnK)

]

+
∑

σ∈E(K)

|σ| H(ρnσ) u
n
K,σ+|K| pnK(divun)K = −Rn+1

K . (2.24)

In this relation, the remainder term is defined by:

Rn+1
K =

1

2

|K|
δt

H′′(ρnK,1) (ρ
n+1
K − ρnK)

2 +
∑

σ∈E(K)

|σ| unK,σ H′′(ρnK,2) ρ
n
σ (ρ

n+1
K − ρnK)

+
1

2

∑

σ=K|L∈E(K)

|σ| (unK,σ)
− H′′(ρnσ) (ρ

n
K − ρnL)

2, (2.25)

with ρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, andρnσ ∈ |[ρnK , ρnL]| for all σ ∈ E(K), where, fora, b ∈ R,

we denote by|[a, b]| the interval|[a, b]| = {θa+ (1− θ)b, θ ∈ [0, 1]}.

Proof. The proof of this lemma is obtain by multiplying the discretemass balance equa-

tion (2.9a) byH′(ρn+1
K ) and invoking Lemma 2.7.1 of the appendix.
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Unfortunately, it does not seem thatRn+1
K ≥ 0 in any case, and so we are not able

to prove a discrete counterpart of the total entropy estimate (2.8), which would yield a

stability estimate for the scheme. However, under a condition for a time step which is

only slightly more restrictive than a CFL-condition, and under some stability assumptions

for the solutions to the scheme, we are able to show that the possible non-positive part of

this remainder term tends to zero inL1(Ω× (0, T )), which allows to conclude, in the 1D

case, that a convergent sequence of solutions satisfies the entropy inequality (2.7): this is

the result stated in Lemma 2.4.3 below.

2.4 Passing to the limit in the scheme

The objective of this section is to show, in the one dimensional case, that if a sequence of

solutions is controlled in suitable norms and converges to alimit, this latter necessarily

satisfies a (part of the) weak formulation of the continuous problem.

The 1D version of the scheme which is studied in this section may be obtained from

Scheme (2.9) by taking the MAC variant of the scheme, using only one horizontal stripe

of grid cells, supposing that the vertical component of the velocity (the degrees of free-

dom of which are located on the top and bottom boundaries) vanishes, and that the mea-

sure of the vertical faces is equal to 1. For the sake of readability, however, we completely

rewrite this 1D scheme, and, to this purpose, we first introduce some adaptations of the

notations to the one dimensional case. For anyK ∈ M, we denote byhK its length

(so hK = |K|); when we writeK = [σσ′], this means that eitherK = (xσ, xσ′) or

K = (xσ′ , xσ); if we need to specify the order,i.e.K = (xσ, xσ′) with xσ < xσ′ , then

we writeK = [
−→
σσ′]. For an interfaceσ = K|L between two cellsK andL, we define

hσ = (hK + hL)/2, so, by definition of the dual mesh,hσ = |Dσ|. If we need to specify

the order of the cellsK andL, sayK is left of L, then we writeσ =
−−→
K|L. With these

notations, the explicit scheme (2.9) may be written as follows in the one dimensional

setting:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,

(2.26a)
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∀K = [
−→
σσ′] ∈ M,

|K|
δt

(ρn+1
K − ρnK) + F n

σ′ − F n
σ = 0, (2.26b)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ . (2.26c)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + F n
Lu

n
L − F n

Ku
n
K + pn+1

L − pn+1
K = 0,

(2.26d)

The mass flux in the discrete mass balance equation is given, forσ ∈ Eint, byF n
σ = ρnσu

n
σ,

where the upwind approximation for the density at the face,ρnσ, is defined by (2.12). In

the momentum balance equation, the application of the procedure described in Section

2.2 yields for the density associated to the dual cellDσ with σ = K|L and for the mass

fluxes at the dual face located at the center of the meshK = [
−→
σσ′]:

for k = n andk = n+ 1, ρkDσ
=

1

2 |Dσ|
(|K| ρkK + |L| ρkL), F n

K =
1

2
(F n

σ + F n
σ′),

(2.27)

and the approximation of the velocity at this face is upwind:unK = unσ if F n
K ≥ 0 and

unK = unσ′ otherwise.

Let a sequence of discretizations(M(m), δt(m))m∈N be given. We define the sizeh(m)

of the meshM(m) by h(m) = supK∈M(m) hK . Let ρ(m), p(m) andu(m) be the solution

given by the scheme (2.26) with the meshM(m) and the time stepδt(m). To the discrete

unknowns, we associate piecewise constant functions on time intervals and on primal

or dual meshes, so the densityρ(m), the pressurep(m) and the velocityu(m) are defined

almost everywhere onΩ× (0, T ) by:

ρ(m)(x, t) =
N−1∑

n=0

∑

K∈M

(ρ(m))nK XK(x)X(n,n+1](t), (2.28)

u(m)(x, t) =
N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
(x)X(n,n+1](t), (2.29)

p(m)(x, t) =
N−1∑

n=0

∑

K∈M

(p(m))nK XK(x)X(n,n+1](t), (2.30)
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whereXK , XDσ
andX(n,n+1] stand for the characteristic function of the intervalsK, Dσ

and(tn, tn+1] respectively.

For discrete functionsq andv defined on the primal and dual mesh, respectively, we

define a discreteL1((0, T ); BV(Ω)) norm by:

‖q‖T ,x,BV =
N∑

n=0

δt
∑

σ=K|L∈Eint

|qnL − qnK |, ‖v‖T ,x,BV =
N∑

n=0

δt
∑

ǫ=Dσ|Dσ′∈Ẽint

|vnσ′ − vnσ |,

and a discreteL1(Ω; BV((0, T ))) norm by:

‖q‖T ,t,BV =
∑

K∈M

|K|
N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

|Dσ|
N−1∑

n=0

|vn+1
σ − vnσ |.

For the consistency result that we are seeking (Theorem 2.4.2 below), we have to assume

that a sequence of discrete solutions
(
ρ(m), p(m), u(m)

)

m∈N
satisfiesρ(m) > 0 andp(m) >

0, ∀m ∈ N (which may be a consequence of the fact that the CFL stabilitycondition

(2.20) is satisfied), and is uniformly bounded inL∞((0, T )× Ω)3, i.e.:

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N,

(2.31)

and

|(u(m))nσ| ≤ C, ∀σ ∈ E (m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (2.32)

whereC is a positive real number. Note that, by definition of the initial conditions of

the scheme, these inequalities imply that the functionsρ0 andu0 belong toL∞(Ω). We

also have to assume that a sequence of discrete solutions satisfies the following uniform

bounds with respect to the discrete BV-norms:

‖ρ(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (2.33)

We are not able to prove the estimates (2.31)–(2.33) for the solutions of the scheme;

however, such inequalities are satisfied by the “interpolates” (for instance, by taking the

cell average) of the solution to a Riemann problem, and are observed in computations (of

course, as far as possible,i.e.with a limited sequence of meshes and time steps).
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A weak solution to the continuous problem satisfies, for anyϕ ∈ C∞
c

(
Ω× [0, T )

)
:

−
∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂xϕ
]

dx dt−
∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (2.34a)

−
∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ
]

dx dt−
∫

Ω

ρ0(x) u0(x)ϕ(x, 0) dx = 0, (2.34b)

p = ργ . (2.34c)

Note that these relations are not sufficient to define a weak solution to the problem, since

they do not imply anything about the boundary conditions. However, they allow to derive

the Rankine-Hugoniot conditions; hence if we show that theyare satisfied by the limit of

a sequence of solutions to the discrete problem, this implies, loosely speaking, thatthe

scheme computes correct shocks(i.e.shocks where the jumps of the unknowns and of the

fluxes are linked to the shock speed by Rankine-Hugoniot conditions). This is the result

we are seeking and which we state in Theorem 2.4.2. In order toprove this theorem,

we need some definitions of interpolates of regular test functions on the primal and dual

mesh.

Definition 2.4.1 (Interpolates on one-dimensional meshes). Let Ω be an open bounded

interval ofR, letϕ ∈ C∞
c (Ω× [0, T )), and letM be a mesh overΩ. The interpolateϕM

of ϕ on the primal meshM is defined by:

ϕM =
N−1∑

n=0

∑

K∈M

ϕn+1
K XK X[tn,tn+1), (2.35)

where, for0 ≤ n ≤ N andK ∈ M, we setϕn
K = ϕ(xK , t

n), with xK the mass center of

K. The time discrete derivative of the discrete functionϕM is defined by:

ðtϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕn

K

δt
XK X[tn,tn+1), (2.36)

and its space discrete derivative by:

ðxϕM =
N−1∑

n=0

∑

σ=
−−→
K|L∈Eint

ϕn+1
L − ϕn+1

K

hσ
XDσ

X[tn,tn+1). (2.37)
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LetϕE be an interpolate ofϕ on the dual mesh, defined by:

ϕE =

N−1∑

n=0

∑

σ∈E

ϕn+1
σ XDσ

X[tn,tn+1), (2.38)

where, for1 ≤ n ≤ N and σ ∈ E , we setϕn
σ = ϕ(xσ, t

n), with xσ the abscissa of

the interfaceσ. We also define the time and space discrete derivatives of this discrete

function by:

ðtϕE =
N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕn

σ

δt
XDσ

X[tn,tn+1),

ðxϕE =

N−1∑

n=0

∑

K=[
−→
σσ′]∈M

ϕn+1
σ′ − ϕn+1

σ

hK
XK X[tn,tn+1).

(2.39)

We are now in position to state the following result.

Theorem 2.4.2(Consistency of the one-dimensional explicit scheme).

LetΩ be an open bounded interval ofR. We suppose that the initial data satisfiesρ0 ∈
L∞(Ω) andu0 ∈ L∞(Ω). Let (M(m), δt(m))m∈N be a sequence of discretizations such

that both the time stepδt(m) and the sizeh(m) of the meshM(m) tend to zero asm→ ∞,

and (ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose that

this sequence satisfies the estimates(2.31)–(2.33)and converges inLp(Ω× (0, T ))3, for

1 ≤ p <∞, to (ρ̄, p̄, ū) ∈ L∞(Ω× (0, T ))3.

Then the limit(ρ̄, p̄, ū) satisfies the system(2.34).

Proof. It is clear that, with the assumed convergence for the sequence of solutions, the

limit satisfies the equation of state. The proof of this theorem is thus obtained by passing

to the limit in the scheme for the mass balance equation first,and then for the momentum

balance equation.

Mass balance equation– Letϕ ∈ C∞
c (Ω× [0, T )). Letm ∈ N, M(m) andδt(m) be

given. Dropping for short the superscript(m), letϕM be the interpolate ofϕ on the primal

mesh and letðtϕM andðxϕM be its time and space discrete derivatives in the sense of

Definition 2.4.1. Thanks to the regularity ofϕ, these functions respectively converge in

Lr(Ω × (0, T )), for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ and∂xϕ respectively. In

addition,ϕM(·, 0) (which, forK ∈ M andx ∈ K, is equal toϕ1
K = ϕ(x, δt)) converges

toϕ(·, 0) in Lr(Ω) for r ≥ 1. Since the support ofϕ is compact inΩ× [0, T ), form large
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enough, the interpolate ofϕ vanishes at the boundary cells and at the last time step(s);

hereafter, we systematically assume that we are in this case.

Let us multiply the first equation (2.9a) of the scheme byδt ϕn+1
K , and sum the result

for 0 ≤ n ≤ N − 1 andK ∈ M, to obtainT (m)
1 + T

(m)
2 = 0 with

T
(m)
1 =

N−1∑

n=0

∑

K∈M

|K|(ρn+1
K − ρnK)ϕ

n+1
K , T

(m)
2 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

(F n
σ′ − F n

σ )ϕ
n+1
K .

Reordering the sums inT (m)
1 yields:

T
(m)
1 = −

N−1∑

n=0

δt
∑

K∈M

|K| ρnK
ϕn+1
K − ϕn

K

δt
−
∑

K∈M

|K| ρ0K ϕ1
K ,

so that:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m)
ðtϕM dx dt−

∫

Ω

(ρ(m))0(x) ϕM(x, 0) dx.

The boundedness ofρ0 and the definition (2.26a) of the initial conditions for the scheme

ensures that the sequence((ρ(m))0)m∈N converges toρ0 in Lr(Ω) for r ≥ 1. Since, by

assumption, the sequence of discrete solutions and of the interpolate time derivatives

converge inLr
(
Ω× [0, T )

)
for r ≥ 1, we thus obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ∂tϕ dx dt−
∫

Ω

ρ0(x)ϕ(x, 0) dx.

Using the expression of the mass fluxF n
σ and reordering the sums inT (m)

2 , we get, re-

marking that|Dσ| = hσ:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

|Dσ| ρnσunσ
ϕn+1
L − ϕn+1

K

hσ
.

Since|Dσ| = (|K|+ |L|)/2 andρnσ is the upwind approximation ofρn at the faceσ, we
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can rewriteT (m)
2 = T (m)

2 +R(m)
2 with

T (m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

( |K|
2
ρnK +

|L|
2
ρnL

)

unσ
ϕn+1
L − ϕn+1

K

hσ
,

R(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

(ρnK − ρnL)
[ |K|

2
(unσ)

− +
|L|
2
(unσ)

+
] ϕn+1

L − ϕn+1
K

hσ
,

where, fora ∈ R, a+ = max(a, 0) anda− = −min(a, 0) (soa = a+ − a−). We have,

for the termT (m)
2 :

T (m)
2 = −

∫ T

0

∫

Ω

ρ(m)u(m)
ðxϕM dx dt and lim

m→+∞
T (m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū ∂xϕ dx dt.

The remainder termR(m)
2 is bounded as follows, withCϕ = ‖∂xϕ‖L∞(Ω×(0,T )):

|R(m)
2 | ≤ Cϕ

N−1∑

n=0

δt
∑

σ=K|L∈E

|ρnK − ρnL| |Dσ| |unσ|

≤ Cϕ ‖u(m)‖L∞(Ω×(0,T )) ‖ρ(m)‖T ,x,BV h
(m),

and therefore tends to zero whenm tends to+∞, by the assumed stability of the solution.

Momentum balance equation– Let ϕE , ðtϕE and ðxϕE be the interpolate ofϕ

on the dual mesh and its discrete time and space derivatives,in the sense of Definition

2.4.1, which converge inLr(Ω × (0, T )), for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ

and∂xϕ respectively. Let us multiply Equation (2.9c) byδt ϕn+1
σ , and sum the result for

0 ≤ n ≤ N − 1 andσ ∈ Eint. We obtainT (m)
1 + T

(m)
2 + T

(m)
3 = 0 with

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ| (ρn+1
Dσ

un+1
σ − ρnDσ

unσ)ϕ
n+1
σ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[

F n
L u

n
L − F n

K u
n
K

]

ϕn+1
σ ,

T
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K )ϕn+1
σ .
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Reordering the sums, we get forT (m)
1 :

T
(m)
1 = −

N−1∑

n=0

δt
∑

σ∈Eint

|Dσ| ρnDσ
unσ

ϕn+1
σ − ϕn

σ

δt
−
∑

σ∈Eint

|Dσ| ρ0Dσ
u0σ ϕ

1
σ.

Thanks to the definition of the quantityρDσ
(namely the fact that|Dσ| ρnDσ

= (|K| ρnK +

|L| ρnL)/2), we have:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðtϕE dx dt−

∫

Ω

(ρ(m))0(x) (u(m))0(x) ϕE(x, 0) dx.

By the same arguments as for the mass balance equation, we therefore obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ū ∂tϕ dx dt−
∫

Ω

ρ0(x) u0(x)ϕ(x, 0) dx.

Let us now turn toT (m)
2 . Reordering the sums and using the definition of the mass fluxes

at the dual faces, we get:

T
(m)
2 = −

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

F n
K u

n
K (ϕn+1

σ′ − ϕn+1
σ )

= −1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

(ρnσu
n
σ + ρnσ′unσ′) unK (ϕn+1

σ′ − ϕn+1
σ ).

Using the relation

∫ T

0

∫

Ω

ρ(m) u(m)2
ðxϕE dx dt =

1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

ρnK
[
(unσ)

2 + (unσ′)2
]
(ϕn+1

σ′ − ϕn+1
σ ),

we can rewrite the termT (m)
2 as

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) u(m)2
ðxϕE dx dt +R(m)

2 ,
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where:

R(m)
2 = −1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

[

(ρnσu
n
σ+ρ

n
σ′unσ′) unK−ρnK

(
(unσ)

2+(unσ′)2
)]

(ϕn+1
σ′ −ϕn+1

σ ).

Let us split this latter expression asR(m)
2 = R(m)

21 +R(m)
22 , with:

R(m)
21 = −1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

unσ (ρnσu
n
K − ρnKu

n
σ) (ϕ

n+1
σ′ − ϕn+1

σ ),

R(m)
22 = −1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

unσ′ (ρnσ′unK − ρnKu
n
σ′) (ϕn+1

σ′ − ϕn+1
σ ).

Applying the identity2(ab− cd) = (a− c)(b+ d) + (a + c)(b − d), ∀(a, b, c, d) ∈ R4,

to the termρnσu
n
K − ρnKu

n
σ and using the fact that the quantitiesρnσ − ρnK andunσ − unK are

either zero or differences of the density at two neighbouring cells and the velocity at two

neighbouring faces respectively, we obtain forR(m)
21 :

|R(m)
21 | ≤ Cϕ

[

‖u(m)‖2L∞(Ω×(0,T )) ‖ρ(m)‖T ,x,BV

+ ‖u(m)‖L∞(Ω×(0,T )) ‖u(m)‖T ,x,BV ‖ρ(m)‖L∞(Ω×(0,T ))

]

h(m),

where the real numberCϕ only depends onϕ. Since the same estimate holds forR(m)
22 ,

the remainder termR(m)
2 tends to zero whenm tends to+∞ and:

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕ dx dt.

Let us finally studyT (m)
3 . Reordering the sums, we obtainT (m)

3 = T (m)
3 +R(m)

3 with:

T (m)
3 = −

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

pnK (ϕn+1
σ′ − ϕn+1

σ ),

R(m)
3 = −

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

(pn+1
K − pnK) (ϕ

n+1
σ′ − ϕn+1

σ ).
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The remainder term reads:

R(m)
3 =

N−1∑

n=1

δt
∑

K=[
−→
σσ′]∈M

pnK
[
(ϕn+1

σ′ −ϕn+1
σ )−(ϕn

σ′ −ϕn
σ)
]
+δt

∑

K=[
−→
σσ′]∈M

p0K (ϕ1
σ′ −ϕ1

σ),

and thus:

|R(m)
3 | ≤ |Ω| Cϕ

[
(T + 1) δt(m) + h(m)

]
‖p‖L∞(Ω×(0,T )),

where the real numberCϕ only depends on (the first and second derivatives of)ϕ. Thus

R(m)
3 tends to zero whenm tends to+∞ and, since

T (m)
3 = −

∫ T

0

∫

Ω

p(m)
ðxϕM dx dt,

we obtain that:

lim
m→+∞

T
(m)
3 =

∫ T

0

∫

Ω

p̄ ∂xϕ dx dt.

Conclusion– Gathering the limits of all the terms of the mass and momentum balance

equations concludes the proof.

We now turn to the entropy condition (2.7). To this purpose, we need to introduce the

following additional condition for a sequence of discretizations:

lim
m→+∞

δt(m)

minK∈M(m) hK
= 0. (2.40)

Note that this condition is slightly more restrictive that astandard CFL condition. It

allows to bound the remainder term in the discrete elastic potential balance as stated in

the following lemma.

Lemma 2.4.3. Let Ω be an open bounded interval ofR. Let (M(m), δt(m))m∈N be a

sequence of discretizations such that the time stepδt(m) tends to zero asm → ∞, and

(ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose thatthis

sequence satisfies the estimates(2.31)–(2.32). In addition, we assume that(ρ(m))m∈N

satisfies the following uniform BV estimate:

‖ρ(m)‖T ,t,BV ≤ C, ∀m ∈ N, (2.41)
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and, forγ < 2 only, is uniformly bounded by below,i.e. that there existsc > 0 such that:

c ≤ (ρ(m))nK , ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (2.42)

Let us suppose that the CFL condition(2.40)hold. LetR(m) be defined by:

R(m) =
N−1∑

n=0

δt
∑

K∈M

(Rn+1
K )−,

withRn+1
K given by(2.25). Then:

lim
m→+∞

R(m) = 0.

Proof. ForK = [
−→
σσ′] ∈ M, with σ =

−−−→
M |K andσ′ =

−−→
K|L, we writeRn+1

K = (T1)
n+1
K +

(T2)
n+1
K + (T3)

n+1
K , with:

(T1)
n+1
K =

1

2

|K|
δt

H′′(ρnK,1) (ρ
n+1
K − ρnK)

2,

(T2)
n+1
K =

1

2

[

(unσ′)− H′′(ρnσ′) (ρnK − ρnL)
2 + (−unσ)− H′′(ρnσ) (ρ

n
K − ρnM)2

]

,

(T3)
n+1
K =

[

ρnσ′ unσ′ − ρnσ u
n
σ

]

H′′(ρnK,2) (ρ
n+1
K − ρnK),

whereρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, ρnσ′ ∈ |[ρnK , ρnL]| andρnσ ∈ |[ρnK , ρnM ]|. The first two terms

are non-negative, and thus(Rn+1
K )− ≤ |(T3)n+1

K |. Since bothρ, u and, forγ < 2, 1/ρ are

supposed to be bounded, there existsC > 0 such that:

N−1∑

n=0

δt
∑

K∈M

|(T3)n+1
K | ≤ C

δt(m)

minK∈M hK
‖ρ(m)‖T ,t,BV,

which yields the conclusion by the assumption (2.40).

Then we are now in position to state the following consistency result.

Theorem 2.4.4(Entropy consistency, barotropic case). Let the assumptions of Theorem

2.4.2hold. Let us suppose in addition that the considered sequence of discretization satis-

fies(2.40), and that(ρ(m))m∈N satisfies the BV estimate(2.41)and, forγ < 2, the uniform

control (2.42)of 1/ρ(m) . Then the limit(ρ̄, p̄, ū) satisfies the entropy condition(2.7).
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Proof. Let ϕ ∈ C∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0. With the same notations for the interpolate of

ϕ as in the preceding proof, we multiply the kinetic balance equation (2.21)-(2.22) by

ϕn+1
σ , and the elastic potential balance (2.24)-(2.25) byϕn+1

K , sum over the edges and

cells respectively and over the time steps, to obtain the discrete version of (2.7):

T
(m)
1 + T

(m)
2 + T

(m)
3 + T̃

(m)
1 + T̃

(m)
2 + T̃

(m)
3 = −R(m) − R̃(m) (2.43)

where:

T
(m)
1 =

N−1∑

n=0

δt
∑

K∈M

|K|
δt

[
H(ρn+1

K )−H(ρnK)
]
ϕn+1
K ,

T
(m)
2 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

[
H(ρnσ′) unσ′ −H(ρnσ) u

n
σ

]
ϕn+1
K ,

T
(m)
3 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

[
pnK(u

n
σ′ − unσ)

]
ϕn+1
K ,

T̃
(m)
1 =

1

2

N−1∑

n=0

δt
∑

σ∈Eint

|Dσ|
δt

[
ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)
2
]
ϕn+1
σ ,

T̃
(m)
2 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
F n
L (unL)

2 − F n
K (unK)

2
]
ϕn+1
σ ,

T̃
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K ) un+1
σ ϕn+1

σ ,

R(m) =
N−1∑

n=0

δt
∑

K∈M

Rn+1
K ϕn+1

K , R̃(m) =
N−1∑

n=0

δt
∑

σ∈Eint

Rn+1
σ ϕn+1

σ ,

and the quantitiesRn+1
K andRn+1

σ are given by (the one-dimensional version of) Equation

(2.25) and (2.22) respectively.

The fact that

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

H(ρ̄) ∂tϕ dx dt−
∫

Ω

H(ρ0)(x) ϕ(x, 0) dx,

is proven by the same technique as for passing to the limit in the termT (m)
1 of the dis-
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crete mass balance equation in the proof Theorem 2.4.2, thanks to the fact that, with the

assumed convergence of the sequence(ρ(m))m∈N, the sequence(H(ρ(m)))m∈N converge

to H(ρ̄) in Lr(Ω× (0, T )), for r ≥ 1. ForT (m)
2 , we have, reordering the sums:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

H(ρnσ) u
n
σ (ϕn+1

L − ϕn+1
K ).

Let us writeT (m)
2 = T (m)

2 +R(m)
2 , with

T (m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(
|DK,σ| H(ρnK) + |DL,σ| H(ρnL)

)
unσ

ϕn+1
L − ϕn+1

K

hσ
,

R(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[

|Dσ| H(ρnσ)− |DK,σ| H(ρnK)− |DL,σ| H(ρnL)
]

unσ
ϕn+1
L − ϕn+1

K

hσ
.

