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Chapter 1

General synthesis

1.1 Introduction

The objective pursued in this work is to develop and studynfia theoretical point of
view, an explicit scheme for the simulation of non viscousipeessible flows, modelled
either by the barotropic Euler equations or by the full Ewguations for an ideal gas.
Our basic choice is to use an explicit variant of implicit asni-implicit schemes that
were developed and studied recently in the framework of ithelation of compressible
flows at all speeds [17, 209, 26,/27]; in these latter worksjriq@icit scheme is studied
as a first step in the mathematical analysis of pressureatmmeschemes, which extend
algorithms that are classical in the incompressible fraotkwthese are based omf-
supstable) staggered discretizations. In our approach, thenaing techniques which
are implemented for stability reasons are performed fdn egaiation separately and with
respect to the material velocity only. This is in contradictwith the most common strat-
egy adopted for hyperbolic systems, where upwinding ig bwiin the wave structure of
the system (see.g.[61, 6] for surveys). However, it yields algorithms whiclearsed
in practice (see.g.the so-called AUSM family of schemes [45,/44]), because eirth
generality (a closed-form solution of Riemann problemsosmeeded), their implemen-
tation simplicity and their efficiency, thanks to an easystanction of the fluxes at the
cell faces. But these schemes are scarcely studied fronoeetiwal point of view; one
of our main concerns here will thus be to bring, as far as pésdheoretical arguments
supporting our numerical developments.

We give in this chapter a review of the results obtained ferdkplicit version of the
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schemes in the case of the (inviscid) Euler equations, dadtee[28] for a review of the
results of the implicit and semi—implicit versions, to [Z5]] for the detailed proofs of
the results, and to [18] for the implementation of the presswrrection scheme in the
case of a drift-diffusion model for two phase flows.

The chapter is organized as follows. We start by the desonipif the staggered
meshes which are used for the discretization in space, egingr a finite volume — non-
conforming finite element or a full “MAC-type” finite volume&keme. We then study the
scheme for the barotropic Euler equations in Sedtioh 1r3h#e full Euler equations in
Sectiori 1.4, and for the radial compressible flows in Seéi8n Finaly, some numerical
results are given in Sectidn 1.6 to confort theoreticallltesu

1.2 Meshes and unknowns

Let M be a decomposition of the domdiy supposed to be regular in the usual sense of
the finite element literature(g.[10]). The cells may be:

- for a general domaif, either convex quadrilaterald & 2) or hexahedrad = 3)
or simplices, both type of cells being possibly combined same mesh,

- for a domain the boundaries of which are hyperplanes notorelcoordinate axis,
rectanglesd = 2) or rectangular parallelepipeds & 3) (the faces of which, of
course, are then also necessarily normal to a coordinag® axi

By £ and&(K') we denote the set of gl — 1)-faceso of the mesh and of the element
K € M respectively. The set of faces included in the boundary &f denoted by,
and the set of internal oneisg. £\ £.;) is denoted by;,; a faceo € &, separating the
cells K and L is denoted byy = K|L. The outward normal vector to a faeeof K is
denoted byh . ,. For K € M ando € £, we denote byK | the measure ok and by|o|
the (d — 1)-measure of the face. Forl < i < d, we denote by c £ and&, c &,
the subset of the faces 6fand&.,, respectively which are perpendicular to teunit
vector of the canonical basis Bf'.

The space discretization is staggered, using either thkévt&nd Cell (MAC) scheme
[25,24], or nonconforming low-order finite element approgations, namely the Ran-
nacher and Turek element (RT) [57] for quadrilateral or hexic meshes, or the lowest
degree Crouzeix-Raviart (CR) element|[11] for simpliciashes.

Explicit Staggered Schemes for Compressible Flows 2



NGUYEN Tan-Trung

For all these space discretizations, the degrees of freéalaime pressure, the density

and the internal energy.€. the discrete pressure, density and internal energy unksjown
are associated to the cells of the megh and are denoted by:

{pK7 PK; €K, KGM}

Let us then turn to the degrees of freedom for the velogis: the discrete velocity
unknowns).

Rannacher-Turek or Crouzeix-Raviart discretizations — The degrees of freedom
for the velocity components are located at the center of dlced of the mesh,
and we choose the version of the element where they repriseaterage of the
velocity through a face. The set of degrees of freedom reads:

{up;, 0 €&, 1<i<d}.

MAC discretization — The degrees of freedom for tfiecomponent of the velocity
are defined at the centre of the faces £, so the whole set of discrete velocity
unknowns reads:

{ua,i, ce&W 1<i< d}.

We now introduce a dual mesh, which will be used for the findkimne approximation

of the time derivative and convection terms in the momentafarice equation.

Rannacher-Turek or Crouzeix-Raviart discretizations — For the RT or CR dis-
cretizations, the dual mesh is the same for all the veloaymonents. When
K € M is a simplex, a rectangle or a cuboid, tore £(K), we defineDy , as
the cone with basis and with vertex the mass center &f (see Figuré 1]1). We
thus obtain a partition ofC in m sub-volumes, where: is the number of faces of
the mesh, each sub-volume having the same me@burg| = |K|/m. We extend
this definition to general quadrangles and hexahedra, byosipg that we have
built a partition still of equal-volume sub-cells, and witie same connectivities;
note that this is of course always possible, but that suchum@D k. , may be no
longer a cone; indeed, K is far from a parallelogram, it may not be possible to
build a cone having as basis, the opposite vertex lyingihand a volume equal
to | K|/m. The volumeDy , is referred to as the half-diamond cell associated to

Explicit Staggered Schemes for Compressible Flows 3
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Figure 1.1: Primal and dual meshes for the Rannacher-TurélCaouzeix-Raviart ele-
ments.

K ando.

Foro € &, 0 = K|L, we now define the diamond cell, associated te by
D, = Dk, U Dy, for an external face € . N E(K), D, is just the same
volume asDy .

- MAC discretization — For the MAC scheme, the dual mesh dependiseooom-
ponent of the velocity. For each component, the MAC dual noedy differs from
the RT or CR dual mesh by the choice of the half-diamond cdilicky for K € M
ando € £(K), is now the rectangle or rectangular parallelepiped ofdasind of
measureDy .| = | K|/2.

We denote by D,| the measure of the dual cdll,, and bye = D, |D,. the face
separating two diamond cell3, andD,..

Finally, we need to deal with the impermeabilitye(« - n = 0) boundary condition.
Since the velocity unknowns lie on the boundary (and notimshe cells), these condi-
tions are taken into account in the definition of the discspices. To avoid technicalities
in the expression of the schemes, we suppose throughouhé#sis that the boundary is
a.e.normal to a coordinate axis, (even in the case of the RT or G&telizations), which

Explicit Staggered Schemes for Compressible Flows 4



NGUYEN Tan-Trung

allows to simply set to zero the corresponding velocity wowns:

fori=1,...,d, Vo €Y,  u,;=0. (1.1)
Therefore, there are no degrees of freedom for the velooithe boundary for the MAC
scheme, and there are only- 1 degrees of freedom on each boundary face for the CR
and RT discretizations, which depend on the orientatioh@face. In order to be able to
write a unique expression of the discrete equations for MAKC and CR/RT schemes,

we introduce the set of facé‘éi) associated to the degrees of freedom of each component
of the velocity € stands for “scheme”):

EO\EG
g \ g(l)

ext

for the MAC scheme
for the CR or RT scheme.

&Y =

Similarly, we unify the notation for the set of dual faces lbmth schemes by defining:

20168
E\EY

ext

for the MAC scheme
for the CR or RT scheme,

£

where the symboalrefers to the dual mesh; for instanéé’) is thus the set of faces of the
dual mesh associated to tié component of the velocity, ar‘é& stands for the subset
of these dual faces included in the boundary. Note thatfemMAC scheme, the faces
of £ are perpendicular to a unit vector of the canonical basR“obut not necessarily
to thei'" one.

Note that general domains can easily be addressed (of ¢comitbethe CR or RT
discretizations) by redefining, through linear combinagidhe degrees of freedom at the
external faces, so as to introduce the normal velocity asvedegree of freedom.

Explicit Staggered Schemes for Compressible Flows 5
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1.3 The compressible barotropic Euler equations

We address in this section the so-called barotropic Euleatons, which consist in the
following system of partial differential equations:

Oy p+div(pu) =0, (1.2a)
O (pu) +divipu @ u) + Vp =0, (1.2b)
p=p(p)=p". (1.2¢c)

This problem is posed over an open bounded connected sQbsfeR?, 1 < d < 3,
of boundaryof?, and a finite time interval0, 7"). The variablet stands for the timey,

u = (uq,...,uq) andp are the density, velocity and pressure in the flow. The thbesa
equations are respectively the mass balance, the momerdlamcke and the equation
of state of the fluid, which is supposed to take the fgsfa) = s7, wherey > 1lis a
coefficient which is specific to the fluid considered. Thistegsmust be supplemented
by initial conditions forp andw, denoted by, andu,, and we assumg, > 0. It must
also be supplemented by a suitable boundary condition iwkésuppose to be:

u-n =70,
at any time ané.e.on 052, wheren stands for the normal vector to the boundary.

Let us denote by, the kinetic energyF, = % |lu|?. Taking the inner product of
(1.20) byu yields, after formal compositions of partial derivativeslaising [(1.2a):

O(pEx) +div(p Eyu) + Vp - u = 0. (1.3)

This relation is referred to as the kinetic energy balance.

Let us now define the functioR, from (0, +o00) to R, as a primitive of +— o(s)/s?;
this quantity is often called the elastic potential. #€be the function defined b}t (s) =
sP(s), Vs € (0,400), which, for the specific equation of state used here, yields:

s7

if v > 1,
H(s)=sP(s) =471 (1.4)
sln(s) if vy=1.

Explicit Staggered Schemes for Compressible Flows 6
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Sinceyp is an increasing functior{ is convex. In addition, it may easily be checked that
pH'(p) —H(p) = p(p). Therefore, by a formal computation, detailed for instand26,

Appendix], multiplying [1.2h) byH'(p) yields:

O (H(p)) + div(H(p) u) + pdiv(u) = 0. (1.5)

Let us denote bys the quantityS = pE) + H(p). Summing[(1.B) and(1.5), we get:
S + div((S+p)u) = 0. (1.6)

In fact, to avoid invoking unrealistic regularity assungpis, such a computation should
be done on the regularized equations (obtained by addifigsthh perturbation terms),
and, when making these regularization terms tend to zeitiy® measures appear at
the left-hand-side of (116), so that we get in the distribbigense:

S+ div((S+p)u) <O0. (1.7)

The quantityS is an entropy of the system, and an entropy solutiori td (k2hus
required to satisfy:

Vo € C2(Qx [0,T)), ¢ >0,

/ / ~80p — (S+p)u- V) dwdt—/&ﬂp )de <0, (1.8)

with Sy = £ poluoe|® + H(po). Then, since the normal velocity is prescribed to zero at the
boundary, integratindg (1.7) ovéryields:

d 1
p 9[5 plul® + H(p)] dz < 0. (1.9)

Sincep > 0 by (1.2&) (and the associated initial and boundary condi)iand the func-
tion s — H(s) is bounded by below and increasing at leastsftarge enough, Inequality
(1.9) provides an estimate on the solution.

The purpose of this section is to build an explicit schemeternumerical solution
of System[(1.2), and prove the following results:

- a discrete kinetic energy balandes(a discrete analogue df (1.3)) is established

Explicit Staggered Schemes for Compressible Flows 7
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on dual cells, while a discrete potential elastic balaneed discrete analogue of
(@1.5)) is established on primal cells.

Note however that, because of residual terms appearing ipdtential elastic bal-
ance, contrary to what is obtained for implicit and semidicipvariants of the
present scheme [15, 26], these equations do not seem totlygektability of the
schemei(e. a discrete global entropy conservation analogue to Equ{ii®)), at
least without supposing drastic limitations of the timepste

- In one space dimension, the limit of any convergent sequefcolutions to the
scheme is shown to be a weak solution to the continuous pmkdad thus to
satisfy the Rankine-Hugoniot conditions.

- Finally, passing to the limit in the discrete kinetic eneemnd elastic potential bal-
ances, such a limitis also shown to satisfy the entropy iaktyy1.8), see Theorem
[1.3.6 below.

1.3.1 The scheme

Let us consider a partitioh = ¢, < t; < ... < ty = T of the time interval(0, T'),
which we suppose uniform for the sake of simplicity, anddlet= t,,.; — ¢, for n =
0,1,...,N — 1 be the (constant) time step. We consider an explicit-iretsuheme,
which reads in its fully discrete form, for<n < N — 1:

Kl wir w .
VKEeM, (i —pi)+ D Fr, =0, (1.10a)
ceé(K)
VE e M, pit = plpr™) = (o), (1.10b)

Forl <i<d, Vo e &Y,

| D |

STttt = phun )+ Y Fpal o+ Dl (Ve)t =0,

eeé(Dg)
(1.10¢)

where the terms introduced for each discrete equation direedehereatfter.

Equation[(1.10a) is obtained by the discretization of thesymlance equatiopn (112a)
over the primal mesh, anﬂ”};f;l stands for the mass flux acrossoutward &', which,

Explicit Staggered Schemes for Compressible Flows 8
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because of the impermeability condition, vanishes on eatdaces and is given on the
internal faces by:
Vo = K|L € gint7 Ffré,a = |U| P? u?(,a? (111)

whereuy , is an approximation of the normal velocity to the faceutward K. This
latter quantity is defined by:

ul; e” - ng, foro € €Y in the MAC case,
Uf , = (1.12)
u, - Nk, in the CR and RT cases,

wheree® denotes theé-th vector of the orthonormal basis Bf'. The density at the face
o = K|L is approximated by the upwind technique:

pk  fug, >0,
Py = (1.13)
ol otherwise

We now turn to the discrete momentum balarice (1.10c), wihkidbtained by dis-
cretizing the momentum balance equation (IL.2b) on the dallsl @ssociated to the faces
of the mesh. For the discretization of the time derivative,must provide a definition
for the valueg?},™ andp?, , which approximate the density on the facat timet"*! and
t" respectively. They are given by the following weighted ager.

foro = K|L € &y, for k =nandk =n + 1, |D,| o5, = | Dol pic + |Dro| pf.