We have:

T (m)
2 = −

∫ T

0

∫

Ω

H(ρ(m)) u(m)
ðxϕM dx dt,

so

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

H(ρ̄) ū ∂xϕ dx dt.

The remainder termR(m)
2 satisfies:

|R(m)
2 | ≤

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

|H(ρnK)−H(ρnL)| unσ |ϕn+1
L − ϕn+1

K |,

and so

|R(m)
2 | ≤ Cϕ h

(m) ‖u(m)‖L∞(Ω×(0,T )) ‖ρ(m)‖T ,x,BV,

provided that a uniform (with respect to the faces, the time steps and the meshes) Lips-

chitz condition holds for|H(ρnK)−H(ρnL)| which, in view of the expression ofH, requires

that the sequence(ρ(m))m∈N be bounded by below away from zero whenγ = 1.

For the other terms at the left-hand side of (2.43), we refer to Chapter 3, Theo-

rem 3.4.2. Finally, the remainder termR(m) is non-negative under the CFL condition
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(2.23), while the positive part of̃R(m) tends to zero inL1(Ω× (0, T )) under the assump-

tion (2.40) by Lemma 2.4.3. The proof is thus complete.

2.5 Numerical results

We assess in this section the behaviour of the scheme on various test cases. For all these

tests, we chosep = ρ2 for the equation of state, so the solved system turns out to bethe

so-called shallow water equations. The exact solution of the Riemann problem is studied

in Appendix A.

2.5.1 A first Riemann problem

We begin with a Riemann problem,i.e. a 1D problem which initial conditions consists

in two constant states separated by a discontinuity. The chosen left and right states are

given by:

left state:

[

ρL = 1

uL = 5

]

; right state:

[

ρR = 10

uR = 7.5

]

.

The computational domain isΩ = (0, 1) and the final time isT = 0.025. The (known)

analytical solution of this problem consists, from the leftto the right, in a shock wave

and a rarefaction wave, both travelling to the right, separated by constant states.

2.5.1.1 Results

The density and velocity obtained att = 0.025 = T with h = 0.001 andδt = h/12

are shown of Figures 2.1 and 2.2 respectively. In addition, we performed a convergence

study, successively dividing by two the space and time steps(so keeping the CFL number

constant). The difference between the computed and analytical solution att = 0.025,

measured inL1(Ω) norm, are reported in the following table:

space step h0 = 1/250 h0/2 h0/4 h0/8 h0/16

‖ρ− ρ̄‖L1(Ω) 0.0449 0.0256 0.0135 0.00775 0.00429

‖u− ū‖L1(Ω) 0.0411 0.0233 0.0119 0.00696 0.00384

We observe an approximatively first-order convergence rate.
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Figure 2.1: Test 1 –h = 0.001, δt = h/12 – Density att = 0.025.

To complete the study, we performed a computation of the sameproblem, but sub-

tracting a constant real number to the left and right velocity, in such a way that the velocity

on the intermediate state nearly vanishes. In this case, we observe spurious oscillations

on the solution (see Figures 2.3 and 2.4), probably due to thefact that the numerical

diffusion in the scheme vanishes. However, adding an artificial viscosity term in the dis-

crete momentum balance equation, with a constant viscosityequal to0.5 ρ h (so equal

to the upwind viscosity which would be associated to a velocity equal to1) completely

cures the problem (see Figures 2.5 and 2.6). This observation strongly supports the idea

to build a higher order scheme using ana posteriorifitted viscosity technique, as in the

so-called entropy viscosity method [21, 22]; this work is underway.

When we substract once again a constant to the velocity at both left and right state,

and so the velocity at the intermediate becomes negative, werecover an oscillation-free

solution without adding any viscosity (Figures 2.7 and 2.8).
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Figure 2.2: Test 1 –h = 0.001, δt = h/12 –Velocity att = 0.025.

2.5.1.2 On a naive scheme

We also test the “naive” explicit scheme obtained by evaluating all the terms, except of

course the time-derivative one, at timetn. In the one dimensional setting and with the

same notations as in Section 2.4, this scheme thus reads:

∀K = [
−→
σσ′] ∈ M,

|K|
δt

(ρn+1
K − ρnK) + F n

σ′ − F n
σ = 0, (2.44a)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + F n
Lu

n
L − F n

Ku
n
K + pnL − pnK = 0,

(2.44b)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ . (2.44c)

Hereafter and on the figure captions, this scheme is referredto by theρ u p scheme

(since the pressure is updated after the computation of the velocity rather than after the

computation of the density).

The computed density and velocity at timeT = 0.025 are plotted on figures 2.9
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Figure 2.3: Test 1 modified to obtain a nearly vanishing velocity at the intermediate state,
viscosity= 0 – h = 0.001, δt = h/12 – Density att = 0.025.

and 2.10 respectively. From these results, it appears clearly that theρ u p scheme

generates discontinuities in the rarefaction wave, and further experiments show that this

phenomenon is not cured by a decrease of the time and space step; this seems to be

connected to the fact that, for this variant, we cannot provethat the limits of converging

sequences satisfy the entropy condition (in fact, they probably do not). When trying to

do so, in our proof and from a purely technical point of view, the trouble comes from

the fact that the pressure gradient term which appears in thekinetic energy balance reads

u
n+1

∇pn and it seems difficult to make the counterpart (i.e. pndiv(un+1)), with the

corresponding time levels, appear in the elastic potentialbalance, starting from a mass

balance with a convection term written withun; hence a discretization of the momentum

balance equation with an updated pressure gradient term∇pn+1, and thus the inversion

of steps in the algorithm, to get the “reference variant” proposed in this chapter.
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Figure 2.4: Test 1 modified to obtain a nearly vanishing velocity at the intermediate state,
viscosity= 0 – h = 0.001, δt = h/12 – Velocity att = 0.025.

2.5.2 Problems involving vacuum zones in the flow

The objective of the two tests presented in this section is tocheck that the time step

does not have to be drastically reduced in the presence of vacuum. Both are Riemann

problems, posed onΩ = (0, 1).

We first begin with a case where the vacuum is initially present, at the right initial

state:

left state:

[

ρL = 1

uL = 1

]

; right state:

[

ρR = 0

uR = 0

]

.

In the computer code,ρR is fixed asρR = 10−20, to prevent divisions by zero due to

imprudent programming. The results obtained att = 0.05 are plotted on Figure 2.11

(density) and Figure 2.12 (velocity); they have been obtained with h = 0.001 and a

constant time step equal toδt = h/8, which seems to be near to the stability limit. We

observe that the prediction velocity is rather poor near to the vacuum front; we however

check on Figure 2.13 that the scheme converges to the right solution; moreover, Figure
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Figure 2.5: Test 1 modified to obtain a nearly vanishing velocity at the intermediate state,
viscosity= 0.5 – h = 0.001, δt = h/12 – Density att = 0.025.

2.14 shows that the quantityρ u (which is, in this case, the quantity of physical interest)

is in fact obtained with a reasonable accuracy with the coarsest meshes of this study.

We now turn a case where the chosen left and right states are given by:

left state:

[

ρL = 1

uL = −8

]

; right state:

[

ρR = 1

uR = 8

]

.

In this case, the solution consists in an intermediate statecorresponding to vacuum con-

nected to the left and right initial states by rarefaction waves. Computed density and

velocity att = 0.03, with h = 0.001 andδt = h/12, are plotted on Figures 2.15 and 2.16

respectively. Once again, the behaviour of the scheme is satisfactory.
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Figure 2.6: Test 1 modified to obtain a nearly vanishing velocity at the intermediate state,
viscosity= 0.5 – h = 0.001, δt = h/12 – Velocity att = 0.025.

2.6 Conclusion

We have presented in this chapter an explicit scheme based onstaggered meshes for the

hyperbolic system of the barotropic Euler equations. This algorithm uses a very simple

first-order upwinding strategy which consists, equation byequation, to implement an

upwind discretization with respect of the material velocity of the convection term. Under

CFL-like conditions based on the material velocity only (byopposition to the celerity of

waves), this scheme preserves the positivity of the densityand the pressure, and has been

shown to be consistent for 1D problems, in the sense that, if asequence of numerical

solutions obtained with more and more refined meshes (and, accordingly, smaller and

smaller time steps) converges, then the limit is a weak entropy solution to the continuous

problem. This theoretical result may probably be extended to the multi-dimensional case,

and this work is now being undertaken. The proposed scheme has a natural extension to

the full Euler equations, which is the topic of next chapter.Note also that a partial time-

implicitation, using pressure correction techniques, hasbeen shown to yield consistent
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Figure 2.7: Test 1 modified to obtain a negative velocity at the intermediate state –h =
0.001, δt = h/12 – Density att = 0.025.

unconditionally stable schemes [26, 27].

Numerical studies show that the proposed algorithm is stable, even if the largest time

step before blow-up is smaller than suggested by the above-mentioned CFL conditions.

This behaviour had to be expected, since these CFL conditions only involve the velocity

(and not the celerity of the acoustic waves): indeed, were they the only limitation, we

would have obtained an explicit scheme stable up to the incompressible limit. However,

the mechanisms leading to the blow-up of the scheme (or, conversely, the way to fix the

time step to ensure stability) remain to be understood.

In addition, numerical experiments show that some oscillations appear near stagna-

tion points, where the numerical diffusion brought by the upwinding vanishes. These

oscillations are damped by a small amount of artificial (physical-like) viscosity, and this

suggests to implement techniques consisting in adding to the scheme such a diffusion

term, with a viscosity monitored by ana posteriori(i.e. performed in view of the results

of the previous time step) analysis of the solution, as the so-called entropy-viscosity tech-

nique. Besides, such an extension should allow to design a more accurate scheme, based
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Figure 2.8: Test 1 modified to obtain a negative velocity at the intermediate state –h =
0.001, δt = h/12 – Velocity att = 0.025.

on higher-order numerical fluxes. This work is underway.

Last but not least, since the proposed scheme uses very simple numerical fluxes, it is

well suited to large multi-dimensional parallel computingapplications. This is the topic

of ongoing studies at IRSN.

2.7 Appendix

2.7.1 Some results concerning explicit finite volumes convection op-

erators

We begin with the convection operator appearing in the mass balance equation, which

reads, in the continuous problem,ρ → C(ρ) = ∂tρ + div(ρu), whereu stands for a

given velocity field, which is not assumed to satisfy any divergence constraint. Letψ be
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Figure 2.9: Test 1,ρ u p scheme –h = 0.001, δt = h/12 – Density att = 0.025.

a regular function from(0,+∞) to R; then:

ψ′(ρ) C(ρ) = ψ′(ρ) ∂t(ρ) + ψ′(ρ)u ·∇ρ+ ψ′(ρ) ρ divu

= ∂t(ψ(ρ)) + u ·∇ψ(ρ) + ρψ′(ρ) divu,

so adding and subtractingψ(ρ) divu yields:

ψ′(ρ) C(ρ) = ∂t
(
ψ(ρ)

)
+ div

(
ψ(ρ)u

)
+
(
ρψ′(ρ)− ψ(ρ)

)
divu. (2.45)

This computation is of course completely formal and only valid for regular functionsρ

andu. The following lemma states a discrete analogue to (2.45).

Lemma 2.7.1.LetP be a polygonal (resp. polyhedral) bounded set ofR
2 (resp.R3), and

let E(P ) be the set of its edges (resp. faces). Letψ be a twice continuously differentiable

function defined over(0,+∞). Let ρ∗P > 0, ρP > 0, δt > 0; consider three families

(ρ∗η)η∈E(P ) ⊂ R+ \ {0}, (V ∗
η )η∈E(P ) ⊂ R and(F ∗

η )η∈E(P ) ⊂ R such that

∀η ∈ E(P ), F ∗
η = ρ∗η V

∗
η ,
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Figure 2.10: Test 1,ρ u p scheme –h = 0.001, δt = h/12 – Velocity att = 0.025.

LetRP,δt be defined by:

RP,δt =
[ |P |
δt

(ρP − ρ∗P ) +
∑

η∈E(P )

F ∗
η

]

ψ′(ρP )

− |P |
δt

[ψ(ρP )− ψ(ρ∗P )] +
∑

η∈E(P )

ψ(ρ∗η)V
∗
η + [ρ∗Pψ

′(ρ∗P )− ψ(ρ∗P )]
∑

η∈E(P )

V ∗
η .

Then this quantity may be expressed as follows:

RP,δt =
1

2

|P |
δt

(ρP − ρ∗P )
2 ψ′′(ρ

(1)
P ) +

∑

η∈E(P )

V ∗
η ρ

∗
η (ρP − ρ∗P )ψ

′′(ρ
(2)
P )

− 1

2

∑

η∈E(P )

V ∗
η (ρ∗P − ρ∗η)

2 ψ′′(ρ∗η),

whereρ(1)P , ρ
(2)
P ∈ |[ρP , ρ∗P ]| and∀η ∈ E(P ), ρ∗η ∈ |[ρ∗P , ρ∗η]|. We recall that, fora, b ∈ R,

we denote by|[a, b]| the interval|[a, b]| = {θa+ (1− θ)b, θ ∈ [0, 1]}.
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Figure 2.11: Riemann problem with vacuum at the right state –h = 0.001, δt = h/8 –
Density att = 0.05.

Proof. By the definition ofF ∗
η , we have:

[ |P |
δt

(ρP − ρ∗P ) +
∑

η∈E(P )

F ∗
η

]
ψ′(ρP )

=
|P |
δt

(ρP−ρ∗P )ψ′(ρP )+
∑

η∈E(P )

ρ∗ηV
∗
η ψ

′(ρ∗P )+
∑

η∈E(P )

ρ∗ηV
∗
η

[
ψ′(ρP )−ψ′(ρ∗P )

]
.

(2.46)

By Taylor expansions ofψ, there exists two real numbersρ(1)P andρ(2)P ∈ |[ρ∗P , ρP ]| and a

family of real numbers(ρ∗η)η∈E(P ) satisfying,∀η ∈ E(P ), ρ∗η ∈ |[ρ∗P , ρ∗η]|, and such that:

(ρP − ρ∗P )ψ
′(ρP ) = ψ(ρP )− ψ(ρ∗P ) +

1

2
(ρP − ρ∗P )

2 ψ′′(ρ
(1)
P ),

ρ∗ηψ
′(ρ∗P ) = ψ(ρ∗η) + [ρ∗Pψ

′(ρ∗P )− ψ(ρ∗P )]−
1

2
(ρ∗η − ρ∗P )

2 ψ′′(ρ∗η),

ψ′(ρP )− ψ′(ρ∗P ) = (ρP − ρ∗P )ψ
′′(ρ

(2)
P ).
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Figure 2.12: Riemann problem with vacuum at the right state –h = 0.001, δt = h/8 –
Velocity att = 0.05.

Substituting in (2.46) yields the result we are seeking.

We now turn to the convection operator appearing in the momentum balance equation,

which reads, in the continuous setting,z → Cρ(z) = ∂t(ρz) + div(ρzu), whereρ (resp.

u) stands for a given scalar (resp. vector) field; we wish to obtain some property ofCρ

under the assumption thatρ andu satisfy a mass balance equation,i.e.∂tρ+div(ρu) = 0.

Formally, using twice the assumption∂tρ+ div(ρu) = 0 yields:

ψ′(z) Cρ(z) = ψ′(z)
[
∂t(ρ z) + div(ρ z u)

]
= ψ′(z)ρ

[
∂tz + u ·∇z

]

= ρ
[
∂tψ(z) + u ·∇ψ(z)

]
= ∂t

(
ρψ(z)

)
+ div

(
ρψ(z)u

)
.

Taking forz a component of the velocity field, this relation is the central argument used

to derive the kinetic energy balance. The following lemma states a discrete counterpart

of this identity, for a finite volume first-order explicit convection operator.

Lemma 2.7.2. Let P be a polygonal (resp. polyhedral) bounded set ofR
2 (resp. R3)

and letE(P ) be the set of its edges (resp. faces). Letρ∗P > 0, ρP > 0, δt > 0, and
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Figure 2.13: Riemann problem with vacuum at the right state –h = h0 = 0.001 to h =
h0/16, δt = h/8 – Velocity att = 0.05.

(F ∗
η )η∈E(P ) ⊂ R be such that

|P |
δt

(ρP − ρ∗P ) +
∑

η∈E(P )

F ∗
η = 0. (2.47)

Letψ be a twice continuously differentiable function defined over (0,+∞). For u∗P ∈ R,

uP ∈ R and(u∗η)η∈E(P ) ⊂ R let us define:

RP,δt =
[ |P |
δt

(
ρP uP − ρ∗P u

∗
P

)
+
∑

η∈E(P )

F ∗
η u

∗
η

]

ψ′(uP )

−
[ |P |
δt

[
ρP ψ(uP )− ρ∗P ψ(u

∗
P )
]
+
∑

η∈E(P )

F ∗
η ψ(u

∗
η)
]

.

Then:
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Figure 2.14: Riemann problem with vacuum at the right state –h = h0 = 0.001 to h =
h0/16, δt = h/8 – Mass flowrate att = 0.05.

(i) the remainder termRP,δt reads:

RP,δt =
1

2

|P |
δt

ρP (uP − u∗P )
2ψ′′(u

(1)
P )− 1

2

∑

η∈E(P )

F ∗
η (u

∗
η − u∗p)

2ψ′′(u∗η)

+
∑

η∈E(P )

F ∗
η (u

∗
η − u∗P ) (uP − u∗P ) ψ

′′(u
(2)
P ) (2.48)

with u(1)P , u
(2)
P ∈ |[uP , u∗P ]|, and∀η ∈ E(P ), u∗η ∈ |[u∗η, u∗P ]|.

(ii) If we suppose that the functionψ is convex and thatu∗η = u∗P as soon asF ∗
η ≥ 0,

thenRP,δt is non-negative under the CFL condition:

δt ≤
|P | ρP ψ′′

P
∑

η∈E(P )(F
∗
η )

− (ψ
′′

P )
2/ψ′′

η

, (2.49)

whereψ′′

P
= mins∈|[uP ,u∗

P
]| ψ

′′(s), ψ
′′

P = maxs∈|[uP ,u∗

P
]| ψ

′′(s) and

ψ′′

η
= mins∈|[u∗

P
,u∗

η ]| ψ
′′(s).
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Figure 2.15: Riemann problem with vacuum appearance –h = 0.001, δt = h/12 –
Density att = 0.03.

For ψ(s) = s2/2 (and thereforeψ′′(s) = 1, ∀s ∈ (0,+∞)), this CFL condition

simply reads:

δt ≤ |P | ρP
∑

η∈E(P )(F
∗
η )

−
. (2.50)

Proof. Let TP be defined by:

TP =
[ |P |
δt

(
ρP uP − ρ∗P u

∗
P

)
+
∑

η∈E(P )

F ∗
η u

∗
η

]

ψ′(uP ).

Using equation (2.47) multiplied byu∗P , we obtain:

TP =
[ |P |
δt

ρP
(
uP − u∗P

)
+
∑

η∈E(P )

F ∗
η (u∗η − u∗P )

]

ψ′(uP ).

We now define the remainder termsrP and(r∗η)η∈E(P ) by:

rP = (uP−u∗P ) ψ′(uP )−
[
ψ(uP )−ψ(u∗P )

]
, r∗η = (u∗P−u∗η) ψ′(u∗P )−

[
ψ(u∗P )−ψ(u∗η)

]
.
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Figure 2.16: Riemann problem with vacuum appearance –h = 0.001, δt = h/12 – Mass
flowrate att = 0.03.

With these notations, we get:

TP =
|P |
δt

ρP
[
ψ(uP )− ψ(u∗P )

]
+
∑

η∈E(P )

F ∗
η

[
ψ(u∗η)− ψ(u∗P )

]

+
|P |
δt

ρP rP −
∑

η∈E(P )

F ∗
η r

∗
η +

∑

η∈E(P )

F ∗
η (u∗η − u∗P )

(
ψ′(uP )− ψ′(u∗P )

)
.

Using once again equation (2.47), this time multiplied byψ(u∗P ), we obtain:

TP =
|P |
δt

[
ρPψ(uP )− ρ∗Pψ(u

∗
P )
]
+
∑

η∈E(P )

F ∗
ηψ(u

∗
η)

+
|P |
δt

ρP rP −
∑

η∈E(P )

F ∗
η r

∗
η +

∑

η∈E(P )

F ∗
η (u∗η − u∗P )

(
ψ′(uP )− ψ′(u∗P )

)
.

The expression (2.48) of the remainder termRP,δt follow by remarking that, by a Taylor
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expansion, there existsu(1)P , u
(2)
P ∈ |[uP , u∗P ]|, and∀η ∈ E(P ), u∗η ∈ |[u∗η, u∗P ]| such that:

rP =
1

2
ψ′′(u

(1)
P ) (uP − u∗P )

2, r∗η =
1

2
ψ′′(u∗η) (u

∗
η − u∗P )

2,

ψ′(uP )− ψ′(u∗P ) = ψ′′(u
(2)
P ) (uP − u∗P ).

If ψ is convex,rP is non-negative. If, in addition,u∗P − u∗η vanishes∀η ∈ E(P ) whenF ∗
η

is non-negative,−r∗η is non-negative. By Young’s inequality, the last term inRP,δt may

be bounded as follows:

∣
∣
∣

∑

η∈E(P )

(F ∗
η )

− (u∗η − u∗P ) (uP − u∗P ) ψ
′′(u

(2)
P )
∣
∣
∣

≤ ψ′′(u
(2)
P )2

2

[ ∑

η∈E(P )

(F ∗
η )

− 1

ψ′′(u∗η)

]

(uP − u∗P )
2 +

1

2

∑

η∈E(P )

(F ∗
η )

− (u∗η − u∗P )
2 ψ′′(u∗η),

so this term may be absorbed in the first two ones under the CFL condition (2.49).
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Chapter 3

The full Euler equations

3.1 Introduction

We address in this chapter the so-called Euler equations, which read:

∂tρ+ div(ρu) = 0, (3.1a)

∂t(ρu) + div(ρu⊗ u) +∇p = 0, (3.1b)

∂t(ρE) + div(ρE u) + div(pu) = 0, (3.1c)

p = (γ − 1) ρ e, E =
1

2
|u|2 + e, (3.1d)

wheret stands for the time,ρ,u, p,E ande are the density, velocity, pressure, total energy

and internal energy respectively, andγ > 1 is a coefficient specific to the considered

fluid. The problem is supposed to be posed overΩ× (0, T ), whereΩ is an open bounded

connected subset ofRd, 1 ≤ d ≤ 3, and(0, T ) is a finite time interval.

System (3.1) is complemented by initial conditions forρ, e andu, denoted byρ0, e0
andu0 respectively, withρ0 > 0 ande0 > 0, and by a boundary condition which we

suppose to be:

u · n = 0

at any time anda.e.on∂Ω, wheren stands for the normal vector to the boundary.

Let us suppose that the solution is regular, and letEk be the kinetic energy, defined by

Ek = 1
2
|u|2. Taking the inner product of (3.1b) byu yields, after formal compositions

85
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of partial derivatives and using the mass balance (3.1a):

∂t(ρEk) + div
(
ρEk u

)
+∇p · u = 0. (3.2)

This relation is referred to as the kinetic energy balance. Substracting this relation from

the total energy balance (3.1c), we obtain the internal energy balance equation:

∂t(ρe) + div(ρeu) + p div(u) = 0. (3.3)

Since,

- thanks to the mass balance equation, the first two terms in the left-hand side of (3.3)

may be recast as a transport operator:∂t(ρe) + div(ρeu) = ρ [∂te + u ·∇e],

- and, from the equation of state, the pressure vanishes whene = 0,

this equation implies, ife ≥ 0 at t = 0 and with suitable boundary conditions, thate

remains non-negative at all times.

The objective pursued in this work is to develop and study, from a theoretical point of

view, an explicit scheme for the solution of (3.1). More precisely, we intend to build an

explicit variant of pressure correction schemes that were developed and studied recently

in the framework of the simulation of compressible flows at all speeds [17, 29, 26, 27],

and implemented in the industrial open-source computer code ISIS [33]. Indeed, our

initial motivation was to provide in the same software an efficient alternative of these

schemes for quickly varying unstationary flows, with a characteristic Mach number in

the range or greater than the unity. In order to remain stablein the incompressible limit,

the starting-point algorithms are based on (inf-supstable) staggered finite volume or finite

element discretizations, and the present scheme thus also relies on these space approxi-

mations. In our approach, the upwinding techniques which are implemented for stability

reasons are performed for each equation separately and withrespect to the material ve-

locity only. This is in contradiction with the most common strategy adopted for hyper-

bolic systems, where upwinding is built from the wave structure of the system (seee.g.