(1.14)
Let us then turn to the discretization of the convection tefire first task is to define the
discrete mass flux through the dual faceutwardD,,, denoted by ; the guideline for
its construction is that a finite volume discretization of tihhass balance equation over
the diamond cells, of the form

Do

Vo € &, 57

(op = pp )+ Y. Fr. =0, (1.15)
GES(DU)

must hold in order to be able to derive a discrete kineticgynbalance (see Sectibn 1.3.2
below). For the MAC scheme, the flux on a dual face which istlettan two primal faces
is the mean value of the sum of fluxes on the two primal face$tlamaflux of a dual face

Explicit Staggered Schemes for Compressible Flows 9
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located between two primal faces is again the mean valuesafu of fluxes on the two
primal faces([30]. In the case of the CR and RT schemes, foabfdcee included in the
primal cell K, this flux is computed as a linear combination (with constar&fficients,

i.e. independent of the face and the cell) of the mass fluxes thrthagyfaces ofs, i.e.

the quantltleS{Fﬁf,l)aeg appearing in the discrete mass balamce (1.10a). We refer to
[1],[17] for a detailed constructlon of this approximatioretlus remark that a dual face
lying on the boundary is then also a primal face, and the flunsscthat face is zero.
Therefore, the values;' are only needed at the internal dual faces, and we make the
upwind choice for their discretization:

uy if F'. >0,
fore = D,|D., u", = ’ (1.16)
ul otherwise

The last terr'ﬂ(Vp)’”rl stands for theé-th component of the discrete pressure gradient
at the facer. The gradient operator is built as the transpose of theetisaperator for the
divergence of the velocity, the discretization of which &séd on the primal mesh. Let
us denote the divergence of ! over K € M by (divu)%™; its natural approximation
reads: )

for K e M,  (divu)i! = ] > ol uid. (1.17)
ce€(K)
Consequently, the components of the pressure gradienivee loy:
foro = K|L € &y, (Vp)i it = d

ag,1 ‘ ‘

(i —p ) ng, - e, (1.18)

this expression being derived thanks to the following dyailation with respect to the
L2 inner product:

> K| pit! (divu) "+1+Z > 1D, utt (Vp)rtt = 0. (1.19)

KeM eg()

Note that, because of the impermeability boundary conastithe discrete gradient is not
defined at the external faces.

Finally, the initial approximations fop andw are given by the average of the initial

Explicit Staggered Schemes for Compressible Flows 10
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conditionsp, andu, on the primal and dual cells respectively:

1
VK e M, py = ﬁ/l{po(w) de,
(1.20)

i 1
forl<i<d Voe&y, up=r5-
o Ds

(up(x)); de.

Note that, thanks to the upwind choice in the mass balancatiequ(1.10h), ifo" is
positive in [1.10R), then so j&** under the following CFL condition:

K]

ot < ;
ZO’ES(K) |U| (u?(,a)—’_

(1.21)

where, fora € R, a™ = max(a, 0). Since, by assumptiop, is positive, under Condition
(1.21), the discrete density thus remains positive atraks.

1.3.2 Kinetic energy balance and elastic potential identyt

We begin by deriving a discrete kinetic energy balance eguizas was already done for
the implicit and fractional time step scheme described @}.[2Ve follow the same lines
as in the classical derivation of the kinetic energy balawpeation[(1.8) in the continuous
setting: the discrete kinetic energy balance is obtainesbyiplying the (** component
of the) momentum balance equatidn (1]10c) associated tatee by u;‘jl, summing
over the components and using the mass balance equati@a)iwice.

Lemma 1.3.1(Discrete kinetic energy balance)
A solution to the systeifl.10)satisfies the following equality, far< i < d, o € 5§i)
and0 <n <N —1:

1 \Da|[

n n n n 1 n n n n n
2 5t ij_l(ucr,—l'_l)Q_pDa (ua,i)2:| _'_5 Z Fa,s (us,i>2+‘DU‘ (Vp)cr,—;'_l uo,—;l = —jol,
e€€(Dy)

(1.22)

Explicit Staggered Schemes for Compressible Flows 11
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with:

n 1 |D0| () n n ]' n — n n
Ro‘,—zi'_l = §Wij_1(ua,—:1 - uo‘,i)z + 5 Z (FDJ,E) (uo’,i - uo,i)2
e=Dy|D,1€€(Do

)
— Y (Fp ) (ke — k) (i =), (1.23)

e=Dy|D,/€E(Dy)
where, fora € R, = > 0 is defined by~ = — min(q, 0).

Equation [IT.2R) is a discrete analogue of Equation (1.3} am upwind discretiza-
tion of the convection term. The remainder teRﬁjl is non-negative under the follow-
ing CFL condition:

) n+1
Voe&l,  6t< Dol P, (1.24)
> (R
e€€(Dy)

Similarly, the solution to the schenle (1110) satisfies ardiscversion of the elastic
potential identity[(1.5), which we now state.

Lemma 1.3.2(Discrete potential balancelet H be defined by1.4). A solution to the
systen(1.10)satisfies the following equality, fdt € M and0 <n < N — 1:

K : n n
B ey o]+ S0 101 ML) e 1K (v = B3 (1.25)
ce&(K)
with:
Rn—i—l _ 1@ H” —-n n+l _ n\2 n H” —-n n/ ntl __ n
=g W) (0 = o+ D Lol WY (Bica) o 0k — 0k
cel(K)
1 — —Nn n n
5 >, ol i) H' @) (i — i) (1.26)
o=K|Le&(K)

wherepl |, P, € [[pi ", k], andp? € [p%, p7] for all o € £(K), where, fora, b €

R, we denote bya, b]| the interval|a, b]| = {fa + (1 — )b, 6 € [0, 1]}.

Unfortunately, it does not seem thA&&™* > 0 in any case, and so we are not able
to prove a discrete counterpart of the total entropy eseéniai®), which would yield a
stability estimate for the scheme. However, under a canditdr a time step which is
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only slightly more restrictive than a CFL-condition, andlensome stability assumptions
for the solutions to the scheme, we are able to show thatehiginder term tends to zero
in L1(Q x (0,7)), which allows to conclude, in the 1D case, that a convergemisnce
of solutions satisfies the entropy inequality {1.8): thihesresult stated in Theorém 1.13.6
below.

1.3.3 Passing to the limit in the scheme

The objective of this section is to show, in the one dimeraioase, that if a sequence of
solutions is controlled in suitable norms and convergeslimig this latter necessarily
satisfies a (part of the) weak formulation of the continuawablem.

The 1D version of the scheme which is studied in this sectiag be obtained from
Schemel(1.10) by taking the MAC variant of the scheme, usitigane horizontal stripe
of grid cells, supposing that the vertical component of taleity (the degrees of free-
dom of which are located on the top and bottom boundariesskag, and that the mea-
sure of the vertical faces is equal to 1. For the sake of rebiyabowever, we completely
rewrite this 1D scheme, and, to this purpose, we first intcedcsome adaptations of the
notations to the one dimensional case. For &ny M, we denote byik its length
(so hx = |K]); when we writeK = [o0'], this means that eithek = (z,,z,/) or
K = (x4, 1,); if we need to specify the ordeite. K = (z,, z,/) with z, < z,/, then
we write K = [a_a>’]. For an interfacer = K |L between two celldC and L, we define
hs = (hx + hz)/2, so, by definition of the dual mesh, = |D,|. If we need to specify
the order of the cell$( and L, say K is left of L, then we writeoc = K|L. With these
notations, the explicit schemie_(1110) may be written aovadl in the one dimensional
setting:

1
VK € M, p?{ = ﬁ/%ﬂ()(l’) dl’,
1

(1.27a)
Vo € & 0 d
int;, Uy = |D ‘ Uo(l') X,
H
VK = [o0'] € M,
@( ) FL — F =0 (1.27b)
5t pK Pk o’ o — ¥ .
VK € M, pit = p(pi™) = (0i)7. (1.27c)
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—
VO' = K‘L c 81111:7

| D |
ot

n+1, n+1 n ,n n, n n, n n+1 n+1l __
(PDU Uy~ — PDUUU) + Frluy — Fruy +p; —pr - =0,

(1.27d)

The mass flux in the discrete mass balance equation is gmend &, by F = plu?,
where the upwind approximation for the density at the fagejs defined by[(1.13). In
the momentum balance equation, the application of the proeedescribed in Section
[1.3.1 yields for the density associated to the dual Begllvith o = K|L and for the mass

_>
fluxes at the dual face located at the center of the niésh [00”]:
fork=nandk =n+1, p, = 37D, (K] ok +ILIpL),  F =5+ 5),
i (1.28)
and the approximation of the velocity at this face is upwing: = «? if F}; > 0 and
uj = ul, otherwise.

Definition 1.3.3(Regular sequence of discretizations)
We define a regular sequence of discretizationg™, §t'™),.cn as a sequence of
meshes, time steps and numerical diffusion coefficientshgag:
(i) both the time stept™ and the sizeh(™ of the meshM (™, defined by
h™ = SUpPec vom Pk, tend to zero agn — oo,

(77) there exist® > 0 such that:

o<l
L

, Vm € NandK, L € M sharing a face,

| =

Let such a regular sequence of discretizations be givenp@hdp™ andu™ be
the solution given by the schenie (11.27) with the magH» and the time stept™. To
the discrete unknowns, we associate piecewise constactidna on time intervals and
on primal or dual meshes, so the dengity, the pressurg™ and the velocity,™ are
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NGUYEN Tan-Trung

defined almost everywhere éhx (0,7") by:

p(m) (l’, t) = Z (p(m))?{ XK(x) X(n,n+1} (t)> (129a)
n=0

ul™ (z,8) =Y > (u™)2 X, (x) Ky (1), (1.29b)
=0

where Xy, Xp, and X, . stand for the characteristic function of the intervals D,
and(t", "] respectively.

For discrete functiong andv defined on the primal and dual mesh, respectively, we
define a discret&!((0,7); BV(£2)) norm by:

N N
||Q||T,:c,BV = Z(St Z |C.IZ - q}Ha ||'U||T,x,BV = Z ot Z |U;L, - Ucrrl )
0 n=0

n= o=K|LEEns e=Do|D_1EEms

and a discret&'(Q; BV((0,7'))) norm by:

N-1 N-1
lallremv = Y IKID g =gkl lollresy =D 1Dl D [o3t = vf).
n=0

KeM n=0 el

For the consistency result that we are seeking (Thebred he3ow), we have to assume
that a sequence of discrete solutigps™ , p™), u(™) ~_ satisfies)™ > 0 andp™ >

0, vm € N (which may be a consequence of the fact that the CFL stalaitihdition
(L.21) is satisfied), and is uniformly boundedify ((0,7') x )3, i.e:

0< (pim)n < Cand0 < (p"™)r < C, VK € M™, for0<n < N™, ¥meN,
(1.30)
and:
|(u™)" < C, Voe&™ for0<n<N™ vmecN, (1.31)

whereC' is a positive real number. Note that, by definition of theiahitonditions of the
scheme, these inequalities imply that the functipfise, andw, belong toL.>°(Q2). We
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also have to assume that a sequence of discrete solutiosfeesathe following uniform
bounds with respect to the discrete BV-norms:

||p(m)||T,x,BV + ||u(m)||T,x,BV <C, VmeN (1.32)

and:
[u™ |7 pv < C, Vm € N. (1.33)

We are not able to prove the estimates (11.30)—(1.33) for dhetisns of the scheme;
however, such inequalities are satisfied by the “interpmiétfor instance, by taking the
cell average) of the solution to a Riemann problem, and aservkld in computations (of
course, as far as possibigs. with a limited sequence of meshes and time steps).

A weak solution to the continuous problem satisfies, forany C2°(Q x [0,7)):

T

[ [Jpare+pute]avat - [ mia) o0y do =0, (1.342)
OT Q Q

—/ /[/)ué‘t<p+(pu2+p) (%w} dxdt—/po(x)uO(x) ¢(x,0)dr =0, (1.34b)
0 Q Q

Note that these relations are not sufficient to define a welakiso to the problem, since
they do not imply anything about the boundary conditionsweleer, they allow to derive
the Rankine-Hugoniot conditions; hence if we show that #reysatisfied by the limit of
a sequence of solutions to the discrete problem, this imple®sely speaking, thahe
scheme computes correct sho@ks. shocks where the jumps of the unknowns and of the
fluxes are linked to the shock speed by Rankine-Hugoniotitiond). This is the result
we are seeking and which we now state.

Theorem 1.3.4(Consistency of the one-dimensional explicit scheme,tbapa case)
Let2 be an open bounded interval Bf We suppose that the initial data satisfigse
L>(2) andug € L=(). Let(M™) §t(™), -y be a regular sequence of discretizations
in the sense of Definitidb.3.3 and(p™, p(™, u(™),,.cn be the corresponding sequence
of solutions. We suppose that this sequence satisfies tineatss (1.30)«1.32) and
converges il? (2x(0,7))3,for1 < p < oo, to(p, p, u) € L>(2x(0,7))3. We suppose
in addition that both sequencés™),,cn and (1/p™),,cy are uniformly bounded in
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Lo(Q x (0,T)).
Then the limit(p, p, @) satisfies the syste(@.34)

Main ideas of the proof— It is clear that with the assumed convergence for the seguen
of solutions, the limit satisfies the equation of state. Th@pof this theorem is thus
obtained by passing to the limitin the scheme, first for thesmelance equation and then
for the momentum balance equation. This is performed byideriag a smooth function

© over the domaini?, defining its interpolate . over the cells and its interpolatg over
the edges. Then one first multiplies the discrete mass balageation[(1.27b) by the
valuey of the interpolate of on K, sum over the cells and time steps, and, introducing
the discrete time and space derivativesoadind noting that they tend uniformly to the
continuous time and space derivativesygfpass to the limit on all terms to recover
(1.344). Similarly, one multiplies the discrete momentuquation [1.27d) by the value
v, 0f ¢ On o, sum over the edges and time steps, and again pass to theti@litterms

to recover[(1.34b). The details of this proof may be found hagtef2, Theorem 2.4.2.
0

We now turn to the entropy condition (1.8). To this purpose nged to introduce the
following additional condition for a sequence of discratians:
$(m)
lim 0 = 0. (1.35)

m—+00 minKeM(m) hK N

Note that this condition is slightly more restrictive thast@ndard CFL condition. It
allows to bound the remainder term in the discrete elastiei@l balance as stated in
the following lemma.

Lemma 1.3.5.Let Q be an open bounded interval &. Let (M™), §™), . be a
sequence of discretizations such that the time §t&p tends to zero as: — oo, and
(pt™, ptm) (M), be the corresponding sequence of solutions. We supposthifat
sequence satisfies the estimaf@S80)+(1.31) In addition, we assume th&p™),,cx
satisfies the following uniform BV estimate:

10 || resv < C, Vm €N, (1.36)
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and, fory < 2 only, is uniformly bounded by beloue. that there exists > 0 such that:
c< (pmn. VK e M™ for0<n < N™ ¥meN, (1.37)

Let us suppose that the CFL conditi@@m35)hold. LetR (™ be defined by:

RIM = Zat > (R

= KeM

with R%: given by(1.28) Then:

lim R™ = 0.

m——+00

Then we are in position to state the following consistensylte

Theorem 1.3.6(Entropy consistency, barotropic casénder the assumptions of Theo-
reml.3.4and Lemmd.3.5 the limit(p, p, u) satisfies the entropy conditidf.8).

Main ideas of the proof— The proof of this theorem is again based on a passage to the
limit in discrete equations, namely the discrete kinetitabee equation (1.22) and the
elastic potential balance (1]25). This computation is wéwge to the proof of consistency

of the scheme for the full Euler equations with the total ggdralancej.e. the proof

of Theoren{ 1.4]1 below. We refer to Chagiér 2, Theorem 12 @r.4He details of this
computation. O

1.4 The full Euler equations

Let us now turn to the full compressible Euler equations civliead:

Bip + div(pw) = 0, (1.383)
O(pu)+div(pu ®@u) + Vp =0, (1.38b)
O(pE)+div(p Eu) +div(pu) =0, (1.38c)
p=(y—1)pe, E= %|u|2+e, (1.38d)
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wheret stands for the timey, u, p, F ande are the density, velocity, pressure, total energy
and internal energy respectively, and> 1 is a coefficient specific to the considered
fluid. The problem is supposed to be posed dver (0, 7"), where2 is an open bounded
connected subset &, 1 < d < 3, and(0, T') is a finite time interval.

System[(1.38) is complemented by initial conditions fpe andw, denoted bypy,
e andug respectively, withp, > 0 andey > 0, and by a boundary condition which we
suppose to ba - n = 0 at any time ané.e.on df2, wheren stands for the normal vector
to the boundary.

Let us suppose that the solution is regular. Substractiacitmetic energy balance
equation[(1.B) from the total energy balanice (11.38c), waiakihe internal energy bal-
ance equation:

O¢(pe) + div(peu) + pdiv(u) = 0. (1.39)

Since,

- thanks to the mass balance equation, the first two termseiriefitrthand side of
(1.39) may be recast as a transport operaigpe) + div(peu) = p [Oye +u - Ve,

- and, from the equation of state, the pressure vanishes whe,

this equation implies, it > 0 att = 0 and with suitable boundary conditions, that
remains non-negative at all times.

We wish to build an explicit version of the staggered implind semi-implicit
schemes that have already been studied for the Euler egaafl@]. As already men-
tioned in [27], discretizing (1.39) instead of the total yyebalancel(1.38c) presents two
advantages:

- first, it avoids the space discretization of the total epaendhich is rather unnatural
for staggered schemes since the degrees of freedom for litng@tyeand the scalar
variables are not collocated,

- second, a suitable discretization 6f (1.39) may yield, tmnstruction” of the
scheme, the positivity of the internal energy.

However, for solutions with shocks, Equatidn (1.39) is nquiealent to [(1.38c);
more precisely speaking, at the locations of shocks, pesitieasures should appear,
at the right-hand side of Equatidn (1139). Discretizing®).instead ofi(1.38c) may thus
yield a scheme which does not compute the correct weak discmus solutions; in par-
ticular, the numerical solutions may present (smearedgksherhich do not satisfy the
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Rankine-Hugoniot conditions associated o (11.38c). Tisemtsal result of this section is
to provide solutions to circumvent this problem. To thispmsge, we closely mimic the
above performed formal computation:
- we start from the discrete kinetic energy balafce (1.28) ramark that the residual
terms at the right-hand side do no tend to zero with the spadeime steps (they
are the discrete manifestations of the above mentionedures)s

- we thus compensate these residual terms by correctives farthe internal energy
balance.

We provide a theoretical justification of this process byvging that, in the 1D case, if
the scheme is stable and converges to a limit (in a sense tefioed), this limit satisfies
a weak form of[(1.38c) which implies the correct Rankine-binigt conditions.

1.4.1 The scheme

With the same notations as in Sectlon 1.3.1, we consider plici#n-time numerical
scheme for the discretization of the Euler equatiams System[(1.38). In its fully dis-
crete form, this scheme reads, foK n < N — 1:

IK]

n+l n
VK € M, — (P& + > Fr,=0, (1.40a)
ceé(K)
K
VKGM, |6t|(pT[L{+1 n+1_prll(6K Z FK060+|K|pK (le’LL) SK7
ce&(K)

(1.40b)

VK e M,  plt=(y=1)p" e (1.40c)

Forl <i<d, Vo€ &Y,

| Ds|
ot

D, (o) o, e

(O uptt = pp )+ D Fral, +|Do| (Vp)att =0.
Eeg(Da)
(1.40d)

Equations[(1.40a) and (1.40d) are the same as the discreeand momentum bal-
ance equation§ (1.10a) and (1.10c) of the barotropic modkh@re described in Section

Explicit Staggered Schemes for Compressible Flows 20



NGUYEN Tan-Trung

[1.3.1. Equation (1.40b) is an approximation of the inteerargy balance over the pri-
mal cell K. The positivity of the convection operator is ensured if v8e an upwinding
technique for this term [42]:

ek if Fg, >0,
foro = K|L € &y, el =
e otherwise.

The discrete divergence of the velocitdivu)?, is defined by[(1.17) and the discrete
pressure gradient by (1J18), so that the discrete gradimhtdavergence operators are
dual with respect to the? inner product, as stated in (1]119). The right-hand sftig, is
derived using consistency arguments in the next section.

Finally, the initial approximations fop and w are given by[(1.20) and the initial
condition fore is the following one:

1

Since, by assumptior, > 0, the (discrete) initial condition for the internal energy i
positive. Using standard argument, thanks to the fact thahe third term of[(1.40b),
Pl is proportional toe?, (precisely speakingy, = (v — 1) plk €’), we prove that the
internal energy remains positive at all times assuniingdll)lafd the following additional

CFL condition:
| K|

ot < -
v Y ol (uk,)

ceé(K)

VK € M, (1.42)

provided thatS} is positive, which is the case under another CFL conditiee (sequal-
ity (L.48) in the next section).

1.4.2 The discrete kinetic energy balance equation and theooec-
tive source terms

By Lemmal1.3.11, we know that a discrete kinetic balance halith, at the right-hand
side, some residual terms. The next step is now to defineatmederms in the internal
energy balance, with the aim to recover a consistent digat&in of the total energy
balance. The first idea to do this could be just to sum thefglistkinetic energy balance
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with the internal energy balance: itis indeed possible fooléocated discretization. But

here, we face the fact that the kinetic energy balance ic&ged to the dual mesh, while
the internal energy balance is discretized on the primal ®he way to circumvent this

difficulty is to remark that we do not really need a discretaltenergy balance; in fact,

we only need to recover (a weak form of) this equation whemrtesh and time steps tend
to zero. To this purpose, we choose the quantitigs) in such a way as to somewhat
compensate the terni&? ;) given by [1.28):

d

. 1 Dk,
VK e M s = Y sptwitn st =t 3 Pl e
i=1

ce&(K)NEY
n
+ |Fo75(n_n)2_|_Fn(n+1_n)(n_n)
QKe 2 ua,i ua’,i o,€ uo,i ua,i uo,i ua’,i :
eeég), eNK#0,
e=Ds|D,1, F} <0

The coefficientyx . is fixed tol if the facee is included ink’, and this is the only situation
to consider for the RT and CR discretizations. For the MAGeseh, some dual faces are
included in the primal cells, but some lie on their boundéoy;such a boundary edge
we denote by, the set of cells\/ such that\/ Ne # () (the cardinal of this set is always

4), and computev . by:

K|
Qe = . (1.43)
" z:MeN6 M|

For a uniform grid, this formula yieldsx . = 1/4.

The expression of the terni§:t) ke is justified by the passage to the limit in the
scheme (for a one-dimensional problem) performed in Setid.3. We can first note

that:
d

S =3" > Rr'=o. (1.44)

Indeed, the first part oﬁ}gj;l, thanks to the expression (1128) of the density at the face

ptt, results from a dispatching of the first part of the residuaircthe two adjacent
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cells:

|DU| n+1 (un+1 _n )2

| Dkl 2
(st pD(, 0,1 uo,i z [ (u”+1 — Uy )

' u. .
St Pk o, o,

N =
N | —

affecféd to K

1|D ,0‘ n n n \2
+§ 5Lt PLH( o,Jirl_um)-

affected to L

-~

The same argument holds for the terms associated to thealed, fwhich explains, in
particular, the definition of the coefficients, .. The scheme thus conserves the discrete
equivalent of the integral of the total energy over the cotational domain.

Using Young's inequality and remarking that, for all the smered discretizations,

Z |DK,U|:‘K‘7

oeE(K)NEY

we obtain thaS["g;.l in non-negative provided that the following CFL conditiocidts:

n+1

D
5t < | Dicol Pic . VYK eM. (1.45)

Z aK,E (Fge>_

e€€(D,), eNK#D

Under the conditions$ (1.42) arld (1145), the solution givethie scheme thus satisfies
p > 0ande > 0, and sg > 0 by the equation of state. The conservation by the scheme
of the integral of the total energy over the computationahdim thus yield a control on
the solution.

1.4.3 Passing to the limit in the scheme (1D case)

The objective of this section is to show, in the one dimersioase, that, if a sequence of
solutions is controlled in suitable norms and convergeslimig, this latter necessarily
satisfies a weak formulation of the continuous problem. Whth notations of Section
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[1.3.3, the one-dimensional version of the explicit schéi@) reads:

1 1
VK e M, p) = E/Kpo(x) dz, % = E/Keo(x) dz,

] (1.46a)
Vo € Eu, ud = W . uo(z) dz,
— K
VK = [o0'] € M, %(p?(ﬂ —pg)+ FL —F! =0, (1.46b)
— K
VK = o0 € M, IELerteyt — pfeeie) + el — Fye + vl —u2) = .
(1.46¢)
VK € M, Pttt = (y = 1) it et (1.46d)
=7 DU n n n n n.n mn, .n (e} (e
Vo = K‘L € Eint, | ot ‘ (ij_lu0+l - pD{,uO'> + Frup — Fruy +pL+1 - pK+l =0,

(1.46e)

where the mass flu¥?” is defined by[(1.11)E(1.13). In the convection terms of the

internal energy balance, the approximationdpiis upwind with respect té” (i.e., for
—

o =K|L € &y, e = el if F? > 0ande!? = e} otherwise). The corrective ters.

readsyK = [0/ — ol:

SK+1 = 4—& PKr [(ucr—i_l_ucr)z—'_(ucr’—i_l_uo")z} + 2K (uo_uo’)2_|FK|(ucr_uo) (uo_ucr’)?
(1.47)
where the notatiod’ = [0/ — o] means that the flow goes fromto o (i.e., if Fjz >0,

K = [o/0] and, if F2: < 0, K = [00]).

To the discrete unknowns, we associate piecewise constartidns on time intervals
and on primal or dual cells, so the densifythe pressurg, and the velocity: are defined
almost everywhere oft x (0,7") by (1.29), anct is defined a.e. by:

N-1

e(w,t) =Y Y e Xie(w) Xy (1).

n=0 KeM

For the consistency result that we are seeking (Theéred b&low), we have to
assume that a sequence of discrete solut{pf®, p(™), ™, (™)) satisfiesp™ >
0, p™ > 0, ande(™ > 0,V¥m € N (which may be a consequence of the fact that the CFL
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stability conditions[(1.21)[ (1.42) and (1145) are satifi@nd is uniformly bounded in
Loo((0,T) x Q)4 i.e:

VK e M™ for0<n < N™ vmeN,
0< (™ <c, 0< (@™ <C and 0< (™)L <C, (1.48)

and:
()2 < C, Yo e &M, for0 <n < N™, ¥meN, (1.49)

where C' stands for a positive real number. We have to also assumethatjuence
of discrete solutions satisfies the following uniform bosindth respect to the discrete
BV-norms:

||p(m) ||T,x,BV + ||6(m) ||T,x,BV + ||u(m) ||T,x,BV S C, vm S N (150)

and:
|u™ |7y < C, ¥m e N. (1.51)

A weak solution to the continuous problem satisfies, for any C2°([0,7') x Q):
— / _p O + pu@mgo} dxdt — / po(x) o(x,0)dz = 0, (1.52a)
Qx(0,7) - Q

- / pudip+ (pu® +p) 0] it~ / po() uo(z) o, 0) dz = 0, (1.52b)
ax(,1) L Q

— / _pEﬁtgo + (pE +p) u@xgp} dzdt — / po(z) Eo(x) o(x,0)dr = 0,
Qx(0,1) - Q
(1.52¢)

1 1
p=(r=Upe, E=gu'+e, Ey=zuj+en (1.52d)

As in the barotropic case, these relations are not suffitbeshefine a weak solution to the
problem, but they allow to derive the Rankine-Hugoniot dbads; therefore, if we show
that they are satisfied by the limit of a sequence of solutiortbe discrete problem, we
can expect thahe scheme computes correct sheelssstated in the following theorem.

Theorem 1.4.1(Consistency of the one-dimensional explicit scheme, zdee)
Let )2 be an open bounded interval Bf We suppose that, uo ande, are functions of
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L>(Q). Let (M §tt), . be a sequence of discretizations, which we suppose regu-
lar in the sense of Definitidh.3.3 Let (p™), p(™), e (™)), x be the corresponding
sequence of solutions. We suppose that this sequencessdtisfiestimated.48)(1.51)

and converges i ((0,7) x Q)*, for1 <r < oo, t0(p, p, €, u) € L=((0,T) x Q)*.

Then the limit(p, p, e, u) satisfies the syste(@.52)

Main ideas of the proof— The proof that the limitp, p, @) satisfies[(1.52a) and (1.52b)
is the same as in the barotropic case. In addition, the fadt(th p, €) satisfies the
equation of state is straightforward, in view of the supplosenvergence. We thus only
need to prove thatp, p, €, u) satisfies[(1.52c). In order to do so, the technique is the
same as for the proving the entropy inequality in the bapitroase. For a given smooth
functiony, on one hand, we multiply the discrete kinetic energy equal.3) byt ©7,
wherey?” is an interpolate of at the facer and att", and sum over the faces and the
time steps. On the other hand, we multiply the discrete mateenergy equatiomn (1.89)
by ot ¢, wherey. is an interpolate op on K at¢", and sum over the primal cells and
the time steps. Finally, summing the two obtained relati@nbit of algebra allows to
conclude; we refer to Chapter 3, Theorem 3.4.2 for the dataibmputation. O

1.5 Radial compressible flows

In this section, we focus on the study of the barotropic aticBuler equations in case
of radial explosions and implosions where blast waves mateain radial and spherical
trajectories for two and three-dimensional flows, respebiti Let us consider the system
of barotropic Euler equations under the non-conservatiia f

op + Tia@r(rapu) =0 (1.53a)
0(pu) + ~0h(r"pu) + B,p = 0 (1.53b)
p=pp)=p (1.53¢)

wherer is the radial directiont is time, p, u andp are the density, radial velocity and
pressure in the flow, angl > 1 is a coefficient specific to the considered fluid. The
parametery depends on the space dimension of the problem.aFer0, we reproduce
the one-dimensional flow which was surveyed in Sedtioh 181ad. The cases = 1
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anda = 2 correspond to the two and three-dimensional problems imdytal and
spherical symmetry coordinate, respectively. The probtesupposed to be posed over
Q2 x (0,7), whereQ2 = [0, +o0) and (0, 7") is a finite time interval. This system must
be supplemented by initial conditions feplandu, denoted by, andu,, and we assume
po > 0. It must also be supplemented by a suitable boundary condithere the radial
velocity vanishes at any time a@if).