[61, 19, 6] for surveys). However, it yields algorithms which are used in practice (seee.g.

the so-called AUSM family of schemes [45, 44]), because of their generality (a closed-

form solution of Riemann problems is not needed), their implementation simplicity and

their efficiency, thanks to an easy construction of the fluxesat the cell faces.
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Another salient feature of the propose scheme is that we discretize the internal energy

balance (3.3) instead of the total energy balance (3.1c); this presents two advantages:

- first, it avoids the space discretization of the total energy, which is rather unnatural

for staggered schemes since the degrees of freedom for the velocity and the scalar

variables are not collocated,

- second, by a suitable discretization of (3.3), we obtain a scheme which ensures,

“by construction”, the positivity of the internal energy.

However, for solutions with shocks, Equation (3.3) is not equivalent to (3.1c); more

precisely speaking, at the locations of shocks, positive measures should appear, at the

right-hand side of Equation (3.3). Discretizing (3.3) instead of (3.1c) may thus yield a

scheme which does not compute the correct weak discontinuous solutions; in particular,

the numerical solutions may present (smeared) shocks whichdo not satisfy the Rankine-

Hugoniot conditions associated to (3.1c). The essential result of this chapter is to provide

solutions to circumvent this problem. To this purpose, we closely mimic the above per-

formed formal computation:

- we start from the discrete kinetic energy balance (3.3), and remark that the residual

terms at the right-hand side do no tend to zero with the space and time steps (they

are the discrete manifestations of the above mentioned measures),

- we thus compensate these residual terms by corrective terms in the internal energy

balance.

We provide a theoretical justification of this process by showing that, in the 1D case, if

the scheme is stable and converges to a limit (in a sense to be defined), this limit satisfies

a weak form of (3.1c) which implies the correct Rankine-Hugoniot conditions.

This chapter is structured as follows. We begin with the presentation of the scheme

(Section 3.2), then the discrete kinetic energy balance andthe correction source terms

of the internal energy equation are given in Section 3.3. Thenext section is dedicated

to the proof, in 1D, of the consistency of the scheme (Section3.4). We then present

some numerical tests, to assess the behaviour of the algorithm (Section 3.5). Finally, the

conclusion and perspectives are given in Section 3.6.
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3.2 The scheme

We refer to Chapter 1, Section 1.2 for the space discretization. For the discretization

in time, let us consider a partition0 = t0 < t1 < . . . < tN = T of the time interval

(0, T ), which we suppose uniform for the sake of simplicity, and letδt = tn+1 − tn for

n = 0, 1, . . . , N − 1 be the (constant) time step. We consider an explicit-in-time scheme,

which reads in its fully discrete form, for0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

F n
K,σ = 0, (3.4a)

∀K ∈ M,
|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

F n
K,σe

n
σ + |K| pnK (divu)nK = Sn

K ,

(3.4b)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (3.4c)

For1 ≤ i ≤ d, ∀σ ∈ E (i)
S ,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ,i − ρnDσ

unσ,i) +
∑

ǫ∈Ẽ(Dσ)

F n
σ,ǫu

n
ǫ,i + |Dσ| (∇p)n+1

σ,i = 0,

(3.4d)

where the terms introduced for each discrete equation are defined hereafter.

Equation (3.4a) is obtained by the discretization of the mass balance equation (3.1a)

over the primal mesh, andF n+1
K,σ stands for the mass flux acrossσ outwardK, which,

because of the impermeability condition, vanishes on external faces and is given on the

internal faces by:

∀σ = K|L ∈ Eint, F n
K,σ = |σ| ρnσ unK,σ, (3.5)

whereunK,σ is an approximation of the normal velocity to the faceσ outwardK. This

latter quantity is defined by:

unK,σ =

∣
∣
∣
∣
∣
∣

unσ,i e
(i) · nK,σ for σ ∈ E (i) in the MAC case,

u
n
σ · nK,σ in the CR and RT cases,

(3.6)

wheree(i) denotes thei-th vector of the orthonormal basis ofRd. The density at the face

Explicit Staggered Schemes for Compressible Flows 88



NGUYEN Tan-Trung

σ = K|L is approximated by the upwind technique:

ρnσ =

∣
∣
∣
∣
∣
∣

ρnK if unK,σ ≥ 0,

ρnL otherwise.
(3.7)

We now turn to the discrete momentum balance (3.4d), which isobtained by dis-

cretizing the momentum balance equation (3.1b) on the dual cells associated to the faces

of the mesh. For the discretization of the time derivative, we must provide a definition

for the valuesρn+1
Dσ

andρnDσ
, which approximate the density on the faceσ at timetn+1 and

tn respectively. They are given by the following weighted average:

for σ = K|L ∈ Eint, for k = n andk = n + 1, |Dσ| ρkDσ
= |DK,σ| ρkK + |DL,σ| ρkL.

(3.8)

Let us then turn to the discretization of the convection term. The first task is to define the

discrete mass flux through the dual faceǫ outwardDσ, denoted byF n
σ,ǫ; the guideline for

its construction is that a finite volume discretization of the mass balance equation over

the diamond cells, of the form

∀σ ∈ E , |Dσ|
δt

(ρn+1
Dσ

− ρnDσ
) +

∑

ǫ∈E(Dσ)

F n
σ,ǫ = 0, (3.9)

must hold in order to be able to derive a discrete kinetic energy balance (see Section 3.3

below). For the MAC scheme, the flux on a dual face which is located on two primal

faces is the mean value of the sum of fluxes on the two primal faces, and the flux of a

dual face located between two primal faces is again the mean value of the sum of fluxes

on the two primal faces [30]. In the case of the CR and RT schemes, for a dual faceǫ

included in the primal cellK, this flux is computed as a linear combination (with constant

coefficients,i.e. independent of the face and the cell) of the mass fluxes through the faces

of K, i.e. the quantities(F n+1
K,σ )σ∈E(K) appearing in the discrete mass balance (3.4a). We

refer to [1, 17] for a detailed construction of this approximation. Let us remark that a

dual face lying on the boundary is then also a primal face, andthe flux across that face is

zero. Therefore, the valuesun+1
ǫ,i are only needed at the internal dual faces, and we make
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the upwind choice for their discretization:

for ǫ = Dσ|D′
σ, unǫ,i =

∣
∣
∣
∣
∣
∣

unσ,i if F n
σ,ǫ ≥ 0,

unσ′,i otherwise.
(3.10)

The last term(∇p)n+1
σ,i stands for thei-th component of the discrete pressure gradient

at the faceσ. The gradient operator is built as the transpose of the discrete operator for the

divergence of the velocity, the discretization of which is based on the primal mesh. Let

us denote the divergence ofu
n+1 overK ∈ M by (divu)n+1

K ; its natural approximation

reads:

for K ∈ M, (divu)n+1
K =

1

|K|
∑

σ∈E(K)

|σ| un+1
K,σ . (3.11)

Consequently, the components of the pressure gradient are given by:

for σ = K|L ∈ Eint, (∇p)n+1
σ,i =

|σ|
|Dσ|

(pn+1
L − pn+1

K ) nK,σ · e(i), (3.12)

this expression being derived thanks to the following duality relation with respect to the

L2 inner product:

∑

K∈M

|K| pn+1
K (divu)n+1

K +
d∑

i=1

∑

σ∈E
(i)
S

|Dσ| un+1
σ,i (∇p)n+1

σ,i = 0. (3.13)

Note that, because of the impermeability boundary conditions, the discrete gradient is not

defined at the external faces.

Equation (3.4b) is an approximation of the internal energy balance over the primal

cell K. The positivity of the convection operator is ensured if we use an upwinding

technique for this term [42]:

for σ = K|L ∈ Eint, enσ =

∣
∣
∣
∣
∣
∣

enK if F n
K,σ ≥ 0,

enL otherwise.

The discrete divergence of the velocity,(divu)nK , is defined by (3.11). The right-hand

side,Sn
K , is derived using consistency arguments in the next section.

Finally, the initial approximations forρ, e andu are given by the average of the initial
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conditionsρ0, e0 on the primal cells andu0 on the dual cells:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx, ande0K =
1

|K|

∫

K

e0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E (i)
S , u0σ,i =

1

|Dσ|

∫

Dσ

(u0(x))i dx.

(3.14)

The following positivity result is a classical consequenceof the upwind choice in the

mass balance equation.

Lemma 3.2.1(Positivity of the density). Let ρ0 be given by(3.14). Then, sinceu0 is

assumed to be a positive function,ρ0 > 0 and, under theCFL condition:

δt ≤ |K|
∑

σ∈E(K) |σ| max(unK,σ, 0)
, ∀K ∈ M, for 0 ≤ n ≤ N − 1, (3.15)

the solution to the scheme satisfiesρn > 0, for 1 ≤ n ≤ N .

3.3 Discrete kinetic energy balance and corrective source

terms

We begin by deriving a discrete kinetic energy balance equation. Equation (3.16) below

is a discrete analogue of Equation (3.2), with an upwind discretization of the convection

term. Its proof may be found in Chapter 2, Lemma 2.3.1.

Lemma 3.3.1(Discrete kinetic energy balance).

A solution to the system(3.4)satisfies the following equality, for1 ≤ i ≤ d, σ ∈ E (i)
S and

0 ≤ n ≤ N − 1:

1

2

|Dσ|
δt

[

ρn+1
Dσ

(un+1
σ,i )2−ρnDσ

(unσ,i)
2
]

+
1

2

∑

ǫ∈E(Dσ)

F n
σ,ǫ (u

n
ǫ,i)

2+|Dσ| (∇p)n+1
σ,i un+1

σ,i = −Rn+1
σ,i ,

(3.16)
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with:

Rn+1
σ,i =

1

2

|Dσ|
δt

ρn+1
Dσ

(un+1
σ,i − unσ,i)

2 +
1

2

∑

ǫ=Dσ|Dσ′∈E(Dσ)

(F n
Dσ ,ǫ

)−(unσ′,i − unσ,i)
2

−
∑

ǫ=Dσ|Dσ′∈E(Dσ)

(F n
Dσ,ǫ

)−(unσ′,i − unσ,i) (u
n+1
σ,i − unσ,i), (3.17)

where, fora ∈ R, a− ≥ 0 is defined bya− = −min(a, 0).

The next step is now to define corrective terms in the internalenergy balance, with

the aim to recover a consistent discretization of the total energy balance. The first idea

to do this could be just to sum the (discrete) kinetic energy balance with the internal

energy balance: it is indeed possible for a collocated discretization. But here, we face

the fact that the kinetic energy balance is associated to thedual mesh, while the internal

energy balance is discretized on the primal one. The way to circumvent this difficulty is

to remark that we do not really need a discrete total energy balance; in fact, we only need

to recover (a weak form of) this equation when the mesh and time steps tend to zero. To

this purpose, we choose the quantities(Sn
K) in such a way as to somewhat compensate

the terms(Rn+1
σ,i ) given by (3.17):

∀K ∈ M, Sn+1
K =

d∑

i=1

Sn+1
K,i with Sn+1

K,i =
1

2
ρn+1
K

∑

σ∈E(K)∩E
(i)
S

|DK,σ|
δt

(
un+1
σ,i −unσ,i

)2

+
∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅,

ǫ=Dσ|Dσ′ , Fn
σ,ǫ≤0

αK,ǫ

[ |F n
σ,ǫ|
2

(unσ,i − unσ′,i)
2 + F n

σ,ǫ

(
un+1
σ,i − unσ,i

)
(unσ′,i − unσ,i)

]

.

(3.18)

The coefficientαK,ǫ is fixed to1 if the faceǫ is included inK, and this is the only situation

to consider for the RT and CR discretizations. For the MAC scheme, some dual faces are

included in the primal cells, but some lie on their boundary;for such a boundary edgeǫ,

we denote byNǫ the set of cellsM such thatM̄ ∩ ǫ 6= ∅ (the cardinal of this set is always

4), and computeαK,ǫ by:

αK,ǫ =
|K|

∑

M∈Nǫ
|M | . (3.19)

For a uniform grid, this formula yieldsαK,ǫ = 1/4.
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The expression of the(Sn+1
K )K∈M is justified by the passage to the limit in the scheme

(for a one-dimensional problem) performed in the next section. We note however here

that:
∑

K∈M

Sn+1
K −

d∑

i=1

∑

σ∈E
(i)
S

Rn+1
σ,i = 0. (3.20)

Indeed, the first part ofSn+1
K,i , thanks to the expression (3.8) of the density at the face

ρn+1
Dσ

, results from a dispatching of the first part of the residual over the two adjacent

cells:

1

2

|Dσ|
δt

ρn+1
Dσ

(
un+1
σ,i − unσ,i

)2
=

1

2

|DK,σ|
δt

ρn+1
K

(
un+1
σ,i − unσ,i

)2

︸ ︷︷ ︸

affected to K

+
1

2

|DL,σ|
δt

ρn+1
L

(
un+1
σ,i − unσ,i

)2

︸ ︷︷ ︸

affected to L

.

The same argument holds for the terms associated to the dual faces, which explains, in

particular, the definition of the coefficientsαK,ǫ. The scheme thus conserves the integral

of the total energy over the computational domain.

The definition (3.18) of(Sn+1
K )K∈M allows to prove that, under a CFL condition, the

scheme preserves the positivity ofe.

Lemma 3.3.2.Let us suppose that, for0 ≤ n ≤ N − 1 and for allK ∈ M, we have:

δt ≤ |K|
γ
∑

σ∈E(K)

|σ| (unK,σ)
+

and δt ≤ |DK,σ| ρn+1
K

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

αK,ǫ (F
n
σ,ǫ)

−
, ∀σ ∈ E(K).

(3.21)

Then the internal energy(en)0≤n≤N given by the scheme(3.4) is positive.

Proof. Let n such that0 ≤ n ≤ N be given, and let us assume thatenK ≥ 0 for all

K ∈ M. Since, by assumption, the CFL condition (3.15) is satisfied, we have, by Lemma

3.2.1,ρnK > 0 andρn+1
K > 0, for all K ∈ M. In the internal energy equation (3.4b), let
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us express the pressure thanks to the equation of state (3.4c) to obtain:

|K|
δt
ρn+1
K en+1

K =
[ |K|
δt
ρnK −

∑

σ∈E(K)

(F n
K,σ)

+ − (γ − 1) ρnK
∑

σ∈E(K)

|σ| (unK,σ)
+
]

enK

+
∑

σ∈E(K)

(F n
K,σ)

−enL + (γ − 1) ρnK e
n
K

∑

σ∈E(K)

|σ| (unK,σ)
− + Sn+1

K . (3.22)

Using the fact that, whenunK,σ ≥ 0, the upwind density at the face isρnK , we have:

(F n
K,σ)

+ + (γ − 1) |σ| ρnK (unK,σ)
+ = γ|σ| ρnK (unK,σ)

+,

and hence Relation (3.22) reads:

|K|
δt
ρn+1
K en+1

K =
[ |K|
δt

− γ
∑

σ∈E(K)

|σ| (unK,σ)
+
]

ρnK e
n
K

+
∑

σ∈E(K)

(F n
K,σ)

−enL + (γ − 1) ρnK e
n
K

∑

σ∈E(K)

|σ| (unK,σ)
− + Sn+1

K .

Let us suppose for a while thatSn+1
K ≥ 0. Then we geten+1

K > 0 under the following

CFL condition:

δt ≤ |K|
γ
∑

σ∈E(K) |σ|(unK,σ)
+
.

Let us now derive a condition for the non-negativity of the source term. Applying Young

inequality to the last term ofSn+1
K,i , denoted by(Sn+1

K,i )3, we obtain

(Sn+1
K,i )3 ≥ −

[ ∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅,

ǫ=Dσ|Dσ′ , Fn
σ,ǫ≤0

αK,ǫ

|F n
σ,ǫ|
2

] (
un+1
σ,i − unσ,i

)2

−
∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅,

ǫ=Dσ|Dσ′ , Fn
σ,ǫ≤0

αK,ǫ

|F n
σ,ǫ|
2

(unσ′,i − unσ,i)
2.

Gathering all terms ofSn+1
K,i yields:

Sn+1
K,i ≥

∑

σ∈E(K)

1

2

(
un+1
σ,i − unσ,i

)2
[ |DK,σ|

δt
ρn+1
K −

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

αK,ǫ (F
n
σ,ǫ)

−
]

,

Explicit Staggered Schemes for Compressible Flows 94



NGUYEN Tan-Trung

thusSn+1
K,i is non-negative under the CFL condition:

δt ≤ |DK,σ| ρn+1
K

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

αK,ǫ (F
n
σ,ǫ)

−
, ∀σ ∈ E(K),

which concludes the proof.

3.4 Passing to the limit in the scheme

The objective of this section is to show, in the one dimensional case, that if a sequence of

solutions is controlled in suitable norms and converges to alimit, this latter necessarily

satisfies a (part of the) weak formulation of the continuous problem.

The 1D version of the scheme which is studied in this section may be obtained from

Scheme (3.4) by taking the MAC variant of the scheme, using only one horizontal stripe

of grid cells, supposing that the vertical component of the velocity (the degrees of free-

dom of which are located on the top and bottom boundaries) vanishes, and that the mea-

sure of the vertical faces is equal to 1. For the sake of readability, however, we completely

rewrite this 1D scheme, and, to this purpose, we first introduce some adaptations of the

notations to the one dimensional case. For anyK ∈ M, we denote byhK its length

(so hK = |K|); when we writeK = [σσ′], this means that eitherK = (xσ, xσ′) or

K = (xσ′ , xσ); if we need to specify the order,i.e.K = (xσ, xσ′) with xσ < xσ′ , then

we writeK = [
−→
σσ′]. For an interfaceσ = K|L between two cellsK andL, we define

hσ = (hK + hL)/2, so, by definition of the dual mesh,hσ = |Dσ|. If we need to specify

the order of the cellsK andL, sayK is left of L, then we writeσ =
−−→
K|L. With these

notations, the explicit scheme (3.4) may be written as follows in the one dimensional

setting:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx, e0K =
1

|K|

∫

K

e0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,

(3.23a)

∀K = [
−→
σσ′] ∈ M,

|K|
δt

(ρn+1
K − ρnK) + F n

σ′ − F n
σ = 0, (3.23b)
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∀K = [
−→
σσ′] ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) + F n

σ′enσ′ − F n
σ e

n
σ + pnK(u

n
σ′ − unσ) = Sn

K ,

(3.23c)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (3.23d)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + F n
Lu

n
L − F n

Ku
n
K + pn+1

L − pn+1
K = 0.

(3.23e)

The mass flux in the discrete mass balance equation is given, forσ ∈ Eint, byF n
σ = ρnσu

n
σ,

where the upwind approximation for the density at the face,ρnσ, is defined by (3.7).

In the convection terms of the internal energy balance, the approximation forenσ is

upwind with respect toF n
σ (i.e., for σ =

−−→
K|L ∈ Eint, enσ = enK if F n

σ ≥ 0 andenσ = enL
otherwise). The corrective termSn

K reads, for1 ≤ n ≤ N and∀K = [σ′ → σ]:

Sn
K =

|K|
4 δt

ρnK
[
(unσ − un−1

σ )2 + (unσ′ − un−1
σ′ )2

]
+

|F n−1
K |
2

(un−1
σ − un−1

σ′ )2

− |F n−1
K |(unσ − un−1

σ ) (un−1
σ − un−1

σ′ ), (3.24)

where the notationK = [σ′ → σ] means that the flow goes fromσ′ to σ (i.e., if F n
K ≥ 0,

K = [
−→
σ′σ] and, ifF n

K ≤ 0,K = [
−→
σσ′]). At the first time step, we thus setS0

K = 0, ∀K ∈
M.

In the momentum balance equation, the application of the procedure described in

Section 3.2 yields for the density associated to the dual cell Dσ with σ = K|L and for

the mass fluxes at the dual face located at the center of the meshK = [
−→
σσ′]:

for k = n andk = n+ 1, ρkDσ
=

1

2 |Dσ|
(|K| ρkK + |L| ρkL), F n

K =
1

2
(F n

σ + F n
σ′),

(3.25)

and the approximation of the velocity at this face is upwind:unK = unσ if F n
K ≥ 0 and

unK = unσ′ otherwise.

Let a sequence of discretizations(M(m), δt(m))m∈N be given. We define the size

h(m) of the meshM(m) by h(m) = supK∈M(m) hK . Let ρ(m), p(m), e(m) andu(m) be the
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solution given by the scheme (3.23) with the meshM(m) and the time stepδt(m). To the

discrete unknowns, we associate piecewise constant functions on time intervals and on

primal or dual meshes, so the densityρ(m), the pressurep(m), the internal energye(m) and

the velocityu(m) are defined almost everywhere onΩ× (0, T ) by:

ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))nK XK(x)X(n,n+1](t), (3.26a)

u(m)(x, t) =
N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
(x)X(n,n+1](t), (3.26b)

p(m)(x, t) =
N−1∑

n=0

∑

K∈M

(p(m))nK XK(x)X(n,n+1](t), (3.26c)

e(m)(x, t) =
N−1∑

n=0

∑

K∈M

(e(m))nK XK(x)X(n,n+1](t), (3.26d)

whereXK , XDσ
andX(n,n+1] stand for the characteristic function of the intervalsK, Dσ

and(tn, tn+1] respectively.

For discrete functionsq andv defined on the primal and dual mesh, respectively, we

define a discreteL1((0, T ); BV(Ω)) norm by:

‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ=K|L∈Eint

|qnL − qnK |, ‖v‖T ,x,BV =

N∑

n=0

δt
∑

ǫ=Dσ|Dσ′∈Ẽint

|vnσ′ − vnσ |,

and a discreteL1(Ω; BV((0, T ))) norm by:

‖q‖T ,t,BV =
∑

K∈M

|K|
N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

|Dσ|
N−1∑

n=0

|vn+1
σ − vnσ |.

For the consistency result that we are seeking (Theorem 3.4.2 below), we have to assume

that a sequence of discrete solutions
(
ρ(m), p(m), u(m)

)

m∈N
satisfiesρ(m) > 0, p(m) > 0

ande(m) > 0, ∀m ∈ N (which may be a consequence of the fact that the CFL stability
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condition (3.15) is satisfied), and is uniformly bounded inL∞((0, T )× Ω)3, i.e.:

∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N,

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C, 0 < (e(m))nK ≤ C, (3.27)

and

|(u(m))nσ| ≤ C, ∀σ ∈ E (m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (3.28)

whereC is a positive real number. Note that, by definition of the initial conditions of the

scheme, these inequalities imply that the functionsρ0, e0 andu0 belong toL∞(Ω). We

also have to assume that a sequence of discrete solutions satisfies the following uniform

bounds with respect to the discrete BV-norms:

‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (3.29)

and:

‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (3.30)

We are not able to prove the estimates (3.27)–(3.30) for the solutions of the scheme;

however, such inequalities are satisfied by the “interpolates” (for instance, by taking the

cell average) of the solution to a Riemann problem, and are observed in computations (of

course, as far as possible,i.e.with a limited sequence of meshes and time steps).

A weak solution to the continuous problem satisfies, for anyϕ ∈ C∞
c

(
Ω× [0, T )

)
:

−
∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂xϕ
]

dx dt−
∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (3.31a)

−
∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ
]

dx dt−
∫

Ω

ρ0(x) u0(x)ϕ(x, 0) dx = 0, (3.31b)

−
∫

Ω×(0,T )

[

ρE ∂tϕ+ (ρE + p) u ∂xϕ
]

dx dt−
∫

Ω

ρ0(x)E0(x)ϕ(x, 0) dx = 0,

(3.31c)

p = (γ − 1)ρ e, E =
1

2
u2 + e, E0 =

1

2
u20 + e0. (3.31d)

Note that these relations are not sufficient to define a weak solution to the problem, since

they do not imply anything about the boundary conditions. However, they allow to derive

Explicit Staggered Schemes for Compressible Flows 98



NGUYEN Tan-Trung

the Rankine-Hugoniot conditions; hence if we show that theyare satisfied by the limit of

a sequence of solutions to the discrete problem, this implies, loosely speaking, thatthe

scheme computes correct shocks(i.e.shocks where the jumps of the unknowns and of the

fluxes are linked to the shock speed by Rankine-Hugoniot conditions). This is the result

we are seeking and which we state in Theorem 3.4.2. In order toprove this theorem,

we need some definitions of interpolates of regular test functions on the primal and dual

mesh.

Definition 3.4.1 (Interpolates on one-dimensional meshes). Let Ω be an open bounded

interval ofR, letϕ ∈ C∞
c (Ω× [0, T )), and letM be a mesh overΩ. The interpolateϕM

of ϕ on the primal meshM is defined by:

ϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K XK X[tn,tn+1),

where, for0 ≤ n ≤ N andK ∈ M, we setϕn
K = ϕ(xK , t

n), with xK the mass center of

K. The time discrete derivative of the discrete functionϕM is defined by:

ðtϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕn

K

δt
XK X[tn,tn+1),

and its space discrete derivative by:

ðxϕM =
N−1∑

n=0

∑

σ=
−−→
K|L∈Eint

ϕn+1
L − ϕn+1

K

hσ
XDσ

X[tn,tn+1).