A weak solution to the continuous problem (1.53) satisfies,ahy¢ € C (2 x
0,7)):

T
- / / [p O + pu&«p] rdrdt — / po(x) o(x,0)r*dr =0, (1.54a)
0o Ja Q
T
—/ /[pu0t<p+ (pu® +p) &w} r+p0p(rfp)drdt
0 Ja (1.54b)
— / po(x) up(z) p(x,0) r*dr =0,
)
p=7p. (1.54c)

Let us denote by, the kinetic energye, = 1 «*. Taking the product of (1.54b) by
u yields, after formal compositions of partial derivativeslaising[(1.54a):

1
O (pEx) + T—a@r (ro‘p £ u) +ud,p=0. (1.55)

We now define the elastic potentid| function? and the entropy¥ = pE+H(p) as
in Sectior 1.B. Multiplying the mass balante (1]53a}8yy) yields the elastic potential
equation:

O (H(p)) + Tia&‘ (r*H(p) u) + Tiap Oy (r®u) = 0. (1.56)

Summing [1.55) and (1.56), we obtain the entropy equation:
0,S + Tia&r (r*(S + p) u) = 0. (1.57)

In fact, to avoid invoking unrealistic regularity assunapis, such a computation should
be done on regularized equations (obtained by adding ffiyserturbation terms), and,
when making these regularization terms tend to zero, pesitieasures appear at the

Explicit Staggered Schemes for Compressible Flows 27



NGUYEN Tan-Trung

left-hand-side of[(1.57), so that we get in the distribusense:
1
08+ 0, (r*(S+p)u) <0. (1.58)

The quantityS is an entropy of the system, and an entropy solutior to [1i$&)us
required to satisfy:

Vip € CX (2 [0,T)), ¢ >0,

T
/ / [—S0o — (S +p) udyp] r*drdt — / So p(r,0)r*dr <0, (1.59)
0 Q Q
with Sg = %pou?) + H(po). Then, since the radial velocity is prescribed to zero at the
boundary, integratindg (1.58) ovéryields:

d

1
i ).

3 pu’® +H(p)] r*dr <0. (1.60)

Sincep > 0 by (I.53&) (and the associated initial and boundary cani)i and the
function s — #H(s) is bounded by below and increasing at least fdarge enough,
Inequality [1.60) provides an estimate on the solution.

Let us now turn to the Euler equations on cylindrical and siphkcoordinate systems
under the non-conservative form:

D+ Tiaﬁr(rapu) 0 (1.61a)

O(pu) + Tia@r(ro‘pUQ) +0,p=0 (1.61b)
(pE) + Tia@r(ro‘pEu) + Tia@r(ro‘pu) ~0 (1.61¢)
B= gt (1.61d)
p=(y—1)pe (1.61e)

where F ande stand for the total and internal energy respectively, and 1 is a co-

efficient specific to the considered fluid. The problem is sgepl to be posed over
Q2 x (0,7), wheref2 = [0; +00) and (0, T') is a finite time interval. Substracting the re-
lation (1.5%) from the total energy balan€e (1161c), we iolitae internal energy balance
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equation:
Or(pe) + Tia@r(ro‘peu) + Tiapﬁr(rau) = 0. (1.62)
Since,
- thanks to the mass balance equation, the first two termseietit-hand side of
(1.62) may be recast as a transport operaidyie) + =0, (r*peu) = p [O;e+u el
- and, from the equation of state, the pressure vanishes whe,

this equation implies, it > 0 att = 0 and with suitable boundary conditions, tlat
remains non-negative at all times.

A weak solution to the continuous problem (1.61) satisfies,ahy € C(Q x
[0,7)):

T
— / / [,0 O + pu&xp] r®drdt — / po(z) p(x,0)r*dr =0, (1.63a)
o Jo Q

T
—/ /[pu0t<p+(pu2+p)0rw} r* +p0(rip)drdt
0 Je (1.63b)

— /on(x) uo(z) p(z,0) r*dr =0,

T
- / / [pBap + (0 B+ p)udyg] v drd - / po() Eol) ¢(x,0)r* dr = 0,
0 Q Q
(1.63c)

1 1
p=(y—1)pe, E= iuz +e, LEy= §u8 + eg. (1.63d)
The purpose of this section is to build explicit scheme(s}te numerical solutions
of System[(1.53) and (1.61) and prove the following results:

e Discrete kinetic energy balance with some residual & discrete analogue of

(1.55)) on dual cells.

¢ Discrete elastic potential equation with some rest telirasg discrete analogue of
(1.58)) on primal cells for the barotropic Euler equatiombese rest terms, natu-
rally arising from computations at discrete level, are oolteéd by a CFL condition
to obtain the discrete version of entropy conditiion (1L.59)

e Discrete internal energy balances with some residiualg discrete analogue of
(4.11)) on primal cells for the Euler equations. In the cantito rest terms in the
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elastic potential equation, the residual here are impasedrmplement rest terms
in the discrete kinetic energy balance at the limit, whenhrase and time step
tend to zero, in order to recover the total energy equation.

e Finally, passing to the limit in all equations and supposiing convergence of
scheme(s), those limits are weak solutions of the contisywablem(s), and thus
satisfy the Rankine-Hugoniot conditions. In particulaeyt are entropy solutions
to the barotropic Euler equations.

1.5.1 Meshes and unknowns

All of the notations in this section are inherited from Senfll.3.3. Hereafter, we in-
troduce new notations adapting to the cylindrical and sphkcoordinate systems. The
volume of K denoted by V| reads

T,a-l—l _ Ta—l—l

Vi| = < g VK = [00] € M 1.64
|K|_a7+1’ = [o0'] € M, (1.64)
while the volume ofD, denoted byV,| can be selected based on the way we define the
dual radius,. In the spirit of ISIS, the mean value of volumes of two prirells X and

L gives the volume of the dual cell,

Vi| + VL

VCT: )
vl =

Vo = K|L € En. (1.65)

In this way, the primal radiusg reads

a1 a1 Ol,—’_l
rre = *\/%, VK = [00] € M. (1.66)

Otherwise, giverry = (r, + r,)/2, VK € M, we define the volume oD, as the
integral on[rg, r]
a+1 a+1 -

Vol = e Vo = KL € & (1.67)

The volume ofK’ N D, denoted by Vi |, in both choices ofV|, is given by

%
Vio| = % VK € M, Yo € €. (1.68)
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Both definitions for the volumes of dual cells, in fact, gitles same numerical solution,
up to a very small tolerance, when mesh size and time stepttenero. Therefore, in
this section, we work only with the mean value volume case.

1.5.2 The barotropic Euler equations
1.5.2.1 The scheme

Let us consider a partitioh = ¢, < t; < ... < ty = T of the time interval(0, T'),
which we suppose uniform for the sake of simplicity, anddlet= t,,.; — ¢, for n =
0,1,...,N — 1 be the (constant) time step. We consider an explicit-iretsuheme,
which reads in its fully discrete form, for<n < N — 1:

1
VK € M, ,0?{ = m po(l’) d{L',
. K (1.69a)
Vo € E, ud = D/, uo(z) de,
_>
VK = [o0'] € M,
V 7 n n n
Wil et — i) + B — 2 =0, (1.69b)
VK € M, QD”KJrl = p(p?l) = (p?(ﬂ)'y. (1.69¢)
o
VO' = K‘L € 81111:7
VU n n no,,mn n,,n n,,n a (N n
|5t| (PD:FIUUH - pDauo> + Fruy — Fgujg + 17 (pL+1 - pK+1) =0.
(1.69d)

where the terms introduced for each discrete equation direedehereatfter.

Equation[(1.69b) is obtained by the discretization of thesimlance equation (1.53a)
over the primal mesh, anfl;’ stands for the discrete mass flux acressutward K,
which, because of the impermeability condition, vanishes)Q and is given on the

internal edges by:
Vo = K|L € &y, Er =ryplul, (1.70)
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where the upwind approximation for the density at the edgeis defined by

pr ifug >0,
Pl = (1.71)
Pr otherwise

We now turn to the discrete momentum balarice (1.69d), whiabtained by dis-
cretizing the momentum balance equation (1153b) on theatliglassociated to the faces
of the mesh. For the discretization of the time derivative nged to provide a definition
for the valueso’gjrl andp?, , which approximate the density on the facat timet"*! and
t" respectively. They are given by the following weighted ager.

foroc = K|L € &, fork =nandk =n + 1, Vol 05, = V.ol Pl + Vol £]-
(1.72)
where|Vi .| = |Vik|/2, VK € M. The discrete mass fluk;; in the discretization of the
convection term reads

1
VK = [o0'] € M, Fg = 5( "+ F), (1.73)

Therefore, we obtain the discrete mass balance equationarcells:

Vel

Vo = K| € €
=Rk es 5t

(P = o) + Ff = Fg =0, (1.74)
Let us remark that a dual edge lying on the boundary is them algrimal edge, and
the flux across that face is zero. Thanks to the discrete masifl dual cells, the
approximation ofu’. is given by the upwinding technique:

n

— Uy if F}éz(),
VK =olo’ € M, u

(1.75)

xS

u, otherwise

g

We denot€d,p)"*+! and(9,u )%, respectively, the discrete derivatives of pressure at the
edgeos and the velocity on primal cel. The last term in Equation (1.69d) known as
the discrete version of pressure derivative on the dualigglls built as the transpose of
velocity derivative on the primal celk. The natural approximation for the derivative of
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the velocity on primal cells reads

—_— 1
VK =ol|o’ € M, (Opu)itt = h—(ra, ulbt™t = reulth). (1.76)
K

Consequently, the discrete derivative of pressure at the @@ given by

—
Vo = K|L € &Ey, (0,p)"tt = o re (pptt = pith). (1.77)

Hence, we obtain the duality relation between derivatifgg@ssure and velocity:

> b i Q)i+ > hpul™ (9,p)at = 0. (1.78)

KeM 0€Eint

Note that, because of the impermeability boundary conaktidhe discrete pressure
derivative is not defined at the external edges.

Finally, the initial approximations fop andwu are given by the average of the initial
conditionsp, andu, on the primal and dual cells respectively:

1
VKGM, p?(:W/Kpo(r)ro‘dr,
(1.79)
1

Vo € Eiy, ul= m wo(r) re dr.
o Dy

Note that, thanks to the upwind choice in the mass balancatiequ(1.71) and the
assumption on the positivity g%, under the following CFL condition:

V|
—org (up)t g (ur)

(1.80)
the discrete density obtained [n (1.69) remains positival dimes.

1.5.2.2 Discrete kinetic energy and elastic potential batees

In the similar way to Sectioh 1.3.2, the discrete kineticrgpeequation and elastic po-
tential balance are stated in two following lemma:

Lemma 1.5.1(Discrete kinetic energy balance)
A solution to the systerfi.69) satisfies the following equalityn € {0,..., N — 1},
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— —
Vo = K|L € Em, K = 0|0, and L = o]o”"

1 |VU| n+1
92 ot PP

n n n ]' n n n n n n
() = pi (w)?] + 5 [P (ug)? = Fie (u3e)?] + Vol (D)™

=R (1.81)

with:

R0'+1 - §Wijl(ua+l - u0)2 + 5 [(FL) (ua” - UU)Z + (FK) (ua’ - u0)2:|

— (FL) ™ (ugn — ) (ug™ = ug) = (F) " (ug — uy) (ug™ —uy), (1.82)
where, fora € R, a= > 0 is defined bya~ = —min(a,0). This remainder term is
non-negative under the following CFL condition:

n+1

‘Vcr‘pD
Vo = K|L € &y, 0t < ——- T
' (F7)~ + (Fg)*

(1.83)

Lemma 1.5.2(Discrete potential balancelet H be defined by1.4). A solution to the
system(.69)satisfies the following equality, fdt = o|0’ € M, 0 = P|K, ¢’ = K|Q
and0 <n <N —1:

v
WAk [aaoie) — o) + v o)y = P08 w4 Vil D@ = B3
(1.84)

In this relation, the remainder term is defined by:

Rn—i—l_}‘VK‘ 1" (—=n n+l __ n\2 a n,n __ o n,n n+l __ n I (—=n
K= 55 HPk) (kT = Pk) 4 (5 o i =75 i) (o™ — pic) H' (Pic2)
1 — n n —Nn (0% n (0 (0 —Nn

+5 [Tfff (ug)™ (pG — PR H' (B) + 15 (ug) ™ (pp — P )? ’H”(po)}, (1.85)

with 5 1, Do € o Pkl 75 € ok, pbll and s € ok, p)l, where, fora, b € R,

we denote bya, b]| the interval|a, b]] = {6a + (1 — 6)b, 6 € [0,1]}.

Unfortunately, it does not seem th&f;"! > 0 in any case, and so we are not able
to prove a discrete counterpart of the total entropy eseénflat0), which would yield a
stability estimate for the scheme. However, under a cayditdor a time step which is
only slightly more restrictive than a CFL-condition, andlensome stability assumptions

Explicit Staggered Schemes for Compressible Flows 34



NGUYEN Tan-Trung

for the solutions to the scheme, we are able to show that tb&ille non-positive part of
this remainder term tends to zerolih(2 x (0, 7)), which allows to conclude, in the 1D
case, that a convergent sequence of solutions satisfiestitogy inequality[(1.59): this
is the result stated in Lemma1.b.4 below.

1.5.2.3 Passing to the limit in the scheme

Theorem 1.5.3(Consistency of the explicit scheme)

Let2 be an open bounded interval Bf We suppose that the initial data satisfigse
L>(Q) andug € L>®(Q). Let(M™), 5tt™), .y be a sequence of discretizations such
that both the time steft(™ and the sizé.(™ of the mesh\ (™ tend to zero asn — oo,

and (p™), pt™ 4(™), .y be the corresponding sequence of solutions. We suppose that
this sequence satisfies the estimgfeS0){1.32)and converges ifh”(Q x (0,7))3, for

1 <p<oo,to(p, p,u) € L=Q x (0,T))3.

Then the limit(p, p, u) satisfies the syste(@.54)

Main ideas of the proof— We refer to Chapter|4, Theorédm 4]3.5 for the detail of this
proof. O

Note that the discrete! (2; BV((0,7))) norm in this case reads:

lqll7.e8v = Z |VK‘Z‘C]”+1—Q?{|, HUHTtBV_Z“/‘Z‘Un—H .

KeM el

We now turn to the entropy condition (1]159). To this purpage,need to introduce
the following additional condition for a sequence of disizaions:
(m)
lim — 2t ~ 0. (1.86)

m—-+oo MiN g pq(m) MK

Note that this condition is slightly more restrictive thas@ndard CFL condition. It
allows to bound the remainder term in the discrete elastieni@l balance as stated in
the following lemma.

Lemma 1.5.4.Let Q be an open bounded interval &. Let (M™), §t(™), . be a
sequence of discretizations such that the time §t&p tends to zero as: — oo, and
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(p™, pm) M),y be the corresponding sequence of solutions. We supposthifat
sequence satisfies the estimaf@S80)+(1.31) In addition, we assume th&p(™),,cx
satisfies the following uniform BV estimate:

Ip"™ |l 7epv < C, ¥m €N, (1.87)
and, fory < 2 only, is uniformly bounded by beloue. that there exists > 0 such that:
c< (™), YK e M™ for0<n< NM™, VYmeN, (1.88)

Let us suppose that the CFL conditi@m88)hold. LetR™ be defined by:
R(m Z(St Z Rn+1
0 KeM

with R given by(I.88) Then:

lim R™ = 0.

m——+00

Then we are now in position to state the following consisyaesult.