LetϕE be an interpolate ofϕ on the dual mesh, defined by:

ϕE =

N−1∑

n=0

∑

σ∈E

ϕn+1
σ XDσ

X[tn,tn+1),

where, for1 ≤ n ≤ N and σ ∈ E , we setϕn
σ = ϕ(xσ, t

n), with xσ the abscissa of

the interfaceσ. We also define the time and space discrete derivatives of this discrete
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function by:

ðtϕE =

N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕn

σ

δt
XDσ

X[tn,tn+1),

ðxϕE =

N−1∑

n=0

∑

K=[
−→
σσ′]∈M

ϕn+1
σ′ − ϕn+1

σ

hK
XK X[tn,tn+1).

Finally, we defineðxϕM,E by:

ðxϕM,E =
N−1∑

n=0

∑

K=[
−→
σσ′]∈M

ϕn+1
K − ϕn+1

σ

hK/2
XDK,σ

X[tn,tn+1)

+
ϕn+1
σ′ − ϕn+1

K

hK/2
XDK,σ′

X[tn,tn+1).

We are now in position to state the following result.

Theorem 3.4.2(Consistency of the one-dimensional explicit scheme).

LetΩ be an open bounded interval ofR. We suppose that the initial data satisfiesρ0 ∈
L∞(Ω), p0 ∈ BV(Ω), e0 ∈ L∞(Ω) and u0 ∈ L∞(Ω). Let (M(m), δt(m))m∈N be a

sequence of discretizations such that both the time stepδt(m) and the sizeh(m) of the mesh

M(m) tend to zero asm → ∞, and let(ρ(m), p(m), e(m), u(m))m∈N be the corresponding

sequence of solutions. We suppose that this sequence satisfies the estimates(3.27)–(3.30)

and converges inLp(Ω× (0, T ))4, for 1 ≤ p <∞, to (ρ̄, p̄, ē, ū) ∈ L∞(Ω× (0, T ))4.

Then the limit(ρ̄, p̄, ē, ū) satisfies the system(3.31).

Proof. It is clear that with the assumed convergence for the sequence of solutions, the

limit satisfies the equation of state. The fact that the limitsatisfies the weak mass balance

equation (3.31a) and the weak momentum balance equation (3.31b) is proven in Chap-

ter 2, Theorem 2.4.2. The proof of this theorem is thus obtained by passing to the limit

in the scheme, in the internal and the kinetic energy balanceequations.

Let ϕ ∈ C∞
c (Ω × [0, T )). Letm ∈ N, M(m) andδt(m) be given. Dropping for short

the superscript(m), letϕM be the interpolate ofϕ on the primal mesh and letðtϕM and

ðxϕM be its time and space discrete derivatives in the sense of Definition 3.4.1. Thanks
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to the regularity ofϕ, these functions respectively converge inLr(Ω× (0, T )), for r ≥ 1

(includingr = +∞), to ϕ, ∂tϕ and∂xϕ respectively. In addition,ϕM(·, 0) (which, for

K ∈ M andx ∈ K, is equal toϕ1
K = ϕ(xK , δt)) converges toϕ(·, 0) in Lr(Ω) for r ≥ 1.

We also defineϕE , ðtϕE andðxϕE , as, respectively, the interpolate ofϕ on the dual

mesh and its discrete time and space derivatives, still in the sense of Definition 3.4.1;

once again thanks to the regularity ofϕ, these functions converge inLr(Ω × (0, T )), for

r ≥ 1, toϕ, ∂tϕ and∂xϕ respectively. As for the interpolate on the primal mesh,ϕE(·, 0)
(which, forσ ∈ E andx ∈ Dσ, is equal toϕ1

σ = ϕ(xσ, δt)) converges toϕ(·, 0) in Lr(Ω)

for r ≥ 1.

Since the support ofϕ is compact inΩ× [0, T ), form large enough, the interpolates

of ϕ vanish on the boundary cells and at the last time step(s); hereafter, we systematically

assume that we are in this case.

On one hand, let us multiply Equation (3.4b) byδt ϕn+1
K , and sum the result for0 ≤

n ≤ N − 1 andK ∈ M. On the second hand, let us multiply the discrete kinetic energy

balance (3.16) byδt ϕn+1
σ , and sum the result over for0 ≤ n ≤ N − 1 andσ ∈ Eint.

Finally, adding the two obtained relations, we get:

T
(m)
1 + T

(m)
2 + T

(m)
3 + T̃

(m)
1 + T̃

(m)
2 + T̃

(m)
3 = S(m) − R̃(m) (3.32)

where:

T
(m)
1 =

N−1∑

n=0

δt
∑

K∈M

|K|
δt

[
ρn+1
K en+1

K − ρnK e
n
K

]
ϕn+1
K ,

T
(m)
2 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

[
ρnσ′ enσ′ unσ′ − ρnσ e

n
σ u

n
σ

]
ϕn+1
K ,

T
(m)
3 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

pnK (unσ′ − unσ) ϕ
n+1
K ,

T̃
(m)
1 =

1

2

N−1∑

n=0

δt
∑

σ∈Eint

|Dσ|
δt

[
ρn+1
Dσ

(un+1
σ )2 − ρnσ(u

n
σ)

2
]
ϕn+1
σ ,

T̃
(m)
2 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
F n
L (unL)

2 − F n
K (unK)

2
]
ϕn+1
σ ,
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T̃
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K ) un+1
σ ϕn+1

σ ,

S(m) =

N−1∑

n=0

δt
∑

K∈M

Sn
K ϕn+1

K , R̃(m) =

N−1∑

n=0

δt
∑

σ∈Eint

Rn+1
σ ϕn+1

σ ,

and the quantitiesSn+1
K andRn+1

σ are given by Equation (3.24) and (the one-dimensional

version of) Equation (3.17) respectively.

Reordering the sums inT (m)
1 yields:

T
(m)
1 = −

N−1∑

n=0

δt
∑

K∈M

|K| ρnK enK
ϕn+1
K − ϕn

K

δt
−
∑

K∈M

|K| ρ0K e0K ϕ1
K ,

so that:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) e(m)
ðtϕM dx dt−

∫

Ω

(ρ(m))0(x) (e(m))0(x) ϕM(x, 0) dx.

The boundedness ofρ0, e0 and the definition (3.23a) of the initial conditions for the

scheme ensures that the sequences((ρ(m))0)m∈N and((e(m))0)m∈N converge toρ0 ande0
respectively inLr(Ω) for r ≥ 1. Since, by assumption, the sequence of discrete solutions

and of the interpolate time derivatives converge inLr
(
Ω × [0, T )

)
for r ≥ 1, we thus

obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ē ∂tϕ dx dt−
∫

Ω

ρ0(x) e0(x) ϕ(x, 0) dx.

Reordering the sums inT (m)
2 , we get:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

ρnσ e
n
σ u

n
σ (ϕn+1

L − ϕn+1
K ).

Using the fact thathσ = |Dσ|, this relation reads:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

|Dσ| ρnσ enσ unσ
ϕn+1
L − ϕn+1

K

hσ
,
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thusT (m)
2 = T (m)

2 +R(m)
2 with:

T (m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

[

|DK,σ| ρnK enK + |DL,σ| ρnL enL
]

unσ
ϕn+1
L − ϕn+1

K

hσ
,

R(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

[

|Dσ| ρnσ enσ − |DK,σ| ρnK enK − |DL,σ| ρnL enL
]

unσ
ϕn+1
L − ϕn+1

K

hσ
.

The first expression reads:

T (m)
2 = −

∫ T

0

∫

Ω

ρ(m) e(m) u(m)
ðxϕM dx dt,

and thus, thanks to the convergence assumptions for the solution:

lim
m→+∞

T (m)
2 = −

∫ T

0

∫

Ω

ρ̄ ē ū ∂xϕ dx dt.

Let us make a change of notation for the orientation ofσ in such a way thatρnσ = ρnK and

enσ = enK (in other words, we choose to callK the downwind cell toσ instead of the left

cell, which we denote byσ = K → L). We thus get, withCϕ = ‖∂xϕ‖L∞(Ω×(0,T )):

|R(m)
2 | ≤ Cϕ

N−1∑

n=0

δt
∑

σ=K→L∈E

|DL,σ|
∣
∣
∣ρnK e

n
K − ρnL e

n
L

∣
∣
∣ |unσ|.

Applying the identity2 (ab− cd) = (a− c)(b+ d) + (a+ c)(b− d), which holds for any

{a, b, c, d} ⊂ R, to the quantityρnK e
n
K − ρnL e

n
L, we obtain:

|R(m)
2 | ≤ Cϕ h

(m) ‖u(m)‖L∞(Ω×(0,T ))

[

‖ρ(m)‖L∞(Ω×(0,T )) ‖e(m)‖T ,x,BV

+ ‖e(m)‖L∞(Ω×(0,T )) ‖ρ(m)‖T ,x,BV

]

,

and thus|R(m)
2 | tends to zero whenm tends to+∞.
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For the termT̃ (m)
1 , the definition (3.25) ofρDσ

yields:

T̃
(m)
1 = −

N−1∑

n=0

δt
∑

σ=K|L∈E

[

|DK,σ| ρnK + |DL,σ| ρnL
]

unσ
ϕn+1
K − ϕn

K

δt

−
∑

σ=K|L∈E

[

|DK,σ| ρ0K + |DL,σ| ρ0L
]

u0σ ϕ
1
K ,

so, by similar arguments as for the termT (m)
1 , we get:

lim
m→+∞

T̃
(m)
1 = −

∫ T

0

∫

Ω

1

2
ρ̄ ū2 ∂tϕ dx dt−

∫

Ω

1

2
ρ0(x) u0(x)

2 ϕ(x, 0) dx.

Let us now to the term̃T (m)
2 . Reordering the sums, we get:

T̃
(m)
2 = −1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

F n
K (unK)

2 (ϕn+1
σ′ − ϕn+1

σ ),

so, by the definition of the mass flux at the dual edges:

T̃
(m)
2 = −1

4

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

(ρnσu
n
σ + ρnσ′unσ′) (unK)

2 (ϕn+1
σ′ − ϕn+1

σ ),

where we recall thatunK is equal to eitherunσ or unσ′, depending on the sign ofF n
K . Let us

write T̃ (m)
2 = T̃ (m)

2 + R̃(m)
2 , with:

T̃ (m)
2 = −1

4

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

ρnK
[
(unσ)

3 + (unσ′)3
]
(ϕn+1

σ′ − ϕn+1
σ ).

We have:

T̃ (m)
2 = −

∫ T

0

∫

Ω

1

2
ρ(m) (u(m))3 ðxϕE dx dt,

and hence:

lim
m→+∞

T̃ (m)
2 = −

∫ T

0

∫

Ω

1

2
ρ̄ ū3 ∂xϕ dx dt.
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The remainder term reads:

R̃(m)
2 = −1

4

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

[

(ρnσu
n
σ+ρ

n
σ′unσ′) (unK)

2−ρnK
(

(unσ)
3+(unσ′)3

)]

(ϕn+1
σ′ −ϕn+1

σ ).

Possibly exchanging the notations for the faces ofK, we may writeunK = unσ, to obtain:

R̃(m)
2 = −ε

4

N−1∑

n=0

δt
∑

K=[σσ′]∈M

[

(ρnσu
n
σ+ρ

n
σ′unσ′) (unσ)

2−ρnK
(

(unσ)
3+(unσ′)3

)]

(ϕn+1
σ′ −ϕn+1

σ ),

with ε = ±1. Since, for0 ≤ n ≤ N − 1 andK ∈ M,

(ρnσu
n
σ + ρnσ′unσ′) (unσ)

2 − ρnK
(
(unσ)

3 + (unσ′)3
)
=

− (ρnK − ρnσ) (u
n
σ)

3 + ρnK u
n
σ′ (unσ + unσ′) (unσ − unσ′)− (ρnK − ρnσ′) unσ′ (unσ)

2,

we have:

|R̃(m)
2 | ≤ Cϕ h

(m)
[

‖u(m)‖3L∞(Ω×(0,T )) ‖ρ‖T ,x,BV

+ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖2L∞(Ω×(0,T )) ‖u(m)‖T ,x,BV

]

,

where the real numberCϕ only depends onϕ. Hence|R̃(m)
2 | tends to zero whenm tends

to +∞.

We now turn toT (m)
3 andT̃ (m)

3 . By a change in the notation of the time exponents,

using the fact thatϕσ vanishes at the last time step(s), we get:

T̃
(m)
3 =

N−1∑

n=1

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK) u
n
σ ϕ

n
σ = T̃ (m)

3 + R̃(m)
3 ,
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with:

T̃ (m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK) u
n
σ ϕ

n+1
σ ,

R̃(m)
3 = δt

∑

σ=
−−→
K|L∈Eint

(p0L − p0K) u
0
σ ϕ

1
σ +

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK) u
n
σ (ϕn

σ − ϕn+1
σ ).

We have, thanks to the regularity ofϕ:

|R̃(m)
3 | ≤ Cϕ δt

(m)
[

‖(u(m))0‖L∞(Ω) ‖(p(m))0‖BV(Ω) + ‖u(m)‖L∞(Ω×(0,T )) ‖p(m)‖T ,x,BV

]

.

Therefore, invoking the regularity of the initial conditions, this term tends to zero when

m tends to+∞. We now have for the other terms, reordering the summations:

T
(m)
3 + T̃ (m)

3 = −
N−1∑

n=0

δt
∑

K=[−→σ σ′]∈M

pnK u
n
σ (ϕ

n+1
K − ϕn+1

σ ) + pnK u
n
σ′ (ϕn+1

σ′ − ϕn+1
K )

= −
∫ T

0

∫

Ω

p(m) u(m)
ðxϕM,E dx dt.

So, sinceðxϕM,E converges to∂xϕ in Lr(Ω× (0, T )) for anyr ≥ 1, we get:

lim
m→+∞

T
(m)
3 + T̃ (m)

3 = −
∫ T

0

∫

Ω

p̄ ū ∂xϕ dx dt.

Finally, it now remains to check thatlimm→+∞ S(m) − R̃(m) = 0. Let us write this

quantity asS(m) − R̃(m) = R(m)
1 +R(m)

2 where, usingS0
K = 0, ∀K ∈ M:

R(m)
1 =

N−1∑

n=0

δt
[∑

K∈M

Sn+1
K ϕn+1

K −
∑

σ∈E

Rn+1
σ ϕn+1

σ

]
,

R(m)
2 =

N−1∑

n=1

δt
∑

K∈M

Sn
K (ϕn+1

K − ϕn
K).

First, we prove thatlimm→+∞R(m)
1 = 0. Gathering and reordering sums, we obtain

Explicit Staggered Schemes for Compressible Flows 106



NGUYEN Tan-Trung

R(m)
1 = R(m)

1,1 +R(m)
1,2 +R(m)

1,3 with

R(m)
1,1 =

1

2

N−1∑

n=0

δt
∑

σ=K|L∈E

[ |DK,σ|
δt

ρn+1
K (un+1

σ − unσ)
2(ϕn+1

K − ϕn+1
σ )

+
|DL,σ|
δt

ρn+1
L (un+1

σ − unσ)
2(ϕn+1

L − ϕn+1
σ )

]

,

R(m)
1,2 =

1

2

N−1∑

n=0

δt
∑

K∈M

|F n
K | (unσ − unσ′)2 (ϕn+1

K − ϕn+1
σ ),

R(m)
1,3 =

N−1∑

n=0

δt
∑

K=[σ′→σ]∈M

F n
K (unσ′ − unσ) (u

n+1
σ − unσ) (ϕ

n+1
K − ϕn+1

σ ).

We thus obtain:

|R(m)
1,1 | ≤ h(m) Cϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖L∞(Ω×(0,T )) ‖u(m)‖T ,t,BV,

and |R(m)
1,2 |+|R(m)

1,3 | ≤ h(m) Cϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖2L∞(Ω×(0,T )) ‖u(m)‖T ,x,BV,

so all these terms tend to zero. The fact that|R(m)
2 | behaves asδt(m) my be proven by

very similar arguments.

Gathering the limits of all terms concludes the proof.

3.5 Numerical results

We assess in this section the behaviour of the scheme on various test cases. To this pur-

pose, we address the five Riemann problems studied in [61, Chapter 4]. More precisely,

we perform a detailed study of the test referred in [61, Chapter 4] as Test 3, and give the

results obtained on the other tests for the sake of completeness.

3.5.1 Test 3

In this test, the chosen left and right states are given by:

left state:






ρL = 1

uL = 0

pL = 1000




 ; right state:






ρR = 1

uR = 0

pR = 0.001




 .
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Figure 3.1: Test 3 –h = 0.001 andδt = h/100 – Density att = 0.012.

The computational domain isΩ = (0, 1) and the final time isT = 0.012. The (known)

analytical solution of this problem consists in a rarefaction wave, travelling to the left,

and a shock wave, travelling to the right, separated by the constant discontinuity.

3.5.1.1 Results

The density, pressure, internal energy and velocity obtained att = 0.012 = T with

h = 0.001 and δt = h/100 are shown on Figures 3.1, 3.2, 3.3 and 3.4 respectively.

We observe that the scheme is rather diffusive especially for contact discontinuities for

which the beneficial compressive effect of the shocks does not apply. More accurate

variants may certainly be derived, using for instance MUSCL-like techniques; this work

is underway.

In addition, we perform a convergence study, successively dividing by two the space

and time steps (so keeping the CFL number constant). The difference between the com-

puted and analytical solution att = 0.025, measured inL1(Ω) norm, are reported in the

following table.
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Figure 3.2: Test 3 –h = 0.001 andδt = h/100 – Pressure att = 0.012.

space step h0 = 0.001 h0/2 h0/4 h0/8 h0/16

‖ρ− ρ̄‖L1(Ω) 0.0651 0.0455 0.0310 0.0217 0.0153

‖p− p̄‖L1(Ω) 1.87 1.05 0.530 0.284 0.164

‖u− ū‖L1(Ω) 0.0967 0.0536 0.0258 0.0134 0.00795

We measure a convergence rate which is slightly lower to 1 forthe variables which

are constant through the contact discontinuity (i.e.p andu), and equal to 1/2 forρ.

Finally, we test the behaviour of the scheme obtained when setting to zero the cor-

rective terms in the internal energy balance. Results withh = 0.001 andδt = h/100 are

reported on Figures 3.5–3.8. From further numerical experiments with more and more

refined meshes, it seems that the scheme converge, but to a limit which is not a weak

solution to the Euler system: indeed, the Rankine-Hugoniotcondition applied to the to-

tal energy balance, with the states obtained numerically, yields a right shock velocity

slightly greater than the analytical solution one, while the same shock velocity obtained

numerically is clearly lower.
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Figure 3.3: Test 3 –h = 0.001 andδt = h/100 – Internal energy att = 0.012.

3.5.1.2 On a naive scheme

We also test the “naive” explicit scheme obtained by evaluating all the terms, except in

time-derivative one, at timetn. In the one dimensional setting and with the same notations

as in Section 3.4, this scheme thus reads:

∀K = [
−→
σσ′] ∈ M,

|K|
δt

(ρn+1
K − ρnK) + F n

σ′ − F n
σ = 0, (3.33a)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + F n
Lu

n
L − F n

Ku
n
K + pnL − pnK = 0,

(3.33b)

∀K = [
−→
σσ′] ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) + F n

σ′enσ′ − F n
σ e

n
σ + pnK(u

n
σ′ − unσ) = Sn+1

K ,

(3.33c)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K . (3.33d)

Hereafter and on the figure captions, this scheme is referredto by theρ u e p

scheme (since the pressure is updated after the computationof the velocity rather than
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Figure 3.4: Test 3 –h = 0.001 andδt = h/100 – Velocity att = 0.012.

after the computation of the density). Note that we are able,for this scheme also, to prove

a consistency result similar to Theorem 3.4.2.

The computed density, pressure, internal energy and velocity at timeT = 0.012 are

plotted on figures 3.9, 3.10, 3.11 and 3.12 respectively. From these results, it appears

clearly that theρ u e p scheme generates discontinuities in the rarefaction wave,

and further experiments show that this phenomenon is not cured by a reduction of the

time and space step.

3.5.2 Test 1

In this test, the chosen left and right states are given by:

left state:






ρL = 1

uL = 0

pL = 1




 ; right state:






ρR = 0.125

uR = 0

pR = 0.1




 .
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Figure 3.5: Test 3, without corrective terms –h = 0.001 andδt = h/100 – Density at
t = 0.012.

The computational domain isΩ = (0, 1) and the final time isT = 0.25. The (known)

analytical solution of this type of problem consists in two genuinely nonlinear waves

(i.e. rarefaction or shock waves) separated by a contact discontinuity. For the initial data

chosen in this section, the left wave is a rarefaction wave and the right one is a shock.

Results obtained withh = 0.001 and δt = h/6 at t = T are shown on Figures

3.13–3.16.

3.5.3 Test 2

The chosen left and right states are given by:

left state:






ρL = 1

uL = −2

pL = 0.4




 ; right state:






ρR = 1

uR = 2

pR = 0.4




 .

The computational domain isΩ = (0, 1) and the final time isT = 0.15. Both left and

right waves are rarefaction waves.
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Figure 3.6: Test 3, without corrective terms –h = 0.001 andδt = h/100 – Pressure at
t = 0.012.

Results obtained withh = 0.001 and δt = h/5 at t = T are shown on Figures

3.17–3.20.

3.5.4 Test 4
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Figure 3.7: Test 3, without corrective terms –h = 0.001 andδt = h/100 – Internal
energy att = 0.012.
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Figure 3.8: Test 3, without corrective terms –h = 0.001 andδt = h/100 – Velocity at
t = 0.012.
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Figure 3.9: Test 3,ρ u e p scheme –h = 0.001 andδt = h/100 – Density at
t = 0.012.
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Figure 3.10: Test 3,ρ u e p scheme –h = 0.001 andδt = h/100 – Pressure at
t = 0.012.
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Figure 3.11: Test 3,ρ u e p scheme –h = 0.001 andδt = h/100 – Internal energy
at t = 0.012.
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Figure 3.12: Test 3,ρ u e p scheme –h = 0.001 andδt = h/100 – Velocity at
t = 0.012.

Figure 3.13: Test 1 –h = 0.001 andδt = h/6 – Density att = 0.25.
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Figure 3.14: Test 1 –h = 0.001 andδt = h/6 – Pressure att = 0.25.

Figure 3.15: Test 1 –h = 0.001 andδt = h/6 – Internal energy att = 0.25.
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Figure 3.16: Test 1 –h = 0.001 andδt = h/6 – Velocity att = 0.25.

Figure 3.17: Test 2 –h = 0.001 andδt = h/5 – Density att = 0.15.
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Figure 3.18: Test 2 –h = 0.001 andδt = h/5 – Pressure att = 0.15.

Figure 3.19: Test 2 –h = 0.001 andδt = h/5 – Internal energy att = 0.15.
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Figure 3.20: Test 2 –h = 0.001 andδt = h/5 – Velocity att = 0.15.
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Figure 3.21: Test 4 –h = 0.001 andδt = h/30 – Density att = 0.035.

The chosen left and right states are given by:

left state:






ρL = 1

uL = 0

pL = 0.01




 ; right state:






ρR = 1

uR = 0

pR = 100




 .

The computational domain isΩ = (0, 1) and the final time isT = 0.035. The left wave

is a shock and the right one is a rarefaction wave.

Results obtained withh = 0.001 andδt = h/30 at t = T are shown on Figures

3.21–3.24.
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Figure 3.22: Test 4 –h = 0.001 andδt = h/30 – Pressure att = 0.035.

3.5.5 Test 5

The chosen left and right states are given by:

left state:






ρL = 5.99924

uL = 19.5975

pL = 460.894




 ; right state:






ρR = 5.99242

uR = −6.19633

pR = 46.0950




 .

The computational domain isΩ = (0, 1) and the final time isT = 0.035. Both left and

right waves are shocks.

Results obtained withh = 0.001 andδt = h/40 at t = T are shown on Figures

3.17–3.20.

3.6 Conclusion

We have presented in this chapter an explicit scheme based onstaggered meshes for

Euler equations. This algorithm uses a very simple first-order upwinding strategy which
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Figure 3.23: Test 4 –h = 0.001 andδt = h/30 – Internal energy att = 0.035.

consists, equation by equation, to implement an upwind discretization with respect of the

material velocity of the convection term. In addition, it solves the internal energy balance

instead of the total energy balance, and thus turns out to be non-conservative: indeed, the

total energy conservation law is only recovered at the limitof vanishing time and space

steps, thanks to the addition of corrective source terms in the discrete internal energy

balance. Under CFL-like conditions based on the material velocity only (by opposition

to the celerity of waves), this scheme preserves the positivity of the density, the internal

energy and the pressure (in other words, the scheme preserves the convex of admissible

states), and its solution satisfies a property of conservation (in fact, as often at the discrete

level, non-increase) of the integral of the total energy over the computational domain.

Finally, the scheme has been shown to be consistent for 1D problems, in the sense that,

if a sequence of numerical solutions obtained with more and more refined meshes (and,

accordingly, smaller and smaller time steps) converges, then the limit is a weak solution

to the continuous problem.

This theoretical result may probably be extended in two directions: first, to check

whether limits of convergent sequences are entropy solutions, and, second, to deal with
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Figure 3.24: Test 4 –h = 0.001 andδt = h/30 – Velocity att = 0.035.

the consistency issue in the multi-dimensional case. The investigation of this latter point

should help to clarify the constraints on mesh generality imposed by consistency require-

ments, in particular with the aim to design a discretizationable to cope with non-conform

locally refined meshes. This work is now being undertaken.

Numerical studies show that the proposed algorithm is stable, even if the largest time

step before blow-up is smaller than suggested by the above-mentioned CFL conditions.

This behaviour had to be expected, since these CFL conditions only involve the velocity

(and not the celerity of the acoustic waves): indeed, were they the only limitation, we

would have obtained an explicit scheme stable up to the incompressible limit. However,

the mechanisms leading to the blow-up of the scheme (or, conversely, the way to fix the

time step to ensure stability) remain to be understood. In addition, still as expected, the

scheme is rather diffusive, especially at contact discontinuities; MUSCL-like extensions

are under development to cure this problem, possibly combined with a strategy similar

to the so-called entropy-viscosity technique [21, 22] to damp spurious oscillations which

are sometimes observed when the velocity is small (refer Chapter 2, Section 2.5 for a

numerical study of this issue).
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Figure 3.25: Test 5 –h = 0.001 andδt = h/5 – Density att = 0.035.

Since the proposed scheme uses very simple numerical fluxes,it is well suited to large

multi-dimensional parallel computing applications, and such studies are now beginning

at IRSN. Still for the same reasons (and, in particular, because the construction of the

discretization does not require the solution of the Riemannproblem), it seems that the

presented approach offers natural extensions to more complex problems, such as reacting

flows; this development is foreseen at IRSN, for applications to explosion hazards.
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Figure 3.26: Test 5 –h = 0.001 andδt = h/5 – Pressure att = 0.035.

Figure 3.27: Test 5 –h = 0.001 andδt = h/5 – Internal energy att = 0.035.
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Figure 3.28: Test 5 –h = 0.001 andδt = h/5 – Velocity att = 0.035.
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Chapter 4

Radial compressible flows

4.1 Introduction

In the first two chapters, we studied numerical schemes for the (barotropic) Euler equa-

tions in case of irrotational flows. However, there are situations for which blast waves

propagate in radial and spherical trajectories for two and three-dimensional flows, re-

spectively, such as the propagation or explosion in a porousmedium. This motivates the

development and/or modification of existing schemes for thediscretization of the non-

conservative systems of equations which reads, for the barotropic Euler equations

∂tρ+
1

rα
∂r(r

αρu) = 0 (4.1a)

∂t(ρu) +
1

rα
∂r(r

αρu2) + ∂rp = 0 (4.1b)

p = ℘(ρ) = ργ (4.1c)

wherer is the radial direction,t is time,ρ, u andp are the density, radial velocity and

pressure in the flow, andγ ≥ 1 is a coefficient specific to the considered fluid. The

parameterα depends on the space dimensiond: α = d − 1. Forα = 0, we reproduce

the one-dimensional flow which was surveyed in Chapter 2 and 3. The casesα = 1 and

α = 2 are corresponding to the two and three-dimensional problems in cylindrical and

spherical symmetry coordinates, respectively. The problem is supposed to be posed over

Ω × (0, T ), whereΩ = [0,+∞) and(0, T ) is a finite time interval. This system must

be supplemented by initial conditions forρ andu, denoted byρ0 andu0, and we assume

ρ0 > 0. It must also be supplemented by a suitable boundary condition where the radial
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velocity vanishes at any time on∂Ω.

A weak solution to the continuous problem (4.1) satisfies, for any ϕ ∈ C∞
c

(
Ω ×

[0, T )
)
:

−
∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂rϕ
]

rα dr dt−
∫

Ω

ρ0(x)ϕ(x, 0) r
α dr = 0, (4.2a)

−
∫ T

0

∫

Ω

([
ρ u ∂tϕ+ (ρ u2 + p) ∂rϕ

]
rα + p ∂r(r

αϕ)
)

dr dt

−
∫

Ω

ρ0(x) u0(x)ϕ(x, 0) r
α dr = 0,

(4.2b)

p = ργ . (4.2c)

Let us denote byEk the kinetic energyEk = 1
2
u2. Taking the product of (4.1b) byu

yields, after formal compositions of partial derivatives and using the mass balance (4.1a):

ρ u ∂tu+ ρ u2 ∂ru+ u ∂rp = 0.

Invoking one more time the mass balance, we obtain the kinetic energy equation

∂t(ρEk) +
1

rα
∂r
(
rαρEk u

)
+ u ∂rp = 0. (4.3)

Let us now define the functionP, from (0,+∞) toR, as a primitive ofs 7→ ℘(s)/s2;

this quantity is often called the elastic potential. LetH be the function defined byH(s) =

sP(s), ∀s ∈ (0,+∞). For the specific equation of state℘ used here, we obtain:

H(s) = sP(s) =







sγ

γ − 1
if γ > 1,

s ln(s) if γ = 1.

(4.4)

Since℘ is an increasing function,H is convex. In addition, it may easily be checked that

ρH′(ρ) − H(ρ) = ℘(ρ). Therefore, by a formal computation, detailed in the appendix,

multiplying (4.1a) byH′(ρ) yields:

∂t
(
H(ρ)

)
+

1

rα
∂r
(
rαH(ρ) u

)
+

1

rα
p ∂r(r

αu) = 0. (4.5)
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Let us denote byS the quantityS = ρEk +H(ρ). Summing (4.3) and (4.5), we get:

∂tS +
1

rα
∂r
(
rα(S + p) u

)
= 0. (4.6)

In fact, to avoid invoking unrealistic regularity assumptions, such a computation should

be done on regularized equations (obtained by adding diffusion perturbation terms); when

making these regularization terms tend to zero, positive measures appear at the left-hand-

side of (4.6), so that we get in the distribution sense:

∂tS +
1

rα
∂r
(
rα(S + p) u

)
≤ 0. (4.7)

The quantityS is an entropy of the system, and an entropy solution to (4.1) is thus

required to satisfy:

∀ϕ ∈ C∞
c

(
Ω× [0, T )

)
, ϕ ≥ 0,

∫ T

0

∫

Ω

[
−S∂tϕ− (S + p) u ∂rϕ

]
rα dr dt−

∫

Ω

S0 ϕ(r, 0) r
α dr ≤ 0, (4.8)

with S0 = 1
2
ρ0u

2
0 + H(ρ0). Then, since the radial velocity is prescribed to zero at the

boundary, integrating (4.7) overΩ yields:

d

dt

∫

Ω

[1

2
ρ u2 +H(ρ)

]
rα dr ≤ 0. (4.9)

Sinceρ ≥ 0 by (4.1a) (and the associated initial and boundary conditions) and the func-

tion s 7→ H(s) is bounded by below and increasing at least fors large enough, Inequality

(4.9) provides an estimate on the solution.

Let us now turn to the Euler equations on cylindrical and spherical coordinate systems
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under the non-conservative form:

∂tρ+
1

rα
∂r(r

αρu) = 0 (4.10a)

∂t(ρu) +
1

rα
∂r(r

αρu2) + ∂rp = 0 (4.10b)

∂t(ρE) +
1

rα
∂r(r

αρEu) +
1

rα
∂r(r

αpu) = 0 (4.10c)

E =
1

2
u2 + e (4.10d)

p = (γ − 1)ρe (4.10e)

whereE ande stand for the total and internal energy respectively, andγ > 1 is a co-

efficient specific to the considered fluid. The problem is supposed to be posed over

Ω × (0, T ), whereΩ = [0;+∞) and(0, T ) is a finite time interval. Substracting the re-

lation (4.3) from the total energy balance (4.10c), we obtain the internal energy balance

equation:

∂t(ρe) +
1

rα
∂r(r

αρeu) +
1

rα
p ∂r(r

αu) = 0. (4.11)

Since,

- thanks to the mass balance equation, the first two terms in the left-hand side of

(4.11) may be recast as a transport operator:∂t(ρe)+
1
rα
∂r(r

αρeu) = ρ [∂te+u ∂re],

- and, from the equation of state, the pressure vanishes whene = 0,

this equation implies, ife ≥ 0 at t = 0 and with suitable boundary conditions, thate

remains non-negative at all times.

A weak solution to the continuous problem (4.10) satisfies, for anyϕ ∈ C∞
c

(
Ω ×
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[0, T )
)
:

−
∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂rϕ
]

rα dr dt−
∫

Ω

ρ0(x)ϕ(x, 0) r
α dr = 0, (4.12a)

−
∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂rϕ
]

rα + p ∂r(r
αϕ) dr dt

−
∫

Ω

ρ0(x) u0(x)ϕ(x, 0) r
α dr = 0,

(4.12b)

−
∫ T

0

∫

Ω

[

ρE ∂tϕ+ (ρE + p) u ∂rϕ
]

rα dr dt−
∫

Ω

ρ0(x)E0(x)ϕ(x, 0) r
α dr = 0,

(4.12c)

p = (γ − 1)ρ e, E =
1

2
u2 + e, E0 =

1

2
u20 + e0. (4.12d)

Note that relations (4.2) and (4.12) are not sufficient to define a weak solution to

the problem (4.1) and (4.10), respectively, since they do not imply anything about the

boundary conditions. However, they allow to derive the Rankine-Hugoniot conditions;

hence if we show that they are satisfied by the limit of a sequence of solutions to the

discrete problem, this implies, loosely speaking, thatthe scheme computes correct shocks

(i.e. shocks where the jumps of the unknowns and of the fluxes are linked to the shock

speed by Rankine-Hugoniot conditions).

This chapter gives, in the case of the above equations in cylindrical and spherical

coordinates, an explicit variant of an all-Mach-number pressure correction scheme [15,

26] which has been studying in the framework of the simulation of compressible flows

and implementing in the industrial computer code ISIS [33].The initial motivation of

ISIS was to provide in the same software an efficient alternative for quickly varying

unstationary flows, with a characteristic Mach number in therange or greater than the

unity.

We use a staggered finite volume or finite element discretization in space. For the sake

of stability, the upwinding technique is applied equation-by-equation with respect to the

material velocity only which is contrary to the Riemann solvers for hyperbolic systems,

where upwinding is performed based on the celerity of waves.The pressure gradient is

defined as the transpose of the natural velocity divergence,and is thus centered. Last but

not least, the velocity convection term is built is such a wayto allow to derive a discrete

kinetic energy balance.
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We prove for the scheme(s) the following results:

• A discrete kinetic energy balance with some residual (i.e. a discrete analogue of

(4.3)) on dual cells.

• A discrete elastic potential equation with some rest terms (i.e. a discrete analogue

of (4.5)) on primal cells for the barotropic Euler equations. These rest terms, nat-

urally arising from computations at the discrete level, arecontrolled by a CFL

condition to obtain the discrete version of entropy condition (4.8)

• Discrete internal energy balances with some residual (i.e. a discrete analogue of

(4.11)) on primal cells for the Euler equations. In the contrary to rest terms in the

elastic potential equation, the residual here are imposed to complement rest terms

in the discrete kinetic energy balance at the limit, when themesh size and time step

tend to zero, in order to recover the total energy equation.

• Finally, passing to the limit in all equations and supposingthe convergence of

scheme(s), the limits are shown to be weak solutions of the continuous problem(s),

and thus to satisfy the Rankine-Hugoniot conditions. In particular, they are entropy

solutions to the barotropic Euler equations.

This chapter is structured as follows. We begin with the presentation of the space dis-

cretization (Section 4.2). The next section is dedicated tothe barotropic Euler equations

(Section 4.3). In this section, we have three subsections including the scheme descrip-

tion in Subsection 4.3.1. The construction of discrete kinetic energy and elastic potential

equations are described in Subsection 4.3.2. The consistency of the scheme can be found

in Subsection 4.3.3. The structure for the section of Euler equation (Section 4.4) is the

same as the barotropic Euler equations except the elastic potential balance is replaced

by corrective source terms in the internal energy equation (4.4.2). The discrete kinetic

energy and elastic potential balances are obtained as particular cases of more general

results applying to the explicit finite volume discretization of transport operators, which

are established in Chapter 2, Appendix 2.7.1. Finally, we present some numerical tests

to assess the behaviour of the algorithms (Section 4.5).
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4.2 Meshes and unknowns

For anyK ∈ M, we denote byhK its length (sohK = |K|); when we writeK = [σσ′],

this means that eitherK = (xσ, xσ′) or K = (xσ′ , xσ); if we need to specify the order,

i.e.K = (xσ, xσ′) with xσ < xσ′ , then we writeK = [
−→
σσ′]. For an interfaceσ = K|L

between two cellsK andL, we definehσ = (hK + hL)/2, so, by definition of the dual

mesh,hσ = |Dσ|. If we need to specify the order of the cellsK andL, sayK is left of

L, then we writeσ =
−−→
K|L.

The volume ofK denoted by|VK | reads

|VK| =
rα+1
σ′ − rα+1

σ

α + 1
, ∀K = [

−→
σσ′] ∈ M, (4.13)

while the volume ofDσ denoted by|Vσ| can be selected based on the way we define the

dual radiusrσ. In the spirit of ISIS, the mean value of volumes of two primalcellsK and

L gives the volume of the dual cellDσ

|Vσ| =
|VK |+ |VL|

2
, ∀σ = K|L ∈ Eint. (4.14)

In this way, the primal radiusrK reads

rK =
α+1

√

rα+1
σ + rα+1

σ′

2
, ∀K = [σσ′] ∈ M. (4.15)

Otherwise, givenrK = (rσ + rσ′)/2, ∀K ∈ M, we define the volume ofDσ as the

integral on[rK , rL]

|Vσ| =
rα+1
L − rα+1

K

α+ 1
, ∀σ =

−−→
K|L ∈ Eint. (4.16)

The volume ofK ∩Dσ denoted by|VK,σ|, in both choices of|Vσ|, is given by

|VK,σ| =
|VK |
2
, ∀K ∈ M, ∀σ ∈ E . (4.17)

Both definitions for the volumes of dual cells, in fact, givesthe same numerical solution,

up to a very small tolerance, when mesh size and time step tendto zero. Therefore, in

this chapter, we work only with the mean value volume case.
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Let a sequence of discretizations(M(m), δt(m))m∈N be given. We define the size

h(m) of the meshM(m) by h(m) = supK∈M(m) hK . Let ρ(m), p(m), e(m) andu(m) be the

solution given by the scheme (4.42) with the meshM(m) and the time stepδt(m). For

a fixedm, the unknowns in our discretizations are constant on the mesh, i.e. on primal

cells,ρ, p, e are constant andu is constant on dual cells. To the discrete unknowns, we

associate piecewise constant functions on time intervals and on primal or dual meshes,

so the densityρ(m), the pressurep(m), the internal energye(m) and the velocityu(m) are

defined almost everywhere onΩ× (0, T ) by:

ρ(m)(x, t) =
N−1∑

n=0

∑

K∈M

(ρ(m))nK XK(x)X(n,n+1](t), (4.18a)

u(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
(x)X(n,n+1](t), (4.18b)

p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK(x)X(n,n+1](t), (4.18c)

e(m)(x, t) =

N−1∑

n=0

∑

K∈M

(e(m))nK XK(x)X(n,n+1](t), (4.18d)

whereXK , XDσ
andX(n,n+1] stand for the characteristic function of the intervalsK, Dσ

and(tn, tn+1] respectively.

For discrete functionsq andv defined on the primal and dual mesh, respectively, we

define a discreteL1((0, T ); BV(Ω)) norm by:

‖q‖T ,x,BV =
N∑

n=0

δt
∑

σ=K|L∈Eint

|qnL − qnK |, ‖v‖T ,x,BV =
N∑

n=0

δt
∑

ǫ=Dσ|Dσ′∈Ẽint

|vnσ′ − vnσ |,

and a discreteL1(Ω; BV((0, T ))) norm by:

‖q‖T ,t,BV =
∑

K∈M

|VK |
N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

|Vσ|
N−1∑

n=0

|vn+1
σ − vnσ |.
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4.3 The barotropic Euler equations

4.3.1 The scheme

Let us consider a partition0 = t0 < t1 < . . . < tN = T of the time interval(0, T ),

which we suppose uniform for the sake of simplicity, and letδt = tn+1 − tn for n =

0, 1, . . . , N − 1 be the (constant) time step. We consider an explicit-in-time scheme,

which reads in its fully discrete form, for0 ≤ n ≤ N − 1:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,

(4.19a)

∀K = [
−→
σσ′] ∈ M,

|VK |
δt

(ρn+1
K − ρnK) + F n

σ′ − F n
σ = 0, (4.19b)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ. (4.19c)

∀σ =
−−→
K|L ∈ Eint,

|Vσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + F n
Lu

n
L − F n

Ku
n
K + rασ (p

n+1
L − pn+1

K ) = 0.

(4.19d)

where the terms introduced for each discrete equation are defined hereafter.

Equation (4.19b) is obtained by the discretization of the mass balance equation (4.1a)

over the primal mesh, andF n
σ stands for the discrete mass flux acrossσ outwardK,

which, because of the impermeability condition, vanishes on ∂Ω and is given on the

internal edges by:

∀σ = K|L ∈ Eint, F n
σ = rασρ

n
σu

n
σ, (4.20)

where the upwind approximation for the density at the edge,ρnσ, is defined by

ρnσ =

∣
∣
∣
∣
∣
∣

ρnK if unσ ≥ 0,

ρnL otherwise.
(4.21)

We now turn to the discrete momentum balance (4.19d), which is obtained by dis-
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cretizing the momentum balance equation (4.1b) on the dual cells associated to the faces

of the mesh. For the discretization of the time derivative, we need to provide a definition

for the valuesρn+1
Dσ

andρnDσ
, which approximate the density on the faceσ at timetn+1 and

tn respectively. They are given by the following weighted average:

for σ = K|L ∈ Eint, for k = n andk = n+ 1, |Vσ| ρkDσ
= |VK,σ| ρkK + |VL,σ| ρkL.

(4.22)

where|VK,σ| = |VK|/2, ∀K ∈ M. The discrete mass fluxF n
K in the discretization of the

convection term reads

∀K = [σσ′] ∈ M, F n
K =

1

2
(F n

σ + F n
σ′), (4.23)

Therefore, we obtain the discrete mass balance equation on dual cells:

∀σ =
−−→
K|L ∈ E , |Vσ|

δt
(ρn+1

Dσ
− ρnDσ

) + F n
L − F n

K = 0, (4.24)

Let us remark that a dual edge lying on the boundary is then also a primal edge, and

the flux across that face is zero. Thanks to the discrete mass flux on dual cells, the

approximation ofunK is given by the upwinding technique:

∀K =
−−→
σ|σ′ ∈ M, unK =

∣
∣
∣
∣
∣
∣

unσ if F n
K ≥ 0,

unσ′ otherwise.
(4.25)

We denote(∂rp)n+1
σ and(∂ru)

n+1
K , respectively, the discrete derivatives of pressure at the

edgeσ and the velocity on primal cellK. The last term in Equation (4.19d) known as

the discrete version of pressure derivative on the dual cellDσ is built as the transpose of

velocity derivative on the primal cellK. The natural approximation for the derivative of

the velocity on primal cells reads

∀K =
−−→
σ|σ′ ∈ M, (∂ru)

n+1
K =

1

hK

(
rασ′ un+1

σ′ − rασ u
n+1
σ

)
. (4.26)

Consequently, the discrete derivative of pressure at the edgeσ is given by

∀σ =
−−→
K|L ∈ Eint, (∂rp)

n+1
σ =

1

hσ
rασ
(
pn+1
L − pn+1

K

)
. (4.27)
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Hence, we obtain the duality relation between derivatives of pressure and velocity:

∑

K∈M

hK p
n+1
K (∂ru)

n+1
K +

∑

σ∈Eint

hσ u
n+1
σ (∂rp)

n+1
σ = 0. (4.28)

Note that, because of the impermeability boundary conditions, the discrete pressure

derivative is not defined at the external edges.

Finally, the initial approximations forρ andu are given by the average of the initial

conditionsρ0 andu0 on the primal and dual cells respectively:

∀K ∈ M, ρ0K =
1

|VK |

∫

K

ρ0(r) r
α dr,

∀σ ∈ Eint, u0σ =
1

|Vσ|

∫

Dσ

u0(r) r
α dr.

(4.29)

The following positivity result is a classical consequenceof the upwind choice in the

mass balance equation.

Lemma 4.3.1(Positivity of the density). Let ρ0 be given by(4.29). Then, sinceu0 is

assumed to be a positive function,ρ0 > 0 and, under theCFL condition:

δt ≤ |VK |
rασ′ (unσ′)+ + rασ (unσ)

−
, (4.30)

the solution to the scheme satisfiesρn > 0, for 1 ≤ n ≤ N .

4.3.2 Discrete kinetic energy and elastic potential balances

We begin by deriving a discrete kinetic energy balance equation, as was already done

for the implicit and fractional time step scheme described in [26]. Equation (4.31) is

a discrete analogue of Equation (4.3), with an upwind discretization of the convection

term.

Lemma 4.3.2(Discrete kinetic energy balance).

A solution to the system(4.19)satisfies the following equality:∀n ∈ {0, . . . , N − 1},
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∀σ =
−−→
K|L ∈ Eint,K =

−−→
σ′|σ andL =

−−→
σ|σ′′,

1

2

|Vσ|
δt

[

ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)
2
]

+
1

2

[
F n
L (unL)

2 − F n
K (unK)

2
]
+ |Vσ| (∂rp)n+1

σ un+1
σ

= −Rn+1
σ , (4.31)

with:

Rn+1
σ =

1

2

|Vσ|
δt

ρn+1
Dσ

(un+1
σ − unσ)

2 +
1

2

[

(F n
L )

−(unσ′′ − unσ)
2 + (F n

K)
−(unσ′ − unσ)

2
]

− (F n
L )

−(unσ′′ − unσ) (u
n+1
σ − unσ)− (F n

K)
+(unσ′ − unσ) (u

n+1
σ − unσ), (4.32)

where, fora ∈ R, a− ≥ 0 is defined bya− = −min(a, 0). This remainder term is

non-negative under the following CFL condition:

∀σ =
−−→
K|L ∈ Eint, δt ≤ |Vσ| ρn+1

Dσ

(F n
L )

− + (F n
K)

+
. (4.33)

Proof. The proof of this lemma is obtained in the similar way to Lemma2.3.1 of Chapter

2.

Similarly, the solution to the scheme (4.19) satisfies a discrete version of the elastic

potential identity (4.5), which we now state.

Lemma 4.3.3(Discrete potential balance). LetH be defined by(4.4). A solution to the

system(4.19)satisfies the following equality, forK =
−−→
σ|σ′ ∈ M, σ =

−−→
P |K, σ′ =

−−→
K|Q

and0 ≤ n ≤ N − 1:

|VK |
δt

[

H(ρn+1
K )−H(ρnK)

]

+ rασ′ H(ρnσ′) unσ′ − rασ H(ρnσ) u
n
σ + |VK| pnK(∂run)K = −Rn+1

K .

(4.34)

In this relation, the remainder term is defined by:

Rn+1
K =

1

2

|VK|
δt

H′′(ρnK,1) (ρ
n+1
K −ρnK)2+

(
rασ′ ρnσ′ unσ′ −rασ ρnσ unσ

)
(ρn+1

K −ρnK)H′′(ρnK,2)

+
1

2

[

rασ′ (unσ′)− (ρnQ − ρnK)
2H′′(ρnσ′) + rασ (u

n
σ)

+ (ρnP − ρnK)
2H′′(ρnσ)

]

, (4.35)

with ρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, ρnσ ∈ |[ρnK , ρnP ]| andρnσ′ ∈ |[ρnK , ρnQ]|, where, fora, b ∈ R,

we denote by|[a, b]| the interval|[a, b]| = {θa+ (1− θ)b, θ ∈ [0, 1]}.
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Proof. The proof of this lemma is obtained in the similar way to Lemma2.3.2 of Chapter

2.