Theorem 1.5.5(Entropy consistency, barotropic caségt the assumptions of Theorem
[1.5.3hold. Let us suppose in addition that the considered sequeitiscretization satis-
fies(1.88) and that(p(™),,cy satisfies the BV estimag.87)and, fory < 2, the uniform
control (I.88)of 1/p(™ . Then the limit 5, p, @) satisfies the entropy conditicffi.59)

Main ideas of the proof— We refer to Chapter| 2, Theordm 4]3.7 for the detail of this
proof. O

1.5.3 The full Euler equations
1.5.3.1 The scheme

The derivation of the explicit-in-time scheme for the Eudguations is obtained in the
same manner to the barotropic Euler equations (SelctioB.1)5The fully discrete form
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of the scheme reads, for< n < N — 1:

1 (0%
VK € M, p(}(zm/l{po(x)r dr, % = |VK|/ )rdr,

(1.89a)
1
\4 5.ina .= “d )
o€ Em, 10 A ug(x) r® dr
H
VK = [o0'] € M,
v
| 5?‘ (Pt — p) + F — F = 0, (1.89b)
H
VK = [00'] € M,
v
%( n+1 n+1 . pK6K> + F ,6 , F:e: _|_p?((7‘g‘, Z, — ’r‘gu:) = S;L(,
(1.89c)
VK € M, P = (= 1) g e, (1890
VU == K‘L c 5.int7
V|

() g™t = g ug) + Fuf — Fruje + 3 (pp = pic™) = 0.

(1.89)

ot

Equations[(1.89b) and (1.89e) are introduced in Se€tioA5Equation[(1.89c) is an
approximation of the internal energy balance over the grogl K. The positivity of
the convection operator is ensured thanks to the upwindionge fore?.:

; ey if F'' >0,
VU:K|L Eginta 62 =
e otherwise.

The last term on the left-hand side is a natural approximatfathe velocity derivative
on primal cells which is given by (4.27). The right-hand sidé, is derived by using
consistency arguments in the next section. Finally, thigainrapproximations for is
given by the average of the initial conditioason the primal cells.
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1.5.3.2 Corrective source terms

With the same idea as in Section 114.2, the source {&fim is chosen to compensate the
terms(R*™!) given by [1.8b):

— V
VK e M K =[o7), =S g ) 4 - )
FTL—I
+ w (ul=t — uZ,_l)Z + F}é_l (u;‘,_l — " (uly — u?{l), (1.90)

2
whereu’, — u7 ! is a downwind choice with respect g '

n n—1

— Upr — U, if Ft >0,
u” —u ' otherwise
The definition of(S}) ke allows to prove that, under a CFL condition, the scheme

preserves the positivity ef

Lemma 1.5.6.Let us suppose that, far< n < N and for all K = o]0’ € M, we have:

Vk|
y[re, (wi)t + e (uz)-]

\Vi| Pk
[Fpt+ B

ot <

and ot < (12.91)

Then the internal energ{e™)o<,.<x given by the schen{@.89)is positive.

1.5.3.3 Passing to the limit in the scheme

Theorem 1.5.7(Consistency of the explicit scheme)

Let2 be an open bounded interval Bf We suppose that the initial data satisfigse
L®(Q), po € BV(Q), g € L¥(Q) anduy € L=(Q). Let (M §t™), v be a
sequence of discretizations such that both the timesgt&pand the siz& ™ of the mesh
M(™) tend to zero asn — oo, and let(p™, p(™) (™) (™) be the corresponding
sequence of solutions. We suppose that this sequencessatisfiestimated.45)-(4.48)
and converges if? (2 x (0,7))%, for1 < p < oo, to(p, p, €, u) € L=(Q x (0,T))™%

Then the limit(p, p, e, @) satisfies the syste(@.63)

Main ideas of the proof — We refer to Chaptér] 3, Theordm 414.2 for the detail of this
proof. O
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1.6 Some numerical results

We test here the explicit schemes on some one dimensionadirpaozblems.

1.6.1 The barotropic case

In this section, we give some numerical results for the lbapit equations, taking = p?

as equation of state. Note that in this case, the system igadguot (up to a constant pro-
portionality coefficient in the equation of state) to thelkivawater equations, replacing

p by the water height. We test the explicit scheme studied above, which we denote
by p — p — u, since the pressure is updated before solving the momenalamde
equation; we also test the “naive” explicit scheme obtaimgdvaluating all terms other
than the time derivative at tim&, which we denote by — u — p (the pressure is
then updated after the computation of the velocity rathan thfter the computation of
the density).

We consider a one—dimensional Riemann problem with thevatlg values for the
left and right statesp;, = 1., pr = 10., uy, = 5. andug = 7.5, which yields a solu-
tion with a left shock and a right rarefaction wave. We pla tomputed density and
velocity at timeT" = 0.025 on figureg 1.2 and 11.3 respectively. From these results; it ap
pears clearly that the so-called “naive” scheme generatesmtinuities in the rarefaction
wave, and further experiments show that this phenomenaotisured by a reduction of
the time and space step; this seems to be connected to thtedactor this variant, we
cannot prove that the limits of converging sequences gatif entropy condition (and
they probably do not). When trying to do so, in our proof arahfra purely technical
point of view, the trouble comes from the fact that the presgmadient term which ap-
pears in the kinetic energy balance reads'Vp" and it seems difficult to make the
counterparti(e. p"div(u"™1)), with the corresponding time levels, appear in the elastic
potential balance, starting from a mass balance with a abioveterm written withu™;
hence a discretization of the momentum balance equatidnamitupdated pressure gra-
dient termVp"*!, and thus the inversion of steps in the algorithm, to get théetence
variant” proposed in this chapter. This latter scheme sderasnverge to the right so-
lution, and it is confirmed by a numerical convergence stedtynlg the space and time
steps tend to zero, which show an approximatively first-orde of convergence.
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exact solution g »-mmm---=exact solution
numerical solution & f— numerical solution
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Figure 1.2: Barotropic Euler equations, density
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Figure 1.3: Barotropic Euler equations, velocity

1.6.2 The full Euler equations

Let us now turn to the full Euler equations. We use the test caterred as Test 4 in
[61, Chapter 4], which is a Riemann problem with the follogvimitial states:p; =

pr = 1., u, = ugr = 0., p, = 0.01 andpr = 100. Here again, we test the scheme
that was analysed in Sectién 1.4, which we denote by ¢ — p — u (the order in
which we compute the unknowns at timet 1) and compare it to the “naive” scheme,
denoted byy — v — u — p, obtained by discretizing the Euler equations (1..38) in the
corresponding order.

The density, velocity, internal energy and pressure obthatT = 0.035, together
with the analytical solution, are plotted on Figufes| T4, and_117 respectively.
For the naive scheme, the same behaviour as for the bamirape i(e. the presence
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of discontinuities in the rarefaction wave) is observedileylonce again, the reference
variant of the algorithm yields correct results. The ordethe scheme is numerically
found to be 1 for the variables with no jump at the discontiesi(these are andw)
and 1/2 for those with a jump, nametyande. However, the diffusive character of the
scheme is evidenced at the contact discontinuity; the imefgation of a more accurate
discretization, based on a MUSCL-like technique, is undgrw

In addition, we also tested the scheme obtained by negigthtie corrective terms
(Sk)kem in the internal energy balance; results (not plotted heeejrsto show that
this scheme does converge, but toward a limit which is gleaok a weak solution to
the Euler equations (in particular, with jumps which do raity the Rankine-Hugoniot
conditions).

1~ frem—————————— i MMW . i ;HY B

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
@p—e—>p—u bB)p—u—e—p

Figure 1.4: Full Euler equations, density

1.6.3 Radial compressible flows

We address the Riemann problem studied in [61, Chapter 1a4dess the behaviour of
the scheme on the explosion. The chosen initial states= 1, u;,s = 0; pins = 1,
Pout = 0.125, uyy = 0 andp,,; = 0.1 gives a circular shock wave travelling away
from the centre, a circular contact surface travelling | $ime direction and a circular
rarefaction travelling towards the origin. The three-dimsienal solutions Figurie 1.8 in-
cluding density, velocity, pressure and internal energgioled along the radial line that
is coincident with thec—axis at the final time are compatible with the referencet&wis

in [61, Figure 17.7].
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Figure 1.5: Full Euler equations, velocity
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Figure 1.6: Full Euler equations, internal energy

1.7 Conclusion

We present in this thesis an explicit scheme based on sedjgeshes for the hyperbolic
system of the compressible flows. This algorithm uses a vergls first-order upwind-
ing strategy which consists, equation by equation, to imlet an upwind discretization
with respect of the material velocity of the convection term

e For the barotropic Euler equations: under CFL-like condisi based on the mate-
rial velocity only (by opposition to the celerity of wavesyr scheme preserves the
positivity of the density and the pressure, and has beenrshmWwe consistent for
1D problems, in the sense that, if a sequence of numericalisos obtained with
more and more refined meshes (and, accordingly, smallerraaties time steps)
converges, then the limit is a weak entropy solution to th&iooous problem.
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Figure 1.7: Full Euler equations, pressure

e For the full Euler equations: our scheme solves the intesnatgy balance instead

of the total energy balance, and thus turns out to be noneceative: indeed,
the total energy conservation law is only recovered at tiné lof vanishing time
and space steps, thanks to the addition of corrective saeroes in the discrete
internal energy balance. Under CFL-like conditions basethe material velocity
only, this scheme preserves the positivity of the dengigyjiternal energy and the
pressure (in other words, the scheme preserves the conadrésible states), and
its solution satisfies a conservation property (in fact, féeenoat the discrete level,
non-increase) of the integral of the total energy over thematational domain.
Finally, the scheme has been shown to be consistent for 1idgms, in the sense
that, if a sequence of numerical solutions obtained withareord more refined
meshes (and, accordingly, smaller and smaller time stegpskecges, then the limit
is a weak solution to the continuous problem.

For the radial compressible flows: this case is, in fact, aeresion of 1D flows
on two and three-dimensional spaces where the acousticsyaupagate in radial
and spherical trajectories. From the theoretical and nigalgooint of views, our
scheme still gives the same properties as stated aboveddraitotropic and full
Euler equations. The obtained results depend only on theneband the connec-
tivity of the mesh. Therefore, our scheme can apply on withses of problems,
for instance, the axisymmetric flow with non-zero anguldogity component.
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Figure 1.8: Euler equations on spherical coordinate systathsolutions

Numerical studies show that the proposed algorithm is sfavien if the largest time
step before blow-up is smaller than suggested by the ab@rgiomed CFL conditions.
This behaviour had to be expected, since these CFL conditinly involve the velocity
(and not the celerity of the acoustic waves): indeed, wastthe only limitation, we
would have obtained an explicit scheme stable up to the ipcessible limit. However,
the mechanisms leading to the blow-up of the scheme (or,erealy, the way to fix the
time step to ensure stability) remain to be understood.

In addition, numerical experiments show that some osmlagtappear near stagna-
tion points, where the numerical diffusion brought by thevimaing vanishes. These
oscillations are damped by a small amount of artificial (jitaidike) viscosity, and this
suggests to implement techniques consisting in addingeéstheme such a diffusion
term, with a viscosity monitored by anposteriori(i.e. performed in view of the results
of the previous time step) analysis of the solution, as theadled entropy-viscosity tech-
nique. Besides, such an extension should allow to designra aszurate scheme, based
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on higher-order numerical fluxes. This work is underway.

Since the proposed scheme uses very simple numerical fitisasell suited to large
multi-dimensional parallel computing applications, andlsstudies are now beginning
at IRSN. Still for the same reasons (and, in particular, beedhe construction of the
discretization does not require the solution of the Riem@aaiblem), it seems that the
presented approach offers natural extensions to more exrppdblems, such as reacting
flows; this development is foreseen at IRSN, for applicatitnexplosion hazards.
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Chapter 2

The barotropic Euler equations

2.1 Introduction

We address in the work the numerical solution of the so-dddégotropic Euler equations,
which read:

Orp + div(pu) = 0, (2.18)
O (pu) +div(pu @ u) + Vp =0, (2.1b)
p=olp)=p", (2.1c)

wheret stands for the timey, u andp are the density, velocity and pressure in the flow,
and~y > 1is a coefficient specific to the considered fluid. The problesupposed to be
posed ovef) x (0,7T), wheref) is an open bounded connected subs&ofl < d < 3,
and(0, T') is afinite time interval. This system must be supplementediligl conditions
for p andu, denoted by, andu,, and we assumg, > 0. It must also be supplemented
by a suitable boundary condition, which we suppose to be:

u-n=>0
at any time ana.e.on 952, wheren stands for the normal vector to the boundary.

Let us denote by, the kinetic energyF, = % |lu|?. Taking the inner product of
(2.10) byw yields, after formal compositions of partial derivativexlausing the mass

46



NGUYEN Tan-Trung

balance[(2.1a):
O (pEy) + div(p Epu) + Vp-u = 0. (2.2)

This relation is referred to as the kinetic energy balance.

Let us now define the functioR, from (0, +c0) to R, as a primitive ofs — o(s)/s?;
this quantity is often called the elastic potential. &&be the function defined b} (s) =
sP(s), Vs € (0,+00). For the specific equation of stateused here, we obtain:

S’Y

if v > 1,
H(s)=sP(s) =47 1 (2.3)
sln(s) if v=1.

Sinceyp is an increasing functiorl{ is convex. In addition, it may easily be checked that
pH'(p) — H(p) = p(p). Therefore, by a formal computation, detailed in the append

multiplying (2.1&) byH'(p) yields:

O (H(p)) + div(H(p) u) + pdiv(u) = 0. (2.4)

Let us denote by the quantityS = pE) + H(p). Summing[(2.2) and (2.4), we get:
S + div((S +p)u) = 0. (2.5)

In fact, to avoid invoking unrealistic regularity assungptj such a computation should
be done on regularized equations (obtained by adding ffiyserturbation terms), and,

when making these regularization terms tend to zero, pesitieasures appear at the
left-hand-side of[(2]5), so that we get in the distributiense:

oS +div((S+p)u) <0. (2.6)

The quantityS is an entropy of the system, and an entropy solutior td (& Xhis
required to satisfy:

Vip € CX (2 [0,T)), ¢ >0,

/T/[—Satap—(8+p)u-V<p] d:vdt—/So o(x,0)de <0, (2.7)
0o Ja Q
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with Sy = £ polue|® + H(po). Then, since the normal velocity is prescribed to zero at the
boundary, integrating (2.6) ovéryields:

d

G | ol + )] @ <o 28)

Sincep > 0 by (2.1&) (and the associated initial and boundary condi)iand the func-
tion s — H(s) is bounded by below and increasing at leastsftarge enough, Inequality
(2.8) provides an estimate on the solution.