Unfortunately, it does not seem thatRn+1
K ≥ 0 in any case, and so we are not able

to prove a discrete counterpart of the total entropy estimate (4.9), which would yield a

stability estimate for the scheme. However, under a condition for a time step which is

only slightly more restrictive than a CFL-condition, and under some stability assumptions

for the solutions to the scheme, we are able to show that the possible non-positive part of

this remainder term tends to zero inL1(Ω× (0, T )), which allows to conclude, in the 1D

case, that a convergent sequence of solutions satisfies the entropy inequality (4.8): this is

the result stated in Lemma 4.3.6 below.

4.3.3 Passing to the limit in the scheme

The objective of this section is to show, in the one dimensional case, that if a sequence of

solutions is controlled in suitable norms and converges to alimit, this latter necessarily

satisfies a (part of the) weak formulation of the continuous problem. In order to prove

this theorem, we need some definitions of interpolates of regular test functions on the

primal and dual meshes.

Definition 4.3.4 (Interpolates on one-dimensional meshes). Let Ω be an open bounded

interval ofR, letϕ ∈ C∞
c (Ω× [0, T )), and letM be a mesh overΩ. The interpolateϕM

of ϕ on the primal meshM is defined by:

ϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K XK X[tn,tn+1),

where, for0 ≤ n ≤ N andK ∈ M, we setϕn
K = ϕ(xK , t

n), with xK the mass center of

K. The time discrete derivative of the discrete functionϕM is defined by:

ðtϕM =
N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕn

K

δt
XK X[tn,tn+1),
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and its space discrete derivative by:

ðxϕM =

N−1∑

n=0

∑

σ=
−−→
K|L∈Eint

ϕn+1
L − ϕn+1

K

hσ
XDσ

X[tn,tn+1).

LetϕE be an interpolate ofϕ on the dual mesh, defined by:

ϕE =
N−1∑

n=0

∑

σ∈E

ϕn+1
σ XDσ

X[tn,tn+1),

where, for1 ≤ n ≤ N and σ ∈ E , we setϕn
σ = ϕ(xσ, t

n), with xσ the abscissa of

the interfaceσ. We also define the time and space discrete derivatives of this discrete

function by:

ðtϕE =
N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕn

σ

δt
XDσ

X[tn,tn+1),

ðxϕE =
N−1∑

n=0

∑

K=[
−→
σσ′]∈M

ϕn+1
σ′ − ϕn+1

σ

hK
XK X[tn,tn+1).

Finally, we defineðxϕM,E by:

ðxϕM,E =
N−1∑

n=0

∑

K=[
−→
σσ′]∈M

ϕn+1
K − ϕn+1

σ

hK/2
XDK,σ

X[tn,tn+1)

+
ϕn+1
σ′ − ϕn+1

K

hK/2
XDK,σ′

X[tn,tn+1).

For the consistency result that we are seeking (Theorem 4.3.5 below), we have to

assume that a sequence of discrete solutions
(
ρ(m), p(m), u(m)

)

m∈N
satisfiesρ(m) > 0 and

p(m) > 0, ∀m ∈ N (which may be a consequence of the fact that the CFL stability

condition (4.30) is satisfied), and is uniformly bounded inL∞((0, T )× Ω)3, i.e.:

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N,

(4.36)
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and

|(u(m))nσ| ≤ C, ∀σ ∈ E (m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (4.37)

whereC is a positive real number. Note that, by definition of the initial conditions of

the scheme, these inequalities imply that the functionsρ0 andu0 belong toL∞(Ω). We

also have to assume that a sequence of discrete solutions satisfies the following uniform

bounds with respect to the discrete BV-norms:

‖ρ(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (4.38)

We are not able to prove the estimates (4.36)–(4.38) for the solutions of the scheme;

however, such inequalities are satisfied by the “interpolates” (for instance, by taking the

cell average) of the solution to a Riemann problem, and are observed in computations (of

course, as far as possible,i.e.with a limited sequence of meshes and time steps).

Theorem 4.3.5(Consistency of the one-dimensional explicit scheme, barotropic case).

LetΩ be an open bounded interval ofR. We suppose that the initial data satisfiesρ0 ∈
L∞(Ω) andu0 ∈ L∞(Ω). Let (M(m), δt(m))m∈N be a sequence of discretizations such

that both the time stepδt(m) and the sizeh(m) of the meshM(m) tend to zero asm→ ∞,

and (ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose that

this sequence satisfies the estimates(4.36)–(4.38)and converges inLp(Ω× (0, T ))3, for

1 ≤ p <∞, to (ρ̄, p̄, ū) ∈ L∞(Ω× (0, T ))3.

Then the limit(ρ̄, p̄, ū) satisfies the system(4.2).

Proof. It is clear that, with the assumed convergence for the sequence of solutions, the

limit satisfies the equation of state. The proof of this theorem is thus obtained by passing

to the limit in the scheme for the mass balance equation first,and then for the momentum

balance equation.

Mass balance equation– Letϕ ∈ C∞
c (Ω× [0, T )). Letm ∈ N, M(m) andδt(m) be

given. Dropping for short the superscript(m), letϕM be the interpolate ofϕ on the primal

mesh and letðtϕM andðxϕM be its time and space discrete derivatives in the sense of

Definition 4.3.4. Thanks to the regularity ofϕ, these functions respectively converge in

Lr(Ω × (0, T )), for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ and∂rϕ respectively. In

addition,ϕM(·, 0) (which, forK ∈ M andx ∈ K, is equal toϕ1
K = ϕ(x, δt)) converges

toϕ(·, 0) in Lr(Ω) for r ≥ 1. Since the support ofϕ is compact inΩ× [0, T ), form large
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enough, the interpolate ofϕ vanishes at the boundary cells and at the last time step(s);

hereafter, we systematically assume that we are in this case.

Let us multiply the first equation (4.19b) of the scheme byδt ϕn+1
K , and sum the result

for 0 ≤ n ≤ N − 1 andK ∈ M, to obtainT (m)
1 + T

(m)
2 = 0 with

T
(m)
1 =

N−1∑

n=0

∑

K∈M

|VK|(ρn+1
K − ρnK)ϕ

n+1
K , T

(m)
2 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

(F n
σ′ −F n

σ )ϕ
n+1
K .

Reordering the sums inT (m)
1 yields:

T
(m)
1 = −

N−1∑

n=0

δt
∑

K∈M

|VK | ρnK
ϕn+1
K − ϕn

K

δt
−
∑

K∈M

|VK | ρ0K ϕ1
K ,

so that:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m)
ðtϕM rα dr dt−

∫

Ω

(ρ(m))0(x) ϕM(x, 0) rα dr.

The boundedness ofρ0 and the definition (4.19a) of the initial conditions for the

scheme ensures that the sequence((ρ(m))0)m∈N converges toρ0 inLr(Ω) for r ≥ 1. Since,

by assumption, the sequence of discrete solutions and of theinterpolate time derivatives

converge inLr
(
Ω× [0, T )

)
for r ≥ 1, we thus obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ∂tϕ r
α dr dt−

∫

Ω

ρ0(x)ϕ(x, 0) r
α dr.

Using the expression of the mass fluxF n
σ and reordering the sums inT (m)

2 , we get

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

hσ r
α
σ ρ

n
σ u

n
σ

ϕn+1
L − ϕn+1

K

hσ
.

Since|Vσ| = (|VK| + |VL|)/2 andρnσ is the upwind approximation ofρn at the faceσ,

remarking that|Vσ| = hσ r
α
σ̄ whererσ̄ ∈ (rK , rL), we can rewriteT (m)

2 = T (m)
2 +R(m)

1 +
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R(m)
2 with

T (m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

( |VK |
2
ρnK +

|VL|
2
ρnL

)

unσ
ϕn+1
L − ϕn+1

K

hσ
,

R(m)
1 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

hσ (r
α
σ̄ − rασ ) ρ

n
σ u

n
σ

ϕn+1
L − ϕn+1

K

hσ

R(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

(ρnK − ρnL)

[ |VK |
2

(unσ)
− +

|VL|
2

(unσ)
+

]
ϕn+1
L − ϕn+1

K

hσ
,

where, fora ∈ R, a+ = max(a, 0) anda− = −min(a, 0) (soa = a+ − a−). We have,

for the termT (m)
2 :

T (m)
2 = −

∫ T

0

∫

Ω

ρ(m)u(m)
ðrϕM rα dr dt

and therefore, we obtain at the limit:

lim
m→+∞

T (m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū ∂rϕ r
α dr dt.

The remainder termsR(m)
1 andR(m)

2 are bounded as follows, withCr
ϕ = ‖∂rϕ‖L∞(Ω×(0,T )):

|R(m)
1 | ≤ Cr

ϕ T α |Ω|α ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖L∞(Ω×(0,T )) h
(m),

|R(m)
2 | ≤ Cr

ϕ

N−1∑

n=0

δt
∑

σ=K|L∈E

|ρnK − ρnL| |unσ| |Vσ|

≤ Cr
ϕ ‖ρ(m)‖T ,x,BV ‖u(m)‖L∞(Ω×(0,T )) |Ω|α h(m),

and therefore tend to zero whenm tends to+∞, by the assumed stability of the solution.

Momentum balance equation– Let ϕE , ðtϕE and ðxϕE be the interpolate ofϕ

on the dual mesh and its discrete time and space derivatives,in the sense of Definition

4.3.4, which converge inLr(Ω × (0, T )), for r ≥ 1 (includingr = +∞), toϕ, ∂tϕ and

∂rϕ respectively. Let us multiply Equation (4.19d) byδt ϕn+1
σ , and sum the result for

Explicit Staggered Schemes for Compressible Flows 147



NGUYEN Tan-Trung

0 ≤ n ≤ N − 1 andσ ∈ Eint. We obtainT (m)
1 + T

(m)
2 + T

(m)
3 = 0 with

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Vσ| (ρn+1
Dσ

un+1
σ − ρnDσ

unσ)ϕ
n+1
σ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[

F n
L u

n
L − F n

K u
n
K

]

ϕn+1
σ ,

T
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

rασ (p
n+1
L − pn+1

K )ϕn+1
σ .

Reordering the sums, we get forT (m)
1 :

T
(m)
1 = −

N−1∑

n=0

δt
∑

σ∈Eint

|Vσ| ρnDσ
unσ

ϕn+1
σ − ϕn

σ

δt
−
∑

σ∈Eint

|Vσ| ρ0Dσ
u0σ ϕ

1
σ.

Thanks to the definition of the quantityρDσ
(namely the fact that|Vσ| ρnDσ

= (|VK| ρnK +

|VL| ρnL)/2), we have:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðtϕE r

α dr dt−
∫

Ω

(ρ(m))0(x) (u(m))0(x) ϕE(x, 0) r
α dr.

By the same arguments as for the mass balance equation, we therefore obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ū ∂tϕ r
α dr dt−

∫

Ω

ρ0(x) u0(x)ϕ(x, 0) r
α dr.

Let us now turn toT (m)
2 . Reordering the sums and using the definition of the mass

fluxes at the dual faces, we get:

T
(m)
2 = −

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

F n
K u

n
K (ϕn+1

σ′ − ϕn+1
σ )

= −1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

(rασρ
n
σu

n
σ + rασ′ρnσ′unσ′) unK (ϕn+1

σ′ − ϕn+1
σ ).
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Using the relation

∫ T

0

∫

Ω

ρ(m) u(m)2
ðxϕE r

α dr dt

=
1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

rαK̄ρ
n
K

[
(unσ)

2 + (unσ′)2
]
(ϕn+1

σ′ − ϕn+1
σ ),

with rα
K̄
= |VK |/hK , we can rewrite the termT (m)

2 as

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) u(m)2
ðxϕE r

α dr dt +R(m)
1 +R(m)

2 ,

where:

R(m)
1 = −1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

[

(rασ − rαK̄) ρ
n
σu

n
σ + (rασ′ − rαK̄) ρ

n
σ′unσ′

]

unK (ϕn+1
σ′ − ϕn+1

σ ),

R(m)
2 = −1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

rαK̄

[

unσ (ρnσu
n
K − ρnKu

n
σ) + unσ′ (ρnσ′unK − ρnKu

n
σ′)
]

(ϕn+1
σ′ − ϕn+1

σ ).

The first residual is bounded by the following inequality

|R(m)
1 | ≤ Cr

ϕ T α |Ω|α ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖2L∞(Ω×(0,T )) h
(m).

We now turn to the second one. At first, applying the identity2(ab− cd) = (a− c)(b +

d) + (a + c)(b − d), ∀(a, b, c, d) ∈ R4, to the termρnσu
n
K − ρnKu

n
σ and using the fact

that the quantitiesρnσ − ρnK andunσ − unK are either zero or differences of the density

at two neighbouring cells and the velocity at two neighbouring faces respectively, then

performing in the same manner toρnσ′unK − ρnKu
n
σ′ , we obtain

|R(m)
2 | ≤ Cr

ϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖2L∞(Ω×(0,T ))

(

‖ρ(m)‖T ,x,BV + ‖u(m)‖T ,x,BV

)

h(m).
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Therefore, the remainder termR(m)
1 +R(m)

2 tends to zero whenm tends to+∞ and:

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂rϕ r
α dr dt.

Let us finally studyT (m)
3 . Reordering the sums, we obtainT (m)

3 = T (m)
3 +R(m)

3 with:

T (m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK) r
α
σ ϕ

n+1
σ ,

R(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK) r
α
σ (ϕ

n
σ − ϕn+1

σ )− δt
∑

σ=
−−→
K|L∈Eint

(p0L − p0K) r
α
σ ϕ

1
σ.

The bounds for remainder terms read

|R(m)
3 | ≤

(

‖ϕ‖L∞(Ω×(0,T )) C
0
p + ‖∂tϕ‖L∞(Ω×(0,T )) ‖p(m)‖T ,x,BV

)

|Ω|α δt(m),

whereC0
p is the bound of initial pressure all over computational domain. Therefore, the

residual ofT (m)
3 tends to zero whenm tends to+∞ and, since

T (m)
3 = −

∫ T

0

∫

Ω

p(m)
ðr

(
rαϕ

(m)
E

)
dr dt,

we obtain that:

lim
m→+∞

T
(m)
3 = −

∫ T

0

∫

Ω

p̄ ∂r(r
αϕ) dr dt.

Conclusion– Gathering the limits of all the terms of the mass and momentum balance

equations concludes the proof.

We now turn to the entropy condition (4.8). To this purpose, we need to introduce the

following additional condition for a sequence of discretizations:

lim
m→+∞

δt(m)

minK∈M(m) hK
= 0. (4.39)

Note that this condition is slightly more restrictive that astandard CFL condition. It

allows to bound the remainder term in the discrete elastic potential balance as stated in

the following lemma.
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Lemma 4.3.6. Let Ω be an open bounded interval ofR. Let (M(m), δt(m))m∈N be a

sequence of discretizations such that the time stepδt(m) tends to zero asm → ∞, and

(ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose thatthis

sequence satisfies the estimates(4.36)–(4.37). In addition, we assume that(ρ(m))m∈N

satisfies the following uniform BV estimate:

‖ρ(m)‖T ,t,BV ≤ C, ∀m ∈ N, (4.40)

and, forγ < 2 only, is uniformly bounded by below,i.e. that there existsc > 0 such that:

c ≤ (ρ(m))nK , ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (4.41)

Let us suppose that the CFL condition(4.39)hold. LetR(m) be defined by:

R(m) =

N−1∑

n=0

δt
∑

K∈M

(Rn+1
K )−,

withRn+1
K given by(4.35). Then:

lim
m→+∞

R(m) = 0.

Proof. ForK = [
−→
σσ′] ∈ M, with σ =

−−−→
M |K andσ′ =

−−→
K|L, we writeRn+1

K = (T1)
n+1
K +

(T2)
n+1
K + (T3)

n+1
K , with:

(T1)
n+1
K =

1

2

|VK|
δt

H′′(ρnK,1) (ρ
n+1
K − ρnK)

2,

(T2)
n+1
K =

1

2

[

rασ′ (unσ′)− H′′(ρnσ′) (ρnK − ρnL)
2 + rασ (u

n
σ)

+ H′′(ρnσ) (ρ
n
K − ρnM)2

]

,

(T3)
n+1
K =

[

rασ′ ρnσ′ unσ′ − rασ ρ
n
σ u

n
σ

]

H′′(ρnK,2) (ρ
n+1
K − ρnK),

whereρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, ρnσ′ ∈ |[ρnK , ρnL]| and ρnσ ∈ |[ρnK , ρnM ]|. The first two

terms are non-negative, and thus(Rn+1
K )− ≤ |(T3)n+1

K |. Using the identity2(ab − cd) =

(a− c)(b+ d) + (a+ c)(b− d) and(a− b)(aα + bα) = aα+1 − bα+1 + ab(bα−1 − aα−1),
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∀(a, b, c, d) ∈ R
4 gives(T3)

n+1
K = (R1)

n+1
K + (R2)

n+1
K + (R3)

n+1
K where

(R1)
n+1
K =

N−1∑

n=0

δt
∑

K∈M

1

2
(rασ′ − rασ ) (ρ

n
σ′ unσ′ + ρnσ u

n
σ) (ρ

n+1
K − ρnK)H′′(ρnK,2),

(R2)
n+1
K =

N−1∑

n=0

δt
∑

K∈M

1

2
(rα+1

σ′ − rα+1
σ ) (ρnσ′ unσ′ − ρnσ u

n
σ) (ρ

n+1
K − ρnK)H′′(ρnK,2)

1

hK
,

(R3)
n+1
K =

N−1∑

n=0

δt
∑

K∈M

1

2
rα+1
σ′ rα+1

σ (rα−1
σ − rα−1

σ′ ) (ρnσ′ unσ′ − ρnσ u
n
σ) (ρ

n+1
K − ρnK)

H′′(ρnK,2)
1

hK
.

We obtain from the expression (4.13) for the volumes of primal cells:

1

2
(rασ′ − rασ ) ≤ |VK |,

rα+1
σ′ rα+1

σ (rα−1
σ′ − rα−1

σ ) ≤ |VK |.

Since bothρ, u and, forγ < 2, 1/ρ are supposed to be bounded, there existsC > 0 such

that:
N−1∑

n=0

δt
∑

K∈M

|(T3)n+1
K | ≤ C

δt(m)

minK∈M hK
‖ρ(m)‖T ,t,BV,

which yields the conclusion by the assumption (4.39).

Then we are now in position to state the following consistency result.

Theorem 4.3.7(Entropy consistency, barotropic case). Let the assumptions of Theorem

4.3.5hold. Let us suppose in addition that the considered sequence of discretization satis-

fies(4.39), and that(ρ(m))m∈N satisfies the BV estimate(4.40)and, forγ < 2, the uniform

control (4.41)of 1/ρ(m) . Then the limit(ρ̄, p̄, ū) satisfies the entropy condition(4.8).

Proof. Let ϕ ∈ C∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0. With the same notations for the interpolate of

ϕ as in the preceding proof, we multiply the kinetic balance equation (4.31)-(4.32) by

ϕn+1
σ , and the elastic potential balance (4.34)-(4.35) byϕn+1

K , sum over the edges and

cells respectively and over the time steps, to obtain the discrete version of (4.8):

T
(m)
1 + T

(m)
2 + T

(m)
3 + T̃

(m)
1 + T̃

(m)
2 + T̃

(m)
3 = −R(m) − R̃(m)
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where:

T
(m)
1 =

N−1∑

n=0

δt
∑

K∈M

|VK |
δt

[
H(ρn+1

K )−H(ρnK)
]
ϕn+1
K ,

T
(m)
2 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

[
rασ′ H(ρnσ′) unσ′ − rασ H(ρnσ) u

n
σ

]
ϕn+1
K ,

T
(m)
3 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

[
pnK(r

α
σ′ unσ′ − rασ u

n
σ)
]
ϕn+1
K ,

T̃
(m)
1 =

1

2

N−1∑

n=0

δt
∑

σ∈Eint

|Vσ|
δt

[
ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)
2
]
ϕn+1
σ ,

T̃
(m)
2 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
F n
L (unL)

2 − F n
K (unK)

2
]
ϕn+1
σ , with K = [

−→
σ′σ], L = [

−−→
σσ′′],

T̃
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K ) rασ u
n+1
σ ϕn+1

σ ,

R(m) =

N−1∑

n=0

δt
∑

K∈M

Rn+1
K ϕn+1

K , R̃(m) =

N−1∑

n=0

δt
∑

σ∈Eint

Rn+1
σ ϕn+1

σ ,

and the quantitiesRn+1
K andRn+1

σ are given by Equation (4.35) and (4.32) respectively.

By the same arguments as the proof of theorems 2.4.4 and 4.4.2, we obtain desired results.

4.4 The Euler equations

4.4.1 The scheme

The derivation of the explicit-in-time scheme for the Eulerequations is obtained in the

same manner to the barotropic Euler equations (Section 4.3). The fully discrete form of
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the scheme reads, for0 ≤ n ≤ N − 1:

∀K ∈ M, ρ0K =
1

|VK |

∫

K

ρ0(x) r
α dr, e0K =

1

|VK |

∫

K

e0(x) r
α dr,

∀σ ∈ Eint, u0σ =
1

|Vσ|

∫

Dσ

u0(x) r
α dr,

(4.42a)

∀K = [
−→
σσ′] ∈ M,

|VK |
δt

(ρn+1
K − ρnK) + F n

σ′ − F n
σ = 0, (4.42b)

∀K = [
−→
σσ′] ∈ M,

|VK |
δt

(ρn+1
K en+1

K − ρnKe
n
K) + F n

σ′enσ′ − F n
σ e

n
σ + pnK(r

α
σ′unσ′ − rασu

n
σ) = Sn

K ,

(4.42c)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (4.42d)

∀σ =
−−→
K|L ∈ Eint,

|Vσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + F n
Lu

n
L − F n

Ku
n
K + rασ (p

n+1
L − pn+1

K ) = 0.

(4.42e)

The Equation (4.42b) and Equation (4.42e) are introduced inSection 4.3.1. Therefore,

we describe only terms associated to the internal energy. The Equation (4.42c) is an

approximation of the internal energy balance over the primal cell K. The positivity of

the convection operator is ensured thanks to the upwinding choice forenσ:

∀σ =
−−→
K|L ∈ Eint, enσ =

∣
∣
∣
∣
∣
∣

enK if F n
σ ≥ 0,

enL otherwise.

The last term on the left-hand side is a natural approximation of the velocity derivative

on primal cells which is given by (4.27). The right-hand side, Sn
K , is derived by using

consistency arguments in the next section. Finally, the initial approximations fore is

given by the average of the initial conditionse0 on the primal cells.
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4.4.2 Corrective source terms

The next step is now to define corrective terms in the internalenergy balance, with the

aim to recover a consistent discretization of the total energy balance. The first idea to do

this could be just to sum the (discrete) kinetic energy balance with the internal energy

balance: it is indeed possible for a collocated discretization. But here, we face the fact

that the kinetic energy balance is associated to the dual mesh, while the internal energy

balance is discretized on the primal one. The way to circumvent this difficulty is to

remark that we do not really need a discrete total energy balance; in fact, we only need

to recover (a weak form of) this equation when the mesh and time steps tend to zero. To

this purpose, we choose the quantities(Sn
K) in such a way as to somewhat compensate

the terms(Rn+1
σ ) given by (4.32):

∀K ∈ M, K = [
−→
σσ′], Sn

K =
|VK |
4 δt

ρnK
[
(unσ − un−1

σ )2 + (unσ′ − un−1
σ′ )2

]

+
|F n−1

K |
2

(un−1
σ − un−1

σ′ )2 + F n−1
K (un−1

σ′ − un−1
σ ) (unK − un−1

K ), (4.43)

whereunK − un−1
K is a downwind choice with respect toF n−1

K :

∀K =
−−→
σ|σ′ ∈ M, unK − un−1

K =

∣
∣
∣
∣
∣
∣

unσ′ − un−1
σ′ if F n−1

K ≥ 0,

unσ − un−1
σ otherwise.

The expression of the(Sn
K)K∈M is justified by the passage to the limit in the scheme

performed in the next section. Indeed, the first part ofSn
K , thanks to the expression (4.22)

of the density at the faceρn+1
Dσ

, results from a dispatching of the first part of the residual

over the two adjacent cells:

1

2

|Vσ|
δt

ρnDσ

(
unσ − un−1

σ

)2
=

1

2

|VK,σ|
δt

ρnK
(
unσ − un−1

σ

)2

︸ ︷︷ ︸

affected to K

+
1

2

|VL,σ|
δt

ρnL
(
unσ − un−1

σ

)2

︸ ︷︷ ︸

affected to L

.

The same argument holds for the terms associated to the dual faces. Therefore, the

scheme conserves the integral of the total energy over the computational domain.

The definition (4.43) of(Sn
K)K∈M allows to prove that, under a CFL condition, the

scheme preserves the positivity ofe.
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Lemma 4.4.1.Let us suppose that, for1 ≤ n ≤ N and for allK = σ|σ′ ∈ M, we have:

δt ≤ |VK |
γ
[
rασ′ (unσ′)+ + rασ (unσ)

−
] and δt ≤ |VK | ρnK∣

∣F n−1
σ + F n−1

σ′

∣
∣
. (4.44)

Then the internal energy(en)0≤n≤N given by the scheme(4.42)is positive.