The purpose of this chapter is to build an explicit schemetfernumerical solution
of System[(2.1). This scheme is, in fact, the explicit var@fra recent all-Mach-number
pressure correction scheme|[15] 26] implemented in the-sparce software I1SIS [33],
and is developed with the aim to offer an efficient alterreafiw quickly varying unsta-
tionary flows, with a characteristic Mach number in the ranggreater than the unity.
The proposed algorithm thus keeps the space discretizaig®d in this context, namely
staggered finite volume or finite element discretizatiorigs discretization precludes the
use of Riemann solvers (seqy.[61,(19,[6] for textbooks on this latter technique), and
we thus implement the most naive upwinding, with respechéaterial velocity only
(similarly, but with a simpler upwinding algorithm, to whiatproposed in the collocated
context in the AUSM method [45, 44]). The pressure gradigedefined as the transpose
of the natural velocity divergence, and is thus centeredt bat not least, the velocity
convection term is built in such a way to allow to derive a th$e kinetic energy balance.

We prove for this scheme the following results:

- a discrete kinetic energy balandes(a discrete analogue df (2.2)) is established
on dual cells, while a discrete potential elastic balaneed discrete analogue of
(2.9)) is established on primal cells.

Note however that, because of residual terms appearing ipdtential elastic bal-
ance, contrary to what is obtained for implicit and semidicipvariants of the

present scheme [115, 126], these equations do not seem totgeektability of the

schemei(e. a discrete global entropy conservation analogue to Equé#id®)), at

least unless supposing drastic limitations of the time.step

- Second, in one space dimension, the limit of any convergemaence of solutions
to the scheme is shown to be a weak solution to the continumisgm, and thus
to satisfy the Rankine-Hugoniot conditions.
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- Finally, passing to the limit in the discrete kinetic eneemnd elastic potential bal-
ances, such a limit is also shown to satisfy the entropy iaktyu(2.7).

This chapter is structured as follows. We begin with the gméstion the scheme
(Section 2.R), then the discrete kinetic and elastic pakhalances are given in Sec-
tion[2.3. The next section is dedicated to the proof, in 1Dthef consistency of the
scheme (Section 2.4). We then present some numerical testssess the behaviour of
the algorithm (Section 2.5). The discrete kinetic energyelastic potential balances are
obtained as particular cases of more general results agpiyithe explicit finite volume
discretization of transport operators, which are estabtisn Appendix 2.J7. Finally, the
conclusion and perspectives are given in Sectioh 2.6.

2.2 The scheme

We refer to Chapterll, Sectidn 1.2 for the space discretizatFor the discretization
in time, let us consider a partitidh = t, < t; < ... < ty = T of the time interval
(0,T), which we suppose uniform for the sake of simplicity, andStet= ¢,, ., — ¢, for
n=20,1,..., N —1 be the (constant) time step. We consider an explicit-iretatheme,
which reads in its fully discrete form, for<n < N — 1:

|K| n 1 n
VK eM,  —(r a Z Fr, =0, (2.9a)
ocel(K
VK eM,  pit=p(ith) = E"), (2.9b)

Forl <i<d, Vo e &Y,

| D, |
ot

(ot = ph )+ 3 Fnaul+ D, (Vp)itt =0,

D, o, o€ Ve,
GES(DU)

(2.9¢)

where the terms introduced for each discrete equation direedehereatfter.

Equation[(2.9a) is obtained by the discretization of thestmdance equatiof (2]1a)
over the primal mesh, and;*' stands for the mass flux acrossoutward K, which,
because of the impermeability condition, vanishes on eatdaces and is given on the
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internal faces by:
Vo =K|L€&w,  Fi,=lolplul,, (2.10)

whereuy, , is an approximation of the normal velocity to the faceutward K. This
latter quantity is defined by:

u; eV - ng, for o € £9 in the MAC case,

0,1

U 5 = (2.11)
u, - ng, in the CR and RT cases,

wheree® denotes thé-th vector of the orthonormal basis Bf'. The density at the face
o = K|L is approximated by the upwind technique:

pic i uf, >0,
Py = (2.12)
o7 otherwise

We now turn to the discrete momentum balarice (2.9c), whiabbtained by dis-
cretizing the momentum balance equation (P.1b) on the alisl @ssociated to the faces
of the mesh. For the discretization of the time derivative,must provide a definition
for the valuesog:rl andp?, , which approximate the density on the facat timet"*! and
t"™ respectively. They are given by the following weighted ager.

foro = K|L € &y, fork =nandk =n + 1, |D,| o5, = | Dol pic + | Dro| pf.

(2.13)
Let us then turn to the discretization of the convection tefime first task is to define the
discrete mass flux through the dual faceutwardD,,, denoted byt ; the guideline for
its construction is that a finite volume discretization of tihhass balance equation over
the diamond cells, of the form

| Ds|
ot

Vo € &, (O —ph)+ > Fr.=0, (2.14)
)

e€€(Dy

must hold in order to be able to derive a discrete kineticggnbalance (see Sectign 2.3
below). For the MAC scheme, the flux on a dual face which istled¢a@n two primal
faces is the mean value of the sum of fluxes on the two primaisfaand the flux of a
dual face located between two primal faces is again the malaie wf the sum of fluxes
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on the two primal faces [30]. In the case of the CR and RT sckefoe a dual face
included in the primal celk, this flux is computed as a linear combination (with constant
coefficientsj.e.independent of the face and the cell) of the mass fluxes thrthegfaces

of K, i.e.the quant|t|e$F}éJ;1)aeg appearing in the discrete mass balamce {2.9a). We
refer to [1,[17] for a detailed constructlon of this approaiion. Let us remark that a
dual face lying on the boundary is then also a primal face thadlux across that face is
zero. Therefore, the value$ ;" are only needed at the internal dual faces, and we make
the upwind choice for their discretization:

uy if F'. >0,
fore= D,|D., u", = ’ (2.15)
ul otherwise

The last terr'ﬂ(Vp)”Jrl stands for theé-th component of the discrete pressure gradient
at the facer. The gradient operator is built as the transpose of theetisaperator for the
divergence of the velocity, the discretization of which &séd on the primal mesh. Let
us denote the divergence af ! over K € M by (divu)%™; its natural approximation
reads: )

for K e M,  (divu)i™ = 7] 06;{) o up ) (2.16)

Consequently, the components of the pressure gradienivee loy:

o .
foro = K|L € &y, (Vp)ot! = \|D‘\ (Pt — p Y mg, - e, (2.17)

this expression being derived thanks to the following dyaklation with respect to the
L2 inner product:

> K] pit (dive) “+1+Z > D | uptt (V) =0. (2.18)

KeM L geed)

Note that, because of the impermeability boundary conastithe discrete gradient is not
defined at the external faces.

Finally, the initial approximations fop andw are given by the average of the initial
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conditionsp, andu, on the primal and dual cells respectively:

1
1 (2.19)
0

for1 <i<d Voe&d, = o
o Ds

(up(x)); de.

The following positivity result is a classical consequentéhe upwind choice in the
mass balance equation.

Lemma 2.2.1(Positivity of the density) Let p° be given by2.19) Then, sinceu is
assumed to be a positive functigfi,> 0 and, under theCFL condition:

K]

ot < - ;
EUGE(K) o] max(uK’o,O)

VK e M, for0<n<N -1, (2.20)

the solution to the scheme satisfigs> 0, for 1 <n < N.

2.3 Discrete kinetic energy and elastic potential balances

We begin by deriving a discrete kinetic energy balance egmats was already done
for the implicit and fractional time step scheme described26]. Equation[(2.21) is

a discrete analogue of Equatidn (2.2), with an upwind diszaBon of the convection

term.

Lemma 2.3.1(Discrete kinetic energy balance)
A solution to the systelf2.9) satisfies the following equality, far< i < d, o € 5§“ and
0<n<N-1:

|D0| n n n n 1 n n n n n
(st [ij1<u0':1)2_pDn<uo,i)2i| _'_5 Z Fcr,e (ue,i)z_'_‘DU‘ (Vp)o:'_l U‘U,—;l = _RO':'_l’
Eeg(Do)

N | —

(2.21)
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with:

n 1 |D0| () n n ]' n — n n
Ro‘,—zi'_l = 5 St ij_l(uajl - uo‘,i)z + 5 E (FDJ,E) (uo’,i - uo,i)2
e=D,|D_,€€(Ds

)
— Y (Fp ) (ke — k) (i =), (2.22)
e=Dqy|D,/€E(Dy)

where, fora € R, a= > 0 is defined bya~ = —min(a,0). This remainder term is
non-negative under the following CFL condition:

n+1

voesd,  st< Dol P,

) 2.23
B ZEGE(DG (£ )_ ( )

Proof. The proof of this lemma is obtained by multiplying th&"*(component of the)
momentum balance equatidn (2.9¢) associated to thesfdgethe unknown.™ 1!, and

o, !

invoking Lemmd 2.7]2 of the appendix. O

Similarly, the solution to the schemle (R.9) satisfies a digcversion of the elastic
potential identity[(2.4), which we now state.

Lemma 2.3.2(Discrete potential balancelet H be defined by2.3). A solution to the
systen(2.9) satisfies the following equality, fatf €¢ M and0 <n < N — 1:

K]

M) Aok |+ D Tl M) whe o K| i (diva)ic = —REF. (2.24)

ceé(K)

In this relation, the remainder term is defined by:

1IK]|

Ryt = oo HI0ha) (i = i+ ) lol e, M (D) o (05 = )
cel(K)
1 — —Nn n n
5 DL ol i) H @) (i — L) (2.25)
oc=K|Le&(K)

with o 1, Do € 05, pik]ls andp € o, pp]l for all o € £(K), where, fora, b € R,

we denote bya, b]| the interval|a, b]| = {fa + (1 — 0)b, 6 € [0, 1]}.

Proof. The proof of this lemma is obtain by multiplying the discretass balance equa-
tion (2.9&) byH'(p%) and invoking Lemma2.7.1 of the appendix. O
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Unfortunately, it does not seem th&f;"! > 0 in any case, and so we are not able
to prove a discrete counterpart of the total entropy eseéni@ai), which would yield a
stability estimate for the scheme. However, under a cayditdor a time step which is
only slightly more restrictive than a CFL-condition, andlensome stability assumptions
for the solutions to the scheme, we are able to show that tbsille non-positive part of
this remainder term tends to zerolih(2 x (0, 7)), which allows to conclude, in the 1D
case, that a convergent sequence of solutions satisfiesttiopg inequality[(2.I7): this is
the result stated in Lemnia 2.4.3 below.

2.4 Passing to the limit in the scheme

The objective of this section is to show, in the one dimeraioase, that if a sequence of
solutions is controlled in suitable norms and convergeslimig, this latter necessarily
satisfies a (part of the) weak formulation of the continuawabfem.

The 1D version of the scheme which is studied in this sectiag be obtained from
Schemel(2]9) by taking the MAC variant of the scheme, usirig @me horizontal stripe
of grid cells, supposing that the vertical component of taleity (the degrees of free-
dom of which are located on the top and bottom boundariesykas, and that the mea-
sure of the vertical faces is equal to 1. For the sake of rebifabowever, we completely
rewrite this 1D scheme, and, to this purpose, we first intcedcsome adaptations of the
notations to the one dimensional case. For &nhy M, we denote by its length
(so hx = |K]); when we writeK = [o0'], this means that eithek = (z,,z,/) or
K = (z,,x,); if we need to specify the ordeite. K = (z,, ) With z, < z,/, then
we write K’ = [o0’]. For an interfacer = K|L between two celld and L, we define
h, = (hx + hz)/2, so, by definition of the dual mesh, = |D,]|. Ifwe_)need to specify
the order of the cell$C and L, say K is left of L, then we writes = K|L. With these
notations, the explicit scheme_(2.9) may be written as fadlan the one dimensional
setting:

1
VK € M, p(f]{ = ﬁ/[;po(l’) dﬂ?,

1
Vo € Eny, Uy =
o int uO’ |D0‘ D,

(2.26a)
ug() dz,
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H
VK = [o0'] € M,
K]

(O = Pl) + Fp = F7 =0, (2.26b)
VE € M, pitt = p(p) = (). (2.26¢)
Vo = K\L € Eints
%(pﬁ“uw ppun) + Fpup — Fpuj + pitt — pitt =0,

(2.26d)

The mass flux in the discrete mass balance equation is gmend &, by F = plu?,

where the upwind approximation for the density at the faejs defined by[(2.12). In

the momentum balance equation, the application of the proeedescribed in Section

[2.2 yields for the density associated to the dual £ellwith o = K|L and for the mass
_>

fluxes at the dual face located at the center of the niésh [00”]:

1

1
—(F+ F7
2 Do‘ ( 0_'_ o’)’

2
(2.27)
and the approximation of the velocity at this face is upwing: = «? if F}; > 0 and
uy = )}, otherwise.

fork=nandk=n+1, pj, = (K| pk +|L| p%),  Fp=

Let a sequence of discretization$1™, §t(™), o be given. We define the sizé™)
of the meshM (™ by h™ = sup, v hr. Let pt™), p™ andu(™ be the solution
given by the schem&{2.26) with the mest™ and the time stept™. To the discrete
unknowns, we associate piecewise constant functions am itibervals and on primal
or dual meshes, so the density”, the pressure(™ and the velocity.(™ are defined
almost everywhere oft x (0,7") by:

2

p K XK X(n,n-ﬁ-l} (t>7 (228)

3
Il
o

KEM

=z

ul™ ™) Xp () X (1), (2.29)

"
Nl

q

68

2

p X(n,n-i—l] (t)v (230)

KEM

3
Il
o
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whereXy, Xp, and X, 1) stand for the characteristic function of the intervals D,
and(t", t"1] respectively.

For discrete functiong andv defined on the primal and dual mesh, respectively, we
define a discret&! ((0, 7); BV(£2)) norm by:

N N
lallreny =20t > i —dil,  lvlresv=) 06t > | —uvgl,
n=0 n=0

- C":[(|L€8im = GZDU‘DJ/EEint

and a discreté&'(Q; BV((0,7'))) norm by:

N-1 N-1
lgllremv = Y IKID g —qicl,  lollresy =D Dol D o2t —vp).
n=0

KeM n=0 oe€

For the consistency result that we are seeking (Thebrer Bedlow), we have to assume
that a sequence of discrete solutiqps™ , p™, u(™) _ satisfiesp™ > 0 andp™ >

0, vm € N (which may be a consequence of the fact that the CFL stalaitihdition
(2.20) is satisfied), and is uniformly boundedity (0, 7') x )3, i.e..

0< (p™) <0, 0< (™) <O, VYK eM™ for0<n<N™, v¥meN,
(2.31)
and
|(u™)?| < C, Voe&M™, for0<n<N™ vmeN, (2.32)

whereC' is a positive real number. Note that, by definition of theiaticonditions of
the scheme, these inequalities imply that the functignendu, belong tol.>°(2). We
also have to assume that a sequence of discrete solutidsfiesathe following uniform
bounds with respect to the discrete BV-norms:

||p(m)||T,x,BV + ||u(m)||T,x,BV < Ca Vm € N. (233)

We are not able to prove the estimates (P.31)—(2.33) for dhetisns of the scheme;
however, such inequalities are satisfied by the “intergslaffor instance, by taking the
cell average) of the solution to a Riemann problem, and aservled in computations (of
course, as far as possibigs. with a limited sequence of meshes and time steps).

Explicit Staggered Schemes for Compressible Flows 56



NGUYEN Tan-Trung

A weak solution to the continuous problem satisfies, for @any C2° (2 x [0,7))):

T

[ [Jpore+putne]avat = [ mia)oe.0)a =0, (2.342)
OT Q Q

—/ /[Pu8t<ﬂ+(PU2+p) 3&0} dxdt—/ﬂo(x)%@) ¢(z,0)dr =0, (2.34b)
0 Q Q

I (2.340)

Note that these relations are not sufficient to define a welakiso to the problem, since
they do not imply anything about the boundary conditionswieleer, they allow to derive
the Rankine-Hugoniot conditions; hence if we show that #reysatisfied by the limit of
a sequence of solutions to the discrete problem, this imple®sely speaking, thahe
scheme computes correct sho(ikes. shocks where the jumps of the unknowns and of the
fluxes are linked to the shock speed by Rankine-Hugoniotitiond). This is the result
we are seeking and which we state in Theofem 2.4.2. In ordpraee this theorem,
we need some definitions of interpolates of regular testtfons on the primal and dual
mesh.

Definition 2.4.1 (Interpolates on one-dimensional meshést (2 be an open bounded
interval of R, letp € C°(2 x [0,7")), and letM be a mesh oveR. The interpolatep
of ¢ on the primal mestM is defined by:

Om = Z D i X K ey, (2.35)
n=0 KeM

where, for0 < n < N and K € M, we setp}, = o(xk,t"), with zx the mass center of
K. The time discrete derivative of the discrete functign is defined by:

SOH—H 4,0

Do = Z D T X K gy, (2.36)

n=0 KeM

and its space discrete derivative by:

QOn+1 - (pn—i-l
Ouior = L TR X Xy 2.37
oM Z _Z W Dy Xpn gnt1y. (2.37)
= o= K|L€gmt
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Let s be an interpolate o on the dual mesh, defined by:

N-1
pe = Z ZSOZ+1 XDU X[tn’thrl), (238)

n=0 oe&

where, forl < n < N ando € &, we setp”? = ¢(z,,t"), with xz, the abscissa of
the interfaces. We also define the time and space discrete derivatives ofitbcrete

function by:
N-1 n+1

Oppe = Z Z Yo — % 5; L Xp, X[tn,tnﬂ),

n=0 cef

N-1 S pnt (2.39)
61’%08 — Z Z A hK —U XK X[t7L7t7L+1).

=0 K_[so']eM

We are now in position to state the following result.

Theorem 2.4.2(Consistency of the one-dimensional explicit scheme)

Let2 be an open bounded interval Bf We suppose that the initial data satisfigse
L>(Q) andug € L®(Q). Let(M™ §t(™), .y be a sequence of discretizations such
that both the time stef™ and the sizé.™ of the mesh\ (™ tend to zero asn — oo,

and (p™), pt™ 4(™), .y be the corresponding sequence of solutions. We suppose that
this sequence satisfies the estimg®81)2.33)and converges if”(Q x (0,7'))3, for
1<p<oo,to(p, p,u) €L x(0,T))>.

Then the limit(p, p, u) satisfies the syste(@.34)

Proof. It is clear that, with the assumed convergence for the seguehsolutions, the
limit satisfies the equation of state. The proof of this tleeors thus obtained by passing
to the limit in the scheme for the mass balance equationdingt then for the momentum
balance equation.

Mass balance equation- Lety € C*(Q2 x [0,T)). Letm € N, M anddét(™ be
given. Dropping for short the superscrifit, let o1, be the interpolate af on the primal
mesh and le?,p, andd,p,, be its time and space discrete derivatives in the sense of
Definition[2.4.1. Thanks to the regularity of these functions respectively converge in
L"(22 x (0,7)), for r > 1 (includingr = +o0), to ¢, d;p and o,y respectively. In
addition,p (-, 0) (which, for K € M andz € K, is equal tap}, = ¢(z, §t)) converges
to ¢(-,0)in L7 (Q2) for » > 1. Since the support @f is compact irf2 x [0, T"), for m large
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enough, the interpolate o¢f vanishes at the boundary cells and at the last time step(s);
hereafter, we systematically assume that we are in this case

Let us multiply the first equation (2.9a) of the schemeby’-"*, and sum the result
for0 <n < N —1andK € M, to obtainT™ + 7™ = 0 with

N-1

EjEZMW"H—pww?% n"M =N "6t > (FL—Fr ot

_ —
n=0 KeM n=0 K=[oo'|leM

Reordering the sums [ﬁfm) yields:
N-1 @ __@n
T = =3 a3 1 e B S k| g
n=0 KeM KeM

so that:

T
100 == [ [ #m8esdedt = [ (7)) paule.0)d.
0

The boundedness of and the definition(2.26a) of the initial conditions for tteheme
ensures that the sequende™)?),,en converges tg, in L™(Q2) for » > 1. Since, by
assumption, the sequence of discrete solutions and of thgpolate time derivatives
converge irL" (2 x [0,T)) for r > 1, we thus obtain:

T
lim T( —/ /ﬁ@tapdxdt—/po(x) o(x,0)dx.
m—+0o0 0 Q Q

Using the expression of the mass flG¥ and reordering the sums I@(m), we get, re-
marking that D, | = h,:
n+1 n+1
m 10 YL — Pk
" = D ——
Z} Z;||p "

n o=K|Le&

Since|D,| = (| K|+ |L|)/2 andp is the upwind approximation gf* at the facer, we
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can rewritel}™ = 7, + R{™ with

N-1

(m) |K| n |L| ny\, n ()OZ—H — SO?(J’_I
7 ——Z& ; (7pK+7pL)ua TR
n=0 ,_K|Lee
N-1 n+1 n+1
(m) _ n ooy [ o L] YL — YK
RED = =300t 30 (=) [ ) + e P
n=0 " ,-K|Lee
where, fora € R, a™ = max(a,0) anda™ = —min(a,0) (S0a = a* — a™). We have,
for the term7,™:
T
/ / V8,00 dzdt  and 1_1>I_I‘r1 7'2 —/ /ﬁﬂ@xapdxdt.
m=rroo 0o Ja

The remainder terrR{™ is bounded as follows, with’, — 1020|100 (x (0.7

N-1

RSN <Co 0t > |k — ol D] ul

n=0 o=K|Le&

<Gy ||U(m)||Loo(Qx(o,T)) Hp(m)HT,x,BV i,

and therefore tends to zero whertends to+co, by the assumed stability of the solution.

Momentum balance equation— Let ¢, 0,0 and d,p¢ be the interpolate of
on the dual mesh and its discrete time and space derivativése sense of Definition
[2.4.1, which converge if" (2 x (0,7)), for » > 1 (includingr = +00), to ¢, O
andd, o respectively. Let us multiply Equation (219c) b¥"+1, and sum the result for
0<n<N-—1lando € Ey. We obtain™ + 7™ + 7™ = 0 with

Z > Dol (it tugtt = o ug) @5,

n=0 c€&nt

N—1
Tz(m) = 25t Z [FL uy — Fruy SOZHa
n=0 _

o KlLEgim
N-1

ot > Wt - P ent
~

n=0

7"
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Reordering the sums, we get i’ﬁfm):

N-1 n+l _ n
=Y 6t > Do plp % = > D] p, ul ok

n=0 C"egint oegint

Thanks to the definition of the quantipy, (namely the fact thatD, | p, = (| K| p +
|L| p})/2), we have:

T
- / / P ™ Byipe dardt — / (0™ (@) (™)) e (x, 0) de.
0 Q Q

By the same arguments as for the mass balance equation, rgéotiesobtain:

lim 7" //pu@tgpdxdt / o(2) uo () p(x, 0) da.

m——+00

Let us now turn th2 . Reordering the sums and using the definition of the massdluxe
at the dual faces, we get:

N-1

T == 6t D Fruk (e - o)
=0 g_lr5]eM
N-1
1 n_ n n n n
- _§ ot (pouo + po’uo’) (SOU+1 S00'+1)'

=0 K_lo0]eM

Using the relation

N—l
/ Lo e drat =536 YD [+ (] (e - )
n:O K

we can rewrite the terrﬁém) as

T(m— // (m) nggdZEdt“*R
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where
1 N-1
RYW =33 0t Y [(ﬂZUZerZIUZf)U%—p% ((ug)? + (ug)? )} (o5 —wath).
n=0

H
K=[oo'leM

Let us split this latter expression &)™ = R + R, with:

m 1 n n, n n ., n n n
Rél) = _5 Z ot Z Uy (pauK - pKua) ((pa-"l‘l ()00—’_1)7
n=0 K=[oo'|leM
N-1

m 1 n n,n n,n n n
R§2) = _5 5t Z Uy (po’uK - pKU‘O’) (gpa—i_l gpo—i_l)'
=0 g_lr7]eM

Applying the identity2(ab — cd) = (a — ¢)(b+ d) + (a + ¢)(b — d), ¥(a,b,¢,d) € RY,
to the termplu’}, — plu? and using the fact that the quantitigs— p} andu] — uf, are
either zero or differences of the density at two neighbauciells and the velocity at two
neighbouring faces respectively, we obtainRIf":

m 2 m
|R |<C ||u( )HLoo(Qx(o,T)) ||P( )||T7:c7BV

—+ ||u(m)HL°°(Q><(O,T)) ||U(m)HT,m,BV Hp ||L00(Q>< 0,7) :| h(m

where the real numbe¥, only depends opp. Since the same estimate holds 1?)2”),
the remainder termlg’”) tends to zero whem tends to+oco and:

T
lim T2m = —/ /ﬁﬂQ Oy dadt.
m—+00 0 Q

Let us finally studyZ.™ . Reordering the sums, we obtait™ = 7" + R{™ with:

N-—1
T ==3"6t > ph (it - gt
n=0 —
K=[oo'leM
N—-1
Ry =) at (P = pl) (@it — o).

_ —
n=0 K=[oo'leM
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The remainder term reads:
N-1

REY =6t > p (b —ert) = (eh—en] ot > Pk (b =),
n=1 K:[O'_OJ]GM K:[O'_O}]GM

and thus:
RS <19 Cp [(T+1) 3t + h™] Ipl e oy

where the real numbéer,, only depends on (the first and second derivativesof] hus
R{™ tends to zero whem tends to+oo and, since

T
E(m) = —/ /p(m) 0,00 da dt,
o Jo

we obtain that: .
lim T?fm) = / / D Oyp dadt.
m—+00 0 Q

Conclusion— Gathering the limits of all the terms of the mass and monmeittalance
equations concludes the proof. O

We now turn to the entropy condition (2.7). To this purpose nged to introduce the
following additional condition for a sequence of discratians:
Stm)
lim = 0. (2.40)

m—+00 minKeM(m) hK N

Note that this condition is slightly more restrictive thas@ndard CFL condition. It
allows to bound the remainder term in the discrete elastiemi@l balance as stated in
the following lemma.

Lemma 2.4.3.Let Q2 be an open bounded interval & Let (M), §t(™), . be a
sequence of discretizations such that the time étép tends to zero as — oo, and
(p™, p(m) M),y be the corresponding sequence of solutions. We supposthifat
sequence satisfies the estima81)2.32) In addition, we assume tha@p™),,.cx
satisfies the following uniform BV estimate:

10" |78y < C, Vm €N, (2.41)
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and, fory < 2 only, is uniformly bounded by beloue. that there exists > 0 such that:
c< (pmn. VK e M™ for0<n < N™ ¥meN, (2.42)

Let us suppose that the CFL conditi@Z40)hold. LetR (™ be defined by:

R(m Z St Z Rn-‘rl

= KeM

with R%: given by(2.25) Then:

lim R™ = 0.

m——+00

— — —
Proof. For K = [00'] € M, witho = M|K ando’ = K|L, we write Ri-™ = (T} +
(Tg)%—i_l —+ (Tg)%—i_l, with:

1K " 7 n
i = 2 ) e — i

n 1 n\— —n n n
(T3 = 5[ 1) (pic — 01 + (—u)™ HI(B2) (ke — on)?).
(L) = | oot — ol | 1 Bco) (o3 = i),
wherep.,, i € [0, o)l 7% € [k, o]l andz € [ o3l The first two terms

are non-negative, and th(gt)~ < |(T3)%™|. Since bottp, u and, fory < 2, 1/p are
supposed to be bounded, there exists 0 such that:

N—

Stim)
S ot S Im)E <€ C————— (0™ v

min hi
n=0 KeM KeM

,_.

which yields the conclusion by the assumption (2.40). O

Then we are now in position to state the following consisyaesult.

Theorem 2.4.4(Entropy consistency, barotropic casept the assumptions of Theorem
[2.4.2hold. Let us suppose in addition that the considered sequeittiscretization satis-
fies(2.40) and that(p(™),,cy satisfies the BV estima@.41)and, fory < 2, the uniform
control (2.42)of 1/p(™) . Then the limit p, p, @) satisfies the entropy conditi@. 7).
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Proof. Letp € C(Q x [0,7)), ¢ > 0. With the same notations for the interpolate of
v as in the preceding proof, we multiply the kinetic balancaatipn [2.21)1(2.22) by
©"*1, and the elastic potential balan¢e (2.24)-(2.25)4jy", sum over the edges and
cells respectively and over the time steps, to obtain therelis version of (2]7):

T 4 T 4 T 4 T A T 4 T = —R ROV (2.43)
where:
N-1
m | K| n n
Ty =6ty e [T — Hiok)] @i
n=0 KeM
N-1
=30 > [Hey) H(ph) up| i,
n=0  g_lr5]eM
N-1
=30t Y [kl — )] ok
=0 g_lroleM
N-1
(m 1 |DU| n n n n n
T =336t > [0 ) — o, ()] ont
n=0 o€Eint
1N—l
T, =50t > [Fp )’ - Fi (up)?] ort,
n=0 U:I{—‘iegmt
~ N-1
=36t > (- upt et
n=0 Uzmegint
N-1 N-1
R(m) — ot Rr}z{-l—l 907[?_17 R(m _ Z 5t Z Rn+1 n+1
n=0 KeM n=0 €&t

and the quantitie®’;"! and R"*! are given by (the one-dimensional version of) Equation
(2.28) and[(2.22) respectively.
The fact that

hrf T / /’H atapdxdt—/’}-[po ,0)dz,

is proven by the same technique as for passing to the IimhértdermTlm) of the dis-
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crete mass balance equation in the proof Thedrem|2.4.X&gharthe fact that, with the
assumed convergence of the sequept®)),,.cn, the sequencéH (p™)),.en cONverge
toH(p) inL"(Q2 x (0,7)), forr > 1. ForTZ,(m), we have, reordering the sums:

N-1
oM ==t > HD) uk (ot — o).
n=0 =7

) N-1 S0n+1 N (pn—i-l
T = =320t > (1Dicol Hpk) + |Dral Hipp)) wp P FI
n=0 U:I{—‘iegmt 7
N-1
Zm = - o Ps) — K,o PK) — L,o Pr,
R ot | Dol H(p2) — | Dic.ol H(pl) — |Drol H(p})
n=0 U:I{—‘iegint
n+l  n+l
u? YL YK .
he
We have: .
R —/ / H(p"™) u™ 8,0 du dt,
0 Q
o)
. (m) 4 N\ =
ml_l)IJrrloo T, = —/0 /Q’H(p) u Oy da dt.
The remainder terR{™ satisfies:
N-1
RSN <N ot DT [Hpk) = Hh) u ot — i,
n=0 =7

and so
|R§m)| <C, htm) ||u(m)HL°°(Q><(O,T)) Hﬂ(m)HTﬁv,BV’

provided that a uniform (with respect to the faces, the tikepsand the meshes) Lips-
chitz condition holds fofH () —H(p} )| which, in view of the expression 6{, requires
that the sequendg™),,en be bounded by below away from zero whee- 1.