Proof. We refer to Lemma 3.3.2 in Chapter 3 for the proof.

4.4.3 Passing to the limit in the scheme

For the consistency result that we are seeking (Theorem 4.4.2 below), we have to assume

that a sequence of discrete solutions
(
ρ(m), p(m), u(m)

)

m∈N
satisfiesρ(m) > 0, p(m) > 0

ande(m) > 0, ∀m ∈ N (which may be a consequence of the fact that the CFL stability

condition (4.30) is satisfied), and is uniformly bounded inL∞((0, T )× Ω)3, i.e.:

∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N,

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C, 0 < (e(m))nK ≤ C, (4.45)

and

|(u(m))nσ| ≤ C, ∀σ ∈ E (m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (4.46)

whereC is a positive real number. Note that, by definition of the initial conditions of the

scheme, these inequalities imply that the functionsρ0, e0 andu0 belong toL∞(Ω). We

also have to assume that a sequence of discrete solutions satisfies the following uniform

bounds with respect to the discrete BV-norms:

‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (4.47)

and:

‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (4.48)

We are not able to prove the estimates (4.45)–(4.48) for the solutions of the scheme;

however, such inequalities are satisfied by the “interpolates” (for instance, by taking the

cell average) of the solution to a Riemann problem, and are observed in computations (of

course, as far as possible,i.e.with a limited sequence of meshes and time steps).
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Theorem 4.4.2(Consistency of the one-dimensional explicit scheme, Euler case).

LetΩ be an open bounded interval ofR. We suppose that the initial data satisfiesρ0 ∈
L∞(Ω), p0 ∈ BV(Ω), e0 ∈ L∞(Ω) and u0 ∈ L∞(Ω). Let (M(m), δt(m))m∈N be a

sequence of discretizations such that both the time stepδt(m) and the sizeh(m) of the mesh

M(m) tend to zero asm → ∞, and let(ρ(m), p(m), e(m), u(m))m∈N be the corresponding

sequence of solutions. We suppose that this sequence satisfies the estimates(4.45)–(4.48)

and converges inLp(Ω× (0, T ))4, for 1 ≤ p <∞, to (ρ̄, p̄, ē, ū) ∈ L∞(Ω× (0, T ))4.

Then the limit(ρ̄, p̄, ē, ū) satisfies the system(4.12).

Proof. It is clear that with the assumed convergence for the sequence of solutions, the

limit satisfies the equation of state. The fact that the limitsatisfies the weak mass bal-

ance equation (4.12a) and the weak momentum balance equation (4.12b) is proven in

Theorem 4.3.5. The proof of this theorem is thus obtained by passing to the limit in the

scheme, in the internal and the kinetic energy balance equations.

Let ϕ ∈ C∞
c (Ω × [0, T )). Letm ∈ N, M(m) andδt(m) be given. Dropping for short

the superscript(m), letϕM be the interpolate ofϕ on the primal mesh and letðtϕM and

ðxϕM be its time and space discrete derivatives in the sense of Definition 4.3.4. Thanks

to the regularity ofϕ, these functions respectively converge inLr(Ω× (0, T )), for r ≥ 1

(includingr = +∞), to ϕ, ∂tϕ and∂xϕ respectively. In addition,ϕM(·, 0) (which, for

K ∈ M andx ∈ K, is equal toϕ1
K = ϕ(xK , δt)) converges toϕ(·, 0) in Lr(Ω) for r ≥ 1.

We also defineϕE , ðtϕE andðxϕE , as, respectively, the interpolate ofϕ on the dual

mesh and its discrete time and space derivatives, still in the sense of Definition 4.3.4;

once again thanks to the regularity ofϕ, these functions converge inLr(Ω × (0, T )), for

r ≥ 1, toϕ, ∂tϕ and∂xϕ respectively. As for the interpolate on the primal mesh,ϕE(·, 0)
(which, forσ ∈ E andx ∈ Dσ, is equal toϕ1

σ = ϕ(xσ, δt)) converges toϕ(·, 0) in Lr(Ω)

for r ≥ 1.

Since the support ofϕ is compact inΩ× [0, T ), form large enough, the interpolates

of ϕ vanish on the boundary cells and at the last time step(s); hereafter, we systematically

assume that we are in this case.

On one hand, let us multiply Equation (4.42c) byδt ϕn+1
K , and sum the result for

0 ≤ n ≤ N − 1 andK ∈ M. On the second hand, let us multiply the discrete kinetic

energy balance (4.31) byδt ϕn+1
σ , and sum the result over for0 ≤ n ≤ N − 1 and
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σ ∈ Eint. Finally, adding the two obtained relations, we get:

T
(m)
1 + T

(m)
2 + T

(m)
3 + T̃

(m)
1 + T̃

(m)
2 + T̃

(m)
3 = S(m) − R̃(m)

where:

T
(m)
1 =

N−1∑

n=0

δt
∑

K∈M

|VK |
δt

[
ρn+1
K en+1

K − ρnK e
n
K

]
ϕn+1
K ,

T
(m)
2 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

[
rασ′ ρnσ′ enσ′ unσ′ − rασ ρ

n
σ e

n
σ u

n
σ

]
ϕn+1
K ,

T
(m)
3 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

pnK (rασ′ unσ′ − rασ u
n
σ) ϕ

n+1
K ,

T̃
(m)
1 =

1

2

N−1∑

n=0

δt
∑

σ∈Eint

|Vσ|
δt

[
ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)
2
]
ϕn+1
σ ,

T̃
(m)
2 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
F n
L (unL)

2 − F n
K (unK)

2
]
ϕn+1
σ , with K = [

−→
σ′σ], L = [

−−→
σσ′′],

T̃
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K ) rασ u
n+1
σ ϕn+1

σ ,

S(m) =

N−1∑

n=0

δt
∑

K∈M

Sn
K ϕn+1

K , R̃(m) =

N−1∑

n=0

δt
∑

σ∈Eint

Rn+1
σ ϕn+1

σ ,

and the quantitiesSn
K andRn+1

σ are given by Equation (4.43) and (4.32) respectively.

Reordering the sums inT (m)
1 yields:

T
(m)
1 = −

N−1∑

n=0

δt
∑

K∈M

|VK| ρnK enK
ϕn+1
K − ϕn

K

δt
−
∑

K∈M

|VK | ρ0K e0K ϕ1
K ,

so that:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) e(m)
ðtϕM rα dr dt−

∫

Ω

(ρ(m))0(x) (e(m))0(x) ϕM(x, 0) rα dr.

The boundedness ofρ0, e0 and the definition (4.42a) of the initial conditions for the
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scheme ensures that the sequences((ρ(m))0)m∈N and((e(m))0)m∈N converge toρ0 ande0
respectively inLr(Ω) for r ≥ 1. Since, by assumption, the sequence of discrete solutions

and of the interpolate time derivatives converge inLr
(
Ω × [0, T )

)
for r ≥ 1, we thus

obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ē ∂tϕ r
α dr dt−

∫

Ω

ρ0(x) e0(x) ϕ(x, 0) r
α dr.

Reordering the sums inT (m)
2 , we get:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

hσ r
α
σ ρ

n
σ e

n
σ u

n
σ

ϕn+1
L − ϕn+1

K

hσ
.

Using the relation

∫ T

0

∫

Ω

ρ(m) e(m) u(m)
ðrϕ

(m)
M rα dr dt

=
N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

( |VK |
2

ρnK e
n
K +

|VL|
2

ρnL e
n
L

)

unσ
ϕn+1
L − ϕn+1

K

hσ
,

we can rewriteT (m)
2 as follow

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) e(m) u(m)
ðrϕ

(m)
M rα dr dt+R(m)

2,1 +R(m)
2,2 ,

where

R(m)
2,1 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

(

|Vσ| − hσ r
α
σ

)

ρnσ e
n
σ u

n
σ

ϕn+1
L − ϕn+1

K

hσ
,

R(m)
2,2 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

[ |VK |
2

ρnK e
n
K +

|VL|
2

ρnL e
n
L −

( |VK |
2

+
|VL|
2

)

ρnσ e
n
σ

]

unσ
ϕn+1
L − ϕn+1

K

hσ
.

Using Taylor expansion for|Vσ|−hσ rασ and the upwind choice ofρnσ e
n
σ gives the bounds
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for remainder terms:

|R(m)
2,1 | ≤ T α |Ω|αCr

ϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖e(m)‖L∞(Ω×(0,T )) ‖u(m)‖L∞(Ω×(0,T )) h
(m),

|R(m)
2,2 | ≤ Cr

ϕ

N−1∑

n=0

δt
∑

σ=K|L∈E

( |VK |
2

+
|VL|
2

)

|unσ| |ρnL enL − ρnK e
n
K |.

Applying the identity2 (ab− cd) = (a− c)(b+ d) + (a+ c)(b− d), which holds for any

{a, b, c, d} ⊂ R, to the quantityρnL e
n
L − ρnK e

n
K , we obtain:

|R(m)
2,2 | ≤ Cr

ϕ |Ω|α h(m) ‖u(m)‖L∞(Ω×(0,T ))

[

‖ρ(m)‖L∞(Ω×(0,T )) ‖e(m)‖T ,x,BV

+ ‖e(m)‖L∞(Ω×(0,T )) ‖ρ(m)‖T ,x,BV

]

.

Thus,|R(m)
2,1 |+ |R(m)

2,2 | tends to zero whenm tends to+∞ and

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ē ū ∂rϕ r
α dr dt.

For the termT̃ (m)
1 , the definition (4.22) ofρDσ

yields:

T̃
(m)
1 = −

N−1∑

n=0

δt
∑

σ=K|L∈E

[

|VK,σ| ρnK + |VL,σ| ρnL
]

unσ
ϕn+1
K − ϕn

K

δt

−
∑

σ=K|L∈E

[

|VK,σ| ρ0K + |VL,σ| ρ0L
]

u0σ ϕ
1
K ,

so, by similar arguments as for the termT (m)
1 , we get:

lim
m→+∞

T̃
(m)
1 = −

∫ T

0

∫

Ω

1

2
ρ̄ ū2 ∂tϕ r

α dr dt−
∫

Ω

1

2
ρ0(x) u0(x)

2 ϕ(x, 0) rα dr.

Let us now to the term̃T (m)
2 . Reordering the sums, we get:

T̃
(m)
2 = −1

2

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

F n
K (unK)

2 (ϕn+1
σ′ − ϕn+1

σ ),
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The upwind choice ofunK with respect toF n
K allows to writeT̃ (m)

2 = T̃
(m)
2,1 + T̃

(m)
2,2 with

T̃
(m)
2,1 = −1

4

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

F n
K

[
(unσ)

2 + (unσ′)2
]
(ϕn+1

σ′ − ϕn+1
σ ),

T̃
(m)
2,2 = −1

4

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

|F n
K |
[
(unσ)

2 − (unσ′)2
]
(ϕn+1

σ′ − ϕn+1
σ ).

Thanks to the definition of the mass flux at dual edges,T̃
(m)
2,1 turns out

T̃
(m)
2,1 = −1

4

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

1

2
(rασ ρ

n
σu

n
σ + rασ′ ρnσ′unσ′)

[
(unσ)

2 + (unσ′)2
]
(ϕn+1

σ′ − ϕn+1
σ ),

Using the identity2 (a3 + b3) = (a+ b)(a− b)2 + (a+ b)(a2 + b2), which holds for any

a, b ∈ R, to the quantity(unσ)
3 + (unσ′)3, and the relation

∫ T

0

∫

Ω

1

2
ρ(m) (u(m))3 ðrϕE r

α dr dt

=
1

4

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

rαK̄ ρ
n
K

[
(unσ)

3 + (unσ′)3
]
(ϕn+1

σ′ − ϕn+1
σ ),

whererα
K̄
= |VK |/hK , gives

T̃
(m)
2,1 = −

∫ T

0

∫

Ω

1

2
ρ(m) (u(m))3 ðrϕE r

α dr dt + R̃(m)
2,1 + R̃(m)

2,2 + R̃(m)
2,3 ,
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with

R̃(m)
2,1 = −1

8

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

[

(rασ − rαK̄) ρ
n
σ u

n
σ + (rασ′ − rαK̄) ρ

n
σ′ unσ′

]

(ϕn+1
σ′ − ϕn+1

σ ),

R̃(m)
2,2 =

1

8

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

rαK̄ ρ
n
K (unσ + unσ′) (unσ − unσ′)2 (ϕn+1

σ′ − ϕn+1
σ ),

R̃(m)
2,3 = −1

8

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

rαK̄
[
(ρnσ − ρnK) u

n
σ + (ρnσ′ − ρnK) u

n
σ′)
] [

(unσ)
2 + (unσ′)2

]

(ϕn+1
σ′ − ϕn+1

σ ).

In a similar way as preceding proofs, we obtain the bounds forremainder terms as follow

|R̃(m)
2,1 | ≤ T α |Ω|αCr

ϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖3L∞(Ω×(0,T )) h
(m),

|R̃(m)
2,2 | ≤ |Ω|αCr

ϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖2L∞(Ω×(0,T )) ‖u(m)‖T ,x,BV h
(m),

|R̃(m)
2,3 | ≤ |Ω|αCr

ϕ ‖u(m)‖3L∞(Ω×(0,T )) ‖ρ(m)‖T ,x,BV h
(m),

|T̃ (m)
2,2 | ≤ |Ω|αCr

ϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖2L∞(Ω×(0,T )) ‖u(m)‖T ,x,BV h
(m).

and hence:

lim
m→+∞

T̃ (m)
2 = −

∫ T

0

∫

Ω

1

2
ρ̄ ū3 ∂rϕ r

α dr dt.

We now turn toT (m)
3 andT̃ (m)

3 . By a change in the notation of the time exponents,

using the fact thatϕσ vanishes at the last time step(s), we get:

T̃
(m)
3 =

N−1∑

n=1

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK) r
α
σ u

n
σ ϕ

n
σ = T̃ (m)

3 + R̃(m)
3 ,
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with:

T̃ (m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK) r
α
σ u

n
σ ϕ

n+1
σ

= −
N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

pnK (rασ′ unσ′ ϕn+1
σ′ − rασ u

n
σ ϕ

n+1
σ ),

R̃(m)
3 = δt

∑

σ=
−−→
K|L∈Eint

(p0L − p0K) r
α
σ u

0
σ ϕ

1
σ +

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK) r
α
σ u

n
σ (ϕn

σ − ϕn+1
σ ).

We have, thanks to the regularity ofϕ:

|R̃(m)
3 | ≤ Cϕ |Ω|α δt(m)

[

‖(u(m))0‖L∞(Ω) ‖(p(m))0‖BV(Ω)

+ ‖u(m)‖L∞(Ω×(0,T )) ‖p(m)‖T ,x,BV

]

.

Therefore, invoking the regularity of the initial conditions, this term tends to zero when

m tends to+∞. In the next step, we take the sum ofT
(m)
3 andT̃ (m)

3 and make appear the

coefficientrα
K̄

to obtainT (m)
3 + T̃ (m)

3 = T (m)
3 +R(m)

3 with:

T (m)
3 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

pnK r
α
K̄

[
unσ′ (ϕn+1

K − ϕn+1
σ′ )− unσ (ϕ

n+1
K − ϕn+1

σ )
]

= −
∫ T

0

∫

Ω

p(m) u(m)
ðxϕM,E r

α dr dt,

R(m)
3 =

N−1∑

n=0

δt
∑

K=[
−→
σσ′]∈M

pnK

[

(rασ′ − rαK̄) u
n
σ′ (ϕn+1

K − ϕn+1
σ′ )

− (rασ − rαK̄) u
n
σ (ϕ

n+1
K − ϕn+1

σ )
]

.

In the similar way as preceding proofs, we have the bound for the remainder term:

|R(m)
3 | ≤ T α |Ω|αCr

ϕ ‖p(m)‖L∞(Ω×(0,T )) ‖u(m)‖L∞(Ω×(0,T )) h
(m).
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So, sinceðxϕM,E converges to∂xϕ in Lr(Ω× (0, T )) for anyr ≥ 1, we get:

lim
m→+∞

T
(m)
3 + T̃ (m)

3 = −
∫ T

0

∫

Ω

p̄ ū ∂rϕ r
α dr dt.

Finally, it now remains to check thatlimm→+∞ S(m) − R̃(m) = 0. Let us write this

quantity asS(m) − R̃(m) = R(m)
1 +R(m)

2 where, usingS0
K = 0, ∀K ∈ M:

R(m)
1 =

N−1∑

n=0

δt
[∑

K∈M

Sn
Kϕ

n+1
K −

∑

σ∈E

Rn
σϕ

n+1
σ

]
, R(m)

2 =

N−1∑

n=1

δt
∑

K∈M

Sn
K (ϕn+1

K −ϕn
K).

First, we prove thatlimm→+∞R(m)
1 = 0. Gathering and reordering sums, we obtain

R(m)
1 = R(m)

1,1 +R(m)
1,2 +R(m)

1,3 with

R(m)
1,1 =

1

4

N−1∑

n=0

∑

σ=K|L∈E

[

|VK | ρn+1
K (ϕn+1

K − ϕn+1
σ ) + |VL| ρn+1

L (ϕn+1
L − ϕn+1

σ )
]

(un+1
σ − unσ)

2,

R(m)
1,2 =

1

2

N−1∑

n=0

δt
∑

K∈M

|F n
K | (unσ − unσ′)2 (ϕn+1

K − ϕn+1
σ ),

R(m)
1,3 =

N−1∑

n=0

δt
∑

K=[σ′→σ]∈M

F n
K (unσ′ − unσ) (u

n+1
σ − unσ) (ϕ

n+1
K − ϕn+1

σ ).

We thus obtain:

|R(m)
1,1 | ≤ h(m) Cϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖L∞(Ω×(0,T )) ‖u(m)‖T ,t,BV,

and |R(m)
1,2 |+|R(m)

1,3 | ≤ 2 h(m) Cr
ϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖2L∞(Ω×(0,T )) ‖u(m)‖T ,x,BV,

so all these terms tend to zero. The fact that|R(m)
2 | behaves asδt(m) may be proven by

very similar arguments.

Conclusion– Gathering the limits of all the terms concludes the proof.
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4.5 Numerical results

We assess in this section the behaviour of the scheme(s) on explosion and implosion test

cases. To this purpose, we address the Riemann problem studied in [61, Chapter 17]. For

the barotropic Euler equations, we choosep = ρ2 for the equation of state, so the solved

system turns out to be the so-called shallow water equations.

4.5.1 Shallow water equations

Let us consider the implosion on cylindrical coordinate system, whenα = 1. The initial

data consisting in two constant states separated by a discontinuity are chosen to obtain

circular shock wave travelling towards the center, a circular contact surface travelling in

the same direction and a circular rarefaction travelling way from the origin. The com-

putational domain is the squareΩ = [0, 2] × [0, 2]. The initial conditions consist of the

region inside of a circle of radiusR = 0.4 centred at(1, 1) and the region outside the

circle:

inside state:

[

ρins = 1

uins = 2

]

; outside state:

[

ρout = 2

uout = 2

]

.

The density, velocity and pressure obtained at the final timeT = 0.01 with h = 1/800

and δt = h/10 are shown of Figures 4.1, 4.2, and 4.3 respectively, where the two-

dimensional solution along the radial line that is coincident with thex–axis.

4.5.2 Euler equations

For the full Euler equations, we refer to [61, Test case 17.3]for a spherical explosion test

(corresponding to the caseα = 2), with two constant states given by:

inside state:






ρins = 1

uins = 0

pins = 1




 ; outside state:






ρout = 0.125

uout = 0

pout = 0.1




 .

These initial conditions give the inverse structure of waves in case of shallow water equa-

tions. In detail, we obtain a circular shock wave travellingaway from the centre, a circu-

lar contact surface travelling in the same direction and a circular rarefaction travelling to-

wards the origin(1, 1, 1). The computational domain is the cubeΩ = [0, 2]×[0, 2]×[0, 2].
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Figure 4.1: Cylindrical implosion –h = 1/800, δt = h/10 – Density atT = 0.01.

The three-dimensional solutions including density, velocity, pressure and internal energy

obtained along the radial line that is coincident with thex–axis at the final timeT = 0.25

with h = 1/800 andδt = h/10 are shown of Figures 4.4, 4.5, 4.6 and 4.7 respectively.

We do not an exact solution for the three-dimensional Euler equations, however, the nu-

merical solutions obtained by our scheme are compatible with the reference solutions in

[61, Figure 17.7].
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Figure 4.2: Cylindrical implosion –h = 1/800, δt = h/10 – Velocity atT = 0.01.

Figure 4.3: Cylindrical implosion –h = 1/800, δt = h/10 – Pressure atT = 0.01.
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Figure 4.4: Spherical explosion –h = 1/800, δt = h/10 – Density atT = 0.25.

Figure 4.5: Spherical explosion –h = 1/800, δt = h/10 – Velocity atT = 0.25.
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Figure 4.6: Spherical explosion –h = 1/800, δt = h/10 – Pressure atT = 0.25.

Figure 4.7: Spherical explosion –h = 1/800, δt = h/10 – Internal Energy atT = 0.25.
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Appendix A

Exact solutions for the shallow water

equations

A.1 Non-vacuum case

Let us recall the conservative form of the one–dimensional shallow water equations in

case of ideal gas:

∂tρ+ ∂x(ρu) = 0, (A.1a)

∂t(ρu) + ∂x(ρu
2) + ∂xp = 0, (A.1b)

p = ρ2, (A.1c)

The sound speeda corresponding to the equation of state (A.1c) is given by:

a =
√

p′(ρ) =
√

2ρ. (A.2)

Let us rewrite Equation (A.1a) and (A.1b) in differential form:

Ut + F(U)x = 0, (A.3)

whereU andF(U) are the vectors of conserved variables and fluxes, given respectively

by:

U =

[

u1

u2

]

=

[

ρ

ρu

]

, F(U) =

[

ρu

ρu2 + p

]

=

[

u2

u22/u1 + u21

]

. (A.4)
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The conservation laws (A.3)-(A.4) can be written in quasi-linear form:

Ut + A(U)Ux = 0, (A.5)

where the coefficient matrixA(U) is the Jacobian matrix:

A(U) =




0 1

−
(

u2

u1

)2

+ 2u1 2u2

u1



 =

(

0 1

−u2 + a2 2u

)

(A.6)

and the eigenvalues of the Jacobian matrixA(U) are

λ1 = u− a, λ2 = u+ a. (A.7)

The corresponding right eigenvectors are given by:

K(1) =

[

1

u− a

]

, K(2) =

[

1

u+ a

]

. (A.8)

Hence, we have two waves associated with the two genuinely non-linear characteristic

fieldK(1) andK(2):

∇λ1 ·K(1) =

[

−u
ρ

1
ρ

]

·
[

1

u− a

]

= −a
ρ
6= 0,

∇λ2 ·K(2) =

[

−u
ρ

1
ρ

]

·
[

1

u+ a

]

=
a

ρ
6= 0.

Roughly speaking, the two waves are either shock or rarefaction. The two waves separate

the relevant domain of interestxL < x < xR, t > 0, with xL < 0 andxR > 0 three

constant states. From left to right these areUL (left data state),U∗ (Star Region) and

UR (right data state). The complete solution of the shallow water equations is given

by observing the structure of each wave. The Generalized Riemann Invariants across
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λ1-wave andλ2-wave, are respectively

dρ

1
=
d(ρu)

u− a
⇔ du+

a

ρ
dρ = 0 ⇔ IL(ρ, ρu) := u+

∫
a

ρ
dρ = u+ 2a = const, (A.9)

dρ

1
=
d(ρu)

u+ a
⇔ du− a

ρ
dρ = 0 ⇔ IR(ρ, ρu) := u−

∫
a

ρ
dρ = u− 2a = const.

(A.10)

Let us consider the case of left shock wave. We denoteWL = (ρL, uL, pL) and

W∗ = (ρ∗, u∗, p∗) pre-shock and post-shock values, respectively. The entropy condition

λL(UL) > S1 > λ∗(U∗) (A.11)

deduces thatS1 < uL whereS1 is the shock speed. We transform the problem to a new

frame of reference moving with the shock so that in the new frame the shock speed is 0

ûL = uL − S1 > 0, û∗ = u∗ − S1.

The Rankine-Hugoniot conditions give:

ρLûL = ρ∗û∗ =: QL , (A.12)

ρLû
2
L + pL = ρ∗û

2
∗ + p∗ . (A.13)

Using (A.12)-(A.13) and solving forQL yield:

− p∗ − pL
û∗ − ûL

= QL = − p∗ − pL
u∗ − uL

. (A.14)

Applying (A.12) and the equation of state (A.1c) on the first identity of (A.14), we obtain:

Q2
L = −(ρ2∗ − ρ2L)

1
ρ∗

− 1
ρ∗

= ρ∗ρL(ρ∗ + ρL). (A.15)

From the second identity of (A.14), we have the equation of the velocity in the Star

Region:

u∗ = uL − p∗ − pL
QL

= uL −
√
(

1

ρ∗
+

1

ρL

)

(ρ∗ − ρL). (A.16)
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On the other hand, the Rankine-Hugoniot in the original frame

S1 =
ρLuL − ρ∗u∗
ρL − ρ∗

(A.17)

givesS1 as a function of the densityρ∗:

S1 =

ρLuL − ρ∗

[

uL −
√
(

1
ρ∗

+ 1
ρL

)

(ρ∗ − ρL)

]

ρL − ρ∗
= uL − ρ∗

√
(

1

ρ∗
+

1

ρL

)

. (A.18)

Thus, the entropy condition (A.11) yields:

uL −
√

2ρL > uL − ρ∗

√
(

1

ρ∗
+

1

ρL

)

,

or

ρ∗ > ρL. (A.19)

For the right shock wave, in the similar way of computations in the case of left shock,

we obtain:

S2 = uR + ρ∗

√
(

1

ρ∗
+

1

ρR

)

, (A.20)

u∗ = uR −
√
(

1

ρ∗
+

1

ρR

)

(ρR − ρ∗) , (A.21)

ρ∗ > ρR . (A.22)

We now turn to the rarefaction wave. Using Equation (A.9) and(A.10) gives the

Generalized Riemann Invariants for left and right states:

Left rarefaction: uL + 2aL = u∗ + 2a∗ ⇔ u∗ = uL + 2
√
2(
√
ρL −√

ρ∗). (A.23)

Right rarefaction: uR − 2aR = u∗ − 2a∗ ⇔ u∗ = uR − 2
√
2(
√
ρR −√

ρ∗). (A.24)

Let us summary the crucial results from researching four types of waves which are

able to appear in our problem:
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• Left shock:

u∗ = uL −
√
(

1

ρ∗
+

1

ρL

)

(ρ∗ − ρL), (A.25)

ρ∗ > ρL, u∗ < uL. (A.26)

• Right shock:

u∗ = uR +

√
(

1

ρ∗
+

1

ρR

)

(ρ∗ − ρR), (A.27)

ρ∗ > ρR, u∗ > uR. (A.28)

• Left rarefaction:

u∗ = uL − 2
√
2(
√
ρ∗ −

√
ρL), (A.29)

ρ∗ < ρL, u∗ > uL. (A.30)

• Right rarefaction:

u∗ = uR + 2
√
2(
√
ρ∗ −

√
ρR), (A.31)

ρ∗ < ρR, u∗ < uR. (A.32)

The solution for the densityρ∗ in the Star Region is given by the root of the algebraic

equation:

f(ρ) := fL(ρ) + fR(ρ) + (uR − uL) = 0, (A.33)

whereK = L, R and

fK(ρ) =







√
(

1
ρK

+ 1
ρ

)

(ρ− ρK) if ρ > ρK (shock),

2
√
2(
√
ρ−√

ρK) if ρ < ρK (rarefaction).
(A.34)

Once we obtain the densityρ∗, the solution for velocityu∗ in the Star Region is given by:

u∗ =
1

2

[
uL + uR + fR(ρ∗)− fL(ρ∗)

]
. (A.35)
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The numerical solution for Equation (A.33) is found by Newton-Raphson method:

ρk = ρk−1 −
f(ρk−1)

f ′(ρk−1)
, (A.36)

where

f ′
K(ρ) =







1
2ρ

+ ρK
2ρ2

+ 1
ρK

√
1
ρK

+ 1
ρ

if ρ > ρK (shock),

√
2
ρ

if ρ < ρK (rarefaction).

(A.37)

The iteration procedure is stopped whenever the relative pressure change is less than a

prescribed tolerance, for instance,TOL = 10−6:

2
|ρk − ρk−1|
ρk + ρk−1

< TOL. (A.38)

The solution inside the left rarefaction wave is sought by solving:

u− a =
x

t
, (A.39)

u+ 2a = uL + 2aL . (A.40)

Through simple algebraic manipulations, we attain:

u =
1

3

(

uL + 2aL + 2
x

t

)

, (A.41)

a =
1

3

(

uL + 2aL − x

t

)

. (A.42)

Using the definition of the sound speeda yields:

ρ =
1

18

(

uL + 2aL − x

t

)2

. (A.43)

In a similar way, we obtain the solution inside the right rarefaction wave:

ρ =
1

18

(

−uR + 2aR +
x

t

)2

, (A.44)

u =
1

3

(

uR − 2aR + 2
x

t

)

. (A.45)

Let us calls = x/t the speed of given particle(x, t) at the final time. We now
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provide a solution sampling procedure to develop a solver tofind the exact solution of

the complete wave structure for the Riemann problem at any point (x, t). Equations

(A.7), (A.18) and (A.20) give velocities of shock and rarefaction waves:

(v1; v
∗
1) =







(uL − aL; u∗ − a∗) if ρ∗ < ρL (left rarefaction),

uL − ρ∗

√
(

1
ρL

+ 1
ρ∗

)

if ρ∗ > ρL (left shock).
(A.46)

(v2; v
∗
2) =







(uR + aR; u∗ + a∗) if ρ∗ < ρR (right rarefaction),

uR + ρ∗

√
(

1
ρR

+ 1
ρ∗

)

if ρ∗ > ρR (right shock).
(A.47)

Finally, the complete solution for the shallow water equations in case of non-vacuum

reads, withW = (ρ, u, p):

W (x, t) =







WL if s ≤ v1,

WLfan if v1 < s ≤ v∗1 ,

W∗ if v∗1 < s < v∗2 ,

WRfan if v∗2 ≤ s < v2,

WR if v2 ≤ s.

(A.48)

whereρLfan, uLfan, ρRfan anduRfan are given by (A.43), (A.41), (A.43) and (A.45) and

the pressure is obtained by the equation of state A.1c.

A.2 Vacuum case

In a vacuum region characterised by the conditionρ = 0, a shock wave can not appear.

This property can be obtained easily by observing the entropy condition. Therefore,

we only consider the case of a two-rarefaction wave. Application of the Generalised

Riemann Invariant to connect points on left and right statesto a point along the contact

gives:

v1∗ = uL + 2
√

2ρL, (A.49)

v2∗ = uR − 2
√

2ρR. (A.50)
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So, we obtain the complete solution for the shallow water equations in the presence of

vacuum withW0 = (0, u0, 0):

W (x, t) =







WL if s ≤ v1,

WLfan if v1 < s ≤ v∗1 ,

W0 if v∗1 < s < v∗2 ,

WRfan if v∗2 ≤ s < v2,

WR if v2 ≤ s.

(A.51)

whereu0 is given by Equation A.35.
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Appendix B

Playing with Burgers’ equation

B.1 Introduction

Computer codes developed for the simulation of inviscid andnon heat-conducting com-

pressible flows are in general based on the conservative formof the Euler equations,

which read in the one-dimensional case:

∂tρ+ ∂x(ρu) = 0, (B.1a)

∂t(ρu) + ∂x(ρu
2) + ∂xp = 0, (B.1b)

∂tE + ∂x
(
(E + p)u

)
= 0, (B.1c)

wheret stands for the time,ρ, u andp are the density, velocity and pressure in the flow,

andE stands for the total energy,E = ρu2/2 + ρe, with e the internal energy. This

system must be complemented by an equation of state, giving for instance the pressure

as a function of the density and the internal energyp = ℘(ρ, e).

For physical reasons, the density and internal energy must be non-negative (in usual

applications, positive). In addition, for the continuous problem as well as, at the dis-

crete level, for a wide range of schemes (the so-called conservative schemes), the non-

negativity of these variables allows a (weak) control on thesolution; assuming thatρ

andE are known on the parts of the boundary where the flow is entering the compu-

tational domain, Equations (B.1a) and (B.1c) indeed yield an L∞(0, T ; L1(Ω))-estimate

(with Ω × (0, T ) the space-time domain of computation) for the density and the total

energy respectively. The positivity of the density at the discrete level is easily obtained
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from a convenient discretization of (B.1a). The positivityof the internal energy does not

seem easily obtained other than by replacing Equation (B.1c) by a balance equation for

the internal energy in the discrete problem; this balance equation is formally derived (i.e.

supposing that the solution is regular) from (B.1b) and (B.1c) and reads:

∂t(ρe) + ∂x(ρeu) + p∂xu = 0. (B.2)

In this relation, the discrete convection operator may be built so as to respect the positivity

of e: provided that the equation of state is such that for any value of ρ, p vanishes for

e = 0, testing the discrete counterpart of (B.2) by the negative part ofe provese ≥ 0 (see

[42] for the initial chapter, [16, Appendix B] for another proof suitable in this context,

and [29] in the framework of the compressible Navier-Stokesequations).

Instead of Equation (B.1c), one may also prefer to use a conservation equation for

the physical entropys, because this equation (derived for regular solutions) is asimple

transport equation:
∂t(ρs) + ∂x(ρsu) = 0. (B.3)

Let us then consider that, for computational efficiency or robustness reasons, (B.2) or

(B.3) are preferred to (B.1c). Since both (B.2) and (B.3) arederived from (B.1c) assuming

a regular solution, there is no reason for their discretization to yield the correct weak

solutions in the presence of shocks. Nevertheless, we may reasonably expect to recover

the correct shock solutions if we use the following strategy:

(i) regularize the problem by adding a small diffusion term,

(ii) derive the counterpart of (B.2) or (B.3) taking into account the diffusion terms,

(iii) solve these equations,

(iv) let ǫ tend to zero.

Of course, step(iii) is performed numerically, and convergence is monitored by the

space and time discretization stepsh andk; the question which arises is then to find a

convenient way to letǫ and the numerical parametersh andk tend to zero. The aim of

this chapter is to perform numerical experiments in order toinvestigate this issue on a

toy problem, namely the inviscid Burgers equation. Note that we only consider explicit

schemes in this study.
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B.2 The equations and the numerical schemes

The inviscid Burgers equation reads:

∂tu+ ∂x(u
2) = 0, for x ∈ R, t ∈ (0, T ), (B.4)

which we complement with the initial condition:

u(x, 0) = u0(x), for x ∈ R. (B.5)

Following the above mentioned strategy (items (i)-(iv)), we first add to (B.4) a viscous

term, to obtain:∂tu + ∂x(u
2) − ǫ∂xxu = 0. Now, multiplying this relation by2u yields

the following perturbed equation:

∂tu
2 +

4

3
∂xu

3 − 2uǫ∂xxu = 0. (B.6)

For ε = 0, we get the following “Burgers square entropy” equation:

∂tu
2 +

4

3
∂xu

3 = 0. (B.7)

which also reads, settingv = u2:

∂tv +
4

3
∂x(v

3
2 ) = 0. (B.8)

We consider the following initial data, chosen such that theentropy solution of (B.4)-

(B.5) contains a discontinuity:

u0(x) =







10, x ≤ −0.25

1, x > −0.25
. (B.9)

It is well known that for such an initial condition, the entropy weak solutions of equations

(B.4) and (B.7) differ. Let us then turn to their numerical approximations. Since the

chosen initial data (B.9) is positive, the celebrated Godunov scheme reduces for both

equations to the classical upwind scheme, thanks to the factthat the upwind scheme

preserves (for these equations) the sign of the solution; itis well known that it leads to

an approximate solution which converges, under a so called CFL condition, to the exact
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solution as the discretization parameters go to zero [13] (note that this is not the case for

the centred finite volume scheme, although it is conservative). For the sake of simplicity,

we consider constant time and space stepsh andk. For i ∈ Z, we setxi = ih and for

n ∈ {0, . . . ,M}, with (M − 1)k < T ≤ Mk, we settn = nk. The discrete unknowns

are the real numbersu(n)i , with i ∈ Z andn ∈ {0, . . . ,M}. The valuesu(0)i are obtained

with the initial condition:

u
(0)
i =

1

h

∫ xi+
h
2

xi−
h
2

u0(x)dx. (B.10)

Since the discrete solution is positive, the upwind scheme for Equation (B.4) reads:

u
(n)
i = u

(n−1)
i +

k

h

[(
u
(n−1)
i−1

)2 −
(
u
(n−1)
i

)2
]

. (B.11)

For this particular problem and scheme, the maximum value for the solution is reached

at the initial time step so that the CFL number is the numberG such that:

k = G
h

max{2s, s ∈ [1, 10]} = G
h

20
. (B.12)

Similarly, the upwind scheme for Equation (B.8) reads:

v
(n)
i = v

(n−1)
i +

4k

3h

[(
v
(n−1)
i−1

) 3
2 −

(
v
(n−1)
i

) 3
2

]

, (B.13)

and the CFL number is the same numberG. The numerical solutions obtained with (B.11)

for the Burgers equation (B.4) and with (B.13) for the Burgers square entropy equation

(B.7) are depicted in Figure B.1. Both are obtained with CFL equal to1, for T = 1/20

and with various values ofN , starting fromN = 200 and multiplying successively by

two the number of cells up toN = 1600. As expected, the upwind scheme (B.13) yields

a numerical solution which converges (as the discretization parameters go to zero and

under a CFL condition) to a weak solution of (B.7) (and even toits entropy solution),

which is not a weak solution of (B.4), since the Rankine-Hugoniot conditions differ. At

timeT = 1/20, the shock for the solution of (B.4) is located atx = 0.3, while the shock

of the solution of (B.7) is located atx > 0.4.

Remark B.2.1 (Link with a non-conservative diffusion term). For the Burgers equation

(B.4), upwinding may be seen as adding a diffusion, namely discretizing (sinceu > 0):

∂tu+ ∂x(u
2)− ∂x((hu− 2ku2)∂xu) = 0.
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Figure B.1: Upwind Scheme for (B.4)-(B.9) (left) and (B.7)-(B.9) (right) with different
mesh sizes,CFL = 1.

Note that one hashu−2ku2 ≥ 0 thanks to the CFL condition. For the Burgers square en-

tropy equation(B.7), upwinding may be seen, formally, as solving the following parabolic

equation (sinceu > 0): ∂tu2+(4/3)∂x(u
3)−∂x((2hu

2−4ku3)∂xu) = 0. This equation

is equivalent to the following parabolic perturbation of the Burgers equation:

∂tu+ ∂x(u
2)− 1

u
∂x((hu

2 − 2ku3)∂xu) = 0.

The third term at the left-hand side may be seen as a numericaldiffusion (thanks to the

CFL condition) which is not in a conservative form, because of the factor1/u. The

above numerical results show that such a non conservative diffusion may lead to wrong

discontinuities.

B.3 Numerical solution of the perturbed equation

We then discretize the perturbed equation (B.6) withǫ = ǫ0h
α, whereǫ0 > 0 andα > 0

are fixed. Note that, settingv = u2, (B.6) can also be recast as:

∂tv +
4

3
∂x(v

3
2 )− v

1
2 ǫ0h

α∂x(v
− 1

2∂xv) = 0,

that is a nonlinear hyperbolic equation augmented with a nonlinear nonconservative dif-

fusion term. The upwind finite volume discretization of thisequation reads (in theu
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variable), withu(0)i given by (B.10),

(
u
(n)
i

)2
=
(
u
(n−1)
i

)2
+

4k

3h

[(
u
(n−1)
i−1

)3 −
(
u
(n−1)
i

)3
]

+
k

h2
ǫ0h

α u
(n−1)
i

[

u
(n−1)
i−1 − 2u

(n−1)
i + u

(n−1)
i+1

]

. (B.14)

We present in Figures B.2, B.3 and B.4 the numerical solutions obtained with (B.14)

for α = 0.5, α = 1 andα = 2 respectively, and for the same timeT = 1/20, CFL=0.1

and meshes as in Section B.2. The parameterǫ0 is such thatǫ0hα = 0.2 for N = 200

(whateverα may be). Figure B.2 shows that for0 < α < 1, the sequence of approximate

solutions given by (B.14) converges to a weak solution of theinitial Burgers equation

(B.4), ash andk tend to 0, under a stability condition, which, sinceα < 1, becomes

more stringent than a CFL condition whenh tends to zero. Figure B.3 shows that for

α > 1, we obtain the convergence to the solution of (B.7); figure B.4 shows that for

α = 1, the location of the discontinuity lies in between the discontinuities of the solution

to (B.6) and (B.7). These results seem to indicate that the convergence to the solution of

(B.7) (resp. (B.6)) occurs when the added diffusion dominates (resp. is dominated by)

the numerical one.

Let us finally study the following finite volume centred scheme for Equation (B.7),

which reads:

(
u
(n)
i

)2
=
(
u
(n−1)
i

)2
+

4k

3h

[(u
(n−1)
i−1 + u

(n−1)
i

2

)3 −
(u

(n−1)
i + u

(n−1)
i+1

2

)3
]

+
k

h2
ǫ0h

α u
(n−1)
i

[

u
(n−1)
i−1 − 2u

(n−1)
i + u

(n−1)
i+1

]

. (B.15)

Results forα = 1, α = 1.5 andα = 2 (and ǫ0 such thatǫ0hα = 0.2 for N = 200,

whateverαmay be) are reported on Figures B.5, B.6 and B.7, respectively. The numerical

solution now seems to converge to the solution of (B.7), at least forα ∈ (0, 2). For the

finest mesh andα = 2, the diffusion is no longer sufficient to prevent some spurious

oscillations near the shock. Last but not least, the additional diffusion which is necessary

to recover the right shock location is considerably reducedwith respect to the upwind

scheme (even if the scheme still appears more diffusive thanthe standard upwind scheme

applied to (B.4)), which is encouraging in view of practicalextensions to Euler equations.

ConclusionWe tested two discretizations for the modified equation (B.6):
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Figure B.2: Upwind Scheme for (B.6) with non conservative diffusion term,α = 0.5.

– an upwind scheme for which the solution converges to the weak solution of (B.4)

if the viscous term is predominant with respect to the numerical diffusion, that is if

ǫ = ǫ0h
α, with ǫ0 > 0 andα ∈ (0, 1).

– a centred scheme which yields correct solutions for all valuesα ∈ (0, 2).

The extension of this work to Euler equations is under way, and results are encourag-

ing. Indeed, it seems that we are able to build convergent schemes, even in the presence

of shocks, using either the entropy or internal energy balance. A next step might be to

use a nonlinear viscosity to avoid an excessive smearing of the solutions, following the

ideas developed in [22].
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Figure B.3: Upwind Scheme for (B.6) with non conservative diffusion term,α = 1.

Figure B.4: Upwind Scheme for (B.6) with non conservative diffusion term,α = 2.
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Figure B.5: Centered Scheme for (B.6) with non conservativediffusion term,α = 1.

Figure B.6: Centered Scheme for (B.6) with non conservativediffusion term,α = 1.5.

Explicit Staggered Schemes for Compressible Flows 186



NGUYEN Tan-Trung

Figure B.7: Centered Scheme for (B.6) with non conservativediffusion term,α = 2.
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Esaim Proc., 2012.

[29] R. Herbin, W. Kheriji, and J.-C. Latché. An unconditionally stable pressure correc-
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[65] D. Vidović, A. Segal, and P. Wesseling. A superlinearly convergent Mach-uniform

finite volume method for the Euler equations on staggered unstructured grids.Jour-

nal of Computational Physics, 217:277–294, 2006.

[66] C. Wall, C.D. Pierce, and P. Moin. A semi-implicit method for resolution of acoustic

waves in low Mach number flows.Journal of Computational Physics, 181:545–563,

2002.

[67] I. Wenneker, A. Segal, and P. Wesseling. A Mach-uniformunstructured staggered

grid method. International Journal for Numerical Methods in Fluids, 40:1209–

1235, 2002.

[68] P. Wesseling. Principles of computational fluid dynamics. volume 29 ofSpringer

Series in Computational Mathematics. Springer, 2001.
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Explicit staggered schemes for compressible flows

Abstract – We develop and analyse explicit-in-time schemes for the computation of compressible

flows, based on staggered in space unstructured discretization. Upwinding is performed equation

by equation only with respect to the velocity (like in the AUSM family of schemes). The pressure

gradient is built as the transpose of the natural divergence, which yields a centered discretization

of this term.

In a first time, we address the barotropic Euler equations. The velocity convection term is built in

such a way that we are able to derive a discrete kinetic energybalance, with (at the left-hand side)

residual terms which are non-negative under a CFL condition. We then show that, in one space

dimension, the scheme is consistent in the sense that, if a sequence of discrete solutions converges

to some limit, then this limit is a weak entropy solution to the continuous problem. Numerical

tests allow to check the convergence of the scheme, and show in addition an approximatively

first-order convergence rate.

We then turn to the full (i.e. non-barotropic) Euler equations. We chose here to solve theinternal

energy balance instead of the total energy equation, which presents two advantages: first, we

don’t need a discretization of this latter quantity, which is rather unnatural since the velocity and

the scalar unknowns are not approximated on the same mesh; second, anad hocdiscretization

of the internal energy balance ensures its positivity. We show that, under CFL-like conditions,

the density and internal energy are kept positive, and the total (i.e. integrated over the whole

computational domain) energy cannot grow. The difficult point is to obtain consistency. Indeed,

a scheme using the internal energy equation may not convergeto a weak solution of the original

system in the presence of shocks. This problem is healed by the following strategy:

1. Establish a kinetic energy identity at the discrete level(with some source terms).

2. Choose source term of the internal energy equation such that the total energy balance is

recovered when the mesh and time steps tend to zero.

More precisely speaking, we prove the following theoretical result. In 1D, if we assume theL∞

and BV-stability and the convergence of the scheme, passingto the limit of the discrete kinetic

and discrete elastic potential equations, we show that the limit of the sequence of solutions indeed

is a weak solution. This result is supported by numerical tests.

Finally, we consider the computation of radial flows, governed by Euler equations in axisymetrical

(2D) or spherical (3D) coordinates, and obtain similar results to the previous sections.
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Sch́emas nuḿeriques explicites pour le calcul d’́ecoulements compressibles

Résuḿe – On étudie des schémas de type explicite en temps sur maillage décalé non structuré

pour l’approximation des écoulements compressibles. Pour chacune des équations considérées,

séparément, un décentrement amont est effectué sur la vitesse matérielle. L’opérateur de gradient

de pression discret est défini comme la transposée de l’op´erateur de divergence discrète, et c’est

donc un opérateur centré.

Dans un premier temps, on s’intéresse aux équations d’Euler barotrope. Le terme de convection

non linéaire en vitesse est construit de manière à ce que les solution approchées satisfassent,

sous condition de CFL, un bilan d’énergie cinétique discret (avec, au premier membre, un terme

résiduel positif). On montre ensuite qu’en une dimension d’espace (1D), le schéma est consistant,

au sens où si les solutions approchées convergent vers unelimite lorsque les pas de temps et

maillage tendent vers 0, alors cette limite est solution faible entropique du problème continu. Des

tests numériques permettent de vérifier la convergence duschéma, avec un ordre proche de un.

Dans un deuxième temps, on traite les équations d’Euler complètes. Plutôt que de résoudre

l’équation d’énergie totale, choix traditionnel des schémas colocalisés, on préfère résoudre l’équa-

tion d’énergie interne, ce qui présente deux avantages : d’une part, on évite d’avoir à discrétiser

l’énergie totale, qui fait intervenir l’énergie interneet la pression, variables qui ne sont pas définies

sur le même maillage ; d’autre part, une discrétisationad hocde l’énergie interne assure la pos-

itivité de cette dernière sous condition de CFL. Cependant, l’utilisation de l’équation d’énergie

interne nécessite des précautions : le fait de ne pas travailler sur l’énergie totale peut en effet

faire apparaı̂tre des solutions approchées qui ne tendentpas vers une solution faible des équations

d’Euler, et qui en particulier, ne vérifient pas les relations de Rankine et Hugoniot et font ap-

paraı̂tre des mauvaises vitesses de choc. Le remède est de s’assurer que le bilan d’énergie total

soit bien assuré à la limite, en écrivant ce bilan comme lasomme du bilan d’énergie interne et du

bilan d’énergie cinétique, et en introduisant dans l’équation d’énergie interne discrète un terme de

correction qui compense le terme résiduel (positif) du bilan d’énergie cinétique décrit plus haut,

et qui ne tend pas vers 0. Dans ce cas encore, on montre que dansle cas 1D, si les solutions

approchées convergent, alors elles convergent vers une solution faible des équations d’Euler. Les

résultats numériques corroborent la théorie.

Enfin, dans une troisième partie, pour des écoulements radiaux uniquement, on discrétise des

équations d’Euler en coordonnées cylindriques (2D) ou sphériques (3D); les résultats obtenus

sont similaires aux précédents.
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