For the other terms at the left-hand side [of (2.43), we rede€hapter B, Theo-
rem[3.4.2. Finally, the remainder terR(™ is non-negative under the CFL condition
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(2.23), while the positive part k™ tends to zero il.' (Q x (0, 7)) under the assump-
tion (Z.40) by Lemm&a2.413. The proof is thus complete. O

2.5 Numerical results

We assess in this section the behaviour of the scheme orusdest cases. For all these
tests, we chosg = p? for the equation of state, so the solved system turns out thébe

so-called shallow water equations. The exact solution@Riemann problem is studied
in AppendiXA.

2.5.1 Afirst Riemann problem

We begin with a Riemann probleme. a 1D problem which initial conditions consists
in two constant states separated by a discontinuity. Theeshteft and right states are
given by:

=1 . =10
left state: P ; right state: PR .
ur = 5 UR = 7.5

The computational domain i3 = (0, 1) and the final time i§" = 0.025. The (known)
analytical solution of this problem consists, from the kefthe right, in a shock wave
and a rarefaction wave, both travelling to the right, sejeary constant states.

2.5.1.1 Results

The density and velocity obtained @t= 0.025 = T with h = 0.001 anddt = h/12
are shown of Figurds 2.1 ahd .2 respectively. In additianperformed a convergence
study, successively dividing by two the space and time ggpkeeping the CFL number
constant). The difference between the computed and acalolution att = 0.025,
measured if.!(Q) norm, are reported in the following table:

space step | ho = 1/250  hg/2 ho/4 ho/8 ho/16
llp — ﬁHLl(Q) 0.0449 0.0256 0.0135 0.00775 0.00429
lu — a||L1(Q) 0.0411 0.0233 0.0119 0.00696 0.00384

We observe an approximatively first-order convergence rate
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o———0——0 exact solution
#———% numerical solution

Figure 2.1: Test 14 = 0.001, 6t = h/12 — Density at = 0.025.

To complete the study, we performed a computation of the ganmi@em, but sub-
tracting a constant real number to the left and right veyomtsuch a way that the velocity
on the intermediate state nearly vanishes. In this case bseree spurious oscillations
on the solution (see Figurés .3 dnd|2.4), probably due tdattethat the numerical
diffusion in the scheme vanishes. However, adding an aatifitscosity term in the dis-
crete momentum balance equation, with a constant viscesimal t00.5 p h (so equal
to the upwind viscosity which would be associated to a vé&yoegual tol) completely
cures the problem (see Figufes|2.5 2.6). This obsemsitiongly supports the idea
to build a higher order scheme using aposteriorifitted viscosity technique, as in the
so-called entropy viscosity methad [21, 22]; this work islarway.

When we substract once again a constant to the velocity htlefitand right state,
and so the velocity at the intermediate becomes negativeegaver an oscillation-free
solution without adding any viscosity (Figurfes|2.7 2.8)
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7.5

o———0——0 exact solution
#———% numerical solution
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Figure 2.2: Test 1 -4 = 0.001, ot = h/12 —Velocity att = 0.025.

2.5.1.2 On anaive scheme

We also test the “naive” explicit scheme obtained by evaigeadll the terms, except of
course the time-derivative one, at tinfe In the one dimensional setting and with the
same notations as in Section]2.4, this scheme thus reads:

K = o] eM, Blgp ) mm o= 2.44
_[UU]G ) 5t (pK pK)_'_ o’ o _07 ( . a)
=7 DU n n n ,n mn, n n, n () n
Vo = K|L € &, | ot |(ij1uo+1 - PDUUU) + Fruyp — Fruyg +pp —pg =0,
(2.44b)
VK € M, P = o(pr) = (o) (2.44c)

Hereafter and on the figure captions, this scheme is reféorbyg thep~~u~~p scheme
(since the pressure is updated after the computation ofdloeity rather than after the
computation of the density).

The computed density and velocity at tirfie = 0.025 are plotted on figurels 2.9
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o——— exact solution
#————= pumerical solution !

Figure 2.3: Test 1 modified to obtain a nearly vanishing viglat the intermediate state,
viscosity=0—h = 0.001, 6t = h/12 — Density att = 0.025.

and[2.10 respectively. From these results, it appearsigliéet thep ~~ u ~~ p scheme
generates discontinuities in the rarefaction wave, anthéurexperiments show that this
phenomenon is not cured by a decrease of the time and spaxetlsteseems to be
connected to the fact that, for this variant, we cannot ptheéthe limits of converging
sequences satisfy the entropy condition (in fact, they gibbbdo not). When trying to
do so, in our proof and from a purely technical point of viele trouble comes from
the fact that the pressure gradient term which appears ikitletic energy balance reads
u"1Vp" and it seems difficult to make the counterpare.(p™div(u™*')), with the
corresponding time levels, appear in the elastic potebadnce, starting from a mass
balance with a convection term written wit#¥; hence a discretization of the momentum
balance equation with an updated pressure gradient¥epit!, and thus the inversion
of steps in the algorithm, to get the “reference variantgm®ed in this chapter.
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4.5

o———=> exact solution
H———— numerical solution

4.0 7

3.5 S
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0.0 f---==-- SRR R EREEEERRREE 1

-0.5 f f f
0.0 0.1 0.2 0.3

Figure 2.4: Test 1 modified to obtain a nearly vanishing viglat the intermediate state,
viscosity= 0 —h = 0.001, §t = h/12 — Velocity att = 0.025.

2.5.2 Problems involving vacuum zones in the flow

The objective of the two tests presented in this section ishieck that the time step
does not have to be drastically reduced in the presence olbwacBoth are Riemann
problems, posed ol = (0, 1).

We first begin with a case where the vacuum is initially présanthe right initial
state:

left state: [pL - 1] ; right state: [pR - 0] .
urp =1 ur =0

In the computer codeyy, is fixed aspr = 1072, to prevent divisions by zero due to
imprudent programming. The results obtained at 0.05 are plotted on Figure 2.11
(density) and Figuré_2.12 (velocity); they have been oleghiwith » = 0.001 and a
constant time step equal o = %/8, which seems to be near to the stability limit. We
observe that the prediction velocity is rather poor neah&viacuum front; we however
check on Figuré 2.13 that the scheme converges to the rigjitta@g moreover, Figure
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o——— exact solution
#————= pumerical solution !

Figure 2.5: Test 1 modified to obtain a nearly vanishing viglat the intermediate state,
viscosity= 0.5 —h = 0.001, §t = h/12 — Density att = 0.025.

[2.14 shows that the quantityu (which is, in this case, the quantity of physical interest)
is in fact obtained with a reasonable accuracy with the esarseshes of this study.

We now turn a case where the chosen left and right states\ae by:

=1 . =1
left state: [ pr ] ; right state: [pR ] .

uL:—8 URIS

In this case, the solution consists in an intermediate statesponding to vacuum con-
nected to the left and right initial states by rarefactiorves&a Computed density and
velocity att = 0.03, with » = 0.001 anddt = h/12, are plotted on Figurés 2115 and 2.16
respectively. Once again, the behaviour of the schemeigaztory.
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4.5

o———=> exact solution
H———— numerical solution
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Figure 2.6: Test 1 modified to obtain a nearly vanishing viglat the intermediate state,
viscosity= 0.5 —h = 0.001, §t = h/12 — Velocity att = 0.025.

2.6 Conclusion

We have presented in this chapter an explicit scheme bassthggered meshes for the
hyperbolic system of the barotropic Euler equations. Thgsrithm uses a very simple
first-order upwinding strategy which consists, equationelgyation, to implement an
upwind discretization with respect of the material velpat the convection term. Under
CFL-like conditions based on the material velocity only @ipposition to the celerity of
waves), this scheme preserves the positivity of the deasiththe pressure, and has been
shown to be consistent for 1D problems, in the sense thatsé@gaence of numerical
solutions obtained with more and more refined meshes (amdrdingly, smaller and
smaller time steps) converges, then the limit is a weak pyitsolution to the continuous
problem. This theoretical result may probably be extendeldé multi-dimensional case,
and this work is now being undertaken. The proposed schema hatural extension to
the full Euler equations, which is the topic of next chaphéote also that a partial time-
implicitation, using pressure correction techniques, lesn shown to yield consistent
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o——— exact solution
#————= pumerical solution !

Figure 2.7: Test 1 modified to obtain a negative velocity atitiiermediate state k- =
0.001, 6t = h/12 — Density att = 0.025.

unconditionally stable schemes [26] 27].

Numerical studies show that the proposed algorithm is sfavien if the largest time
step before blow-up is smaller than suggested by the ab&rdiomed CFL conditions.
This behaviour had to be expected, since these CFL conditinly involve the velocity
(and not the celerity of the acoustic waves): indeed, weeg the only limitation, we
would have obtained an explicit scheme stable up to the ipcessible limit. However,
the mechanisms leading to the blow-up of the scheme (or,erealy, the way to fix the
time step to ensure stability) remain to be understood.

In addition, numerical experiments show that some osmlagtappear near stagna-
tion points, where the numerical diffusion brought by thevimaing vanishes. These
oscillations are damped by a small amount of artificial (jtaidike) viscosity, and this
suggests to implement techniques consisting in addingeéstheme such a diffusion
term, with a viscosity monitored by anposteriori(i.e. performed in view of the results
of the previous time step) analysis of the solution, as theadled entropy-viscosity tech-
nique. Besides, such an extension should allow to designra aszurate scheme, based

Explicit Staggered Schemes for Compressible Flows 74



NGUYEN Tan-Trung

2.5

o———=> exact solution
H———— numerical solution
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Figure 2.8: Test 1 modified to obtain a negative velocity atitiiermediate state k- =
0.001, 6t = h/12 — Velocity att = 0.025.

on higher-order numerical fluxes. This work is underway.

Last but not least, since the proposed scheme uses veryesimpierical fluxes, it is
well suited to large multi-dimensional parallel computeggplications. This is the topic
of ongoing studies at IRSN.

2.7 Appendix

2.7.1 Some results concerning explicit finite volumes coneon op-
erators
We begin with the convection operator appearing in the makmbe equation, which

reads, in the continuous problem,— C(p) = J;p + div(pu), wherew stands for a
given velocity field, which is not assumed to satisfy any dyemce constraint. Let be
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o———0——0 exact solution
#———% numerical solution

0.0 0.1 0.2 0.3

Figure 2.9: Test 1p~~u~-p scheme - = 0.001, §t = h/12 — Density at = 0.025.

a regular function fron{0, +oo) to R; then:

V'(p) Clp) = ¢'(p) 9:(p) + ¢ (p)u - Vp+¢'(p) pdive
= 0i(¥(p)) +u - Vi(p) + p¢/(p) divu,

so adding and subtracting p) divu yields:

W'(p) Clp) = 0 (¥(p)) + div(v(p)u) + (00 (p) — ¥(p)) diva. (2.45)

This computation is of course completely formal and onlydsébr regular functiong
andu. The following lemma states a discrete analoguéfo (2.45).

Lemma 2.7.1.Let P be a polygonal (resp. polyhedral) bounded seRdfresp.R?), and
let £(P) be the set of its edges (resp. faces).L.&te a twice continuously differentiable
function defined ovef0, +o0). Letp}, > 0, pp > 0, 6t > 0; consider three families
Py )neepy C Ry \ {0}, (Vi )neepy C Rand(F ) cep) C R such that

Vn € E(P), Ey=p, Vy,
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#———% numerical solution !
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Figure 2.10: Test 1p~~u~-p scheme - = 0.001, §t = h/12 — Velocity att = 0.025.

Let Rp s be defined by:

Res= [T (oo = i)+ 3 B3] lor)
ne&(P)
I toe) — v X oY+ I ) — o) DV

ne&(P) ne&(P)

Then this quantity may be expressed as follows:

L|P| . ) —(2)
Rpst = 57 (pp — pp)° Egz V.ip op) V" (pp’)
n

——ZV* b= o) 2" (PL),

ne&(P

whereﬁg), pg) € |lpp, pp)l andvn € E(P), by € [pp, py)l- We recall that, fou, b € R,
we denote bya, b]| the interval|a, b]] = {6a + (1 — 6)b, 6 € [0,1]}.
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o——o0—=0 exact solution
——— numerical solution

0.7 0.8 0.9 1.0

Figure 2.11: Riemann problem with vacuum at the right state=0.001, 6t = h/8 —
Density att = 0.05.

Proof. By the definition ofF*, we have:

P
['&‘ o)t 38
ne&(P)
_ 1P| :
6_[: (pP pP Z pn Z pnv ¢(pP>:|

ne&(P ne&(P)

(2.46)

By Taylor expansions af, there exists two real numbqo‘g) andﬁg) € [pp, ppll and a
family of real numbersp; ),cs(p) satisfying,vn € £(P), p; € |[pp, py], and such that:

(0r = P ¥/ (pr) = lop) = 0l5) + 5 (or — P24 (7)),
put (pp) = ¥(p}) + [Pt (pp) — ¥ (pp)] — % (o = pp)* 0" (7).

W (pp) — V' (pp) = (pp — pp) V" (B2).
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4.0

o———0——0 exact solution
#———% numerical solution
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0.0 0.1 0.2 0.3 0.4

Figure 2.12: Riemann problem with vacuum at the right state=0.001, 6t = h/8 —
Velocity att = 0.05.

Substituting in[(2.46) yields the result we are seeking. O

We now turn to the convection operator appearing in the monmebalance equation,
which reads, in the continuous setting;—+ C,(z) = 0;(pz) + div(pzu), wherep (resp.
u) stands for a given scalar (resp. vector) field; we wish t@iobéome property of’,
under the assumption thatindu satisfy a mass balance equatioe,d,p+div(pu) = 0.
Formally, using twice the assumptioyp + div(pu) = 0 yields:

V' (2) Cplz) = ¢/ (2)[0e(p2) + div(pzu)] = ¢/ (2)p[0iz + u - V2]
= p[B(z) + u V()] = (p(2)) + div (p1(2) w).

Taking for z a component of the velocity field, this relation is the cdrargument used
to derive the kinetic energy balance. The following lemnadest a discrete counterpart
of this identity, for a finite volume first-order explicit cegction operator.

Lemma 2.7.2.Let P be a polygonal (resp. polyhedral) bounded seféf(resp. R?)
and let&(P) be the set of its edges (resp. faces). kpt> 0, pp > 0, ¢t > 0, and
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exact solution
= dx=1/1000
dx = dx/2

dx = dx/4

dx = dx/8

dx = dx/16

-----------------------------------------

0.9 1.0

Figure 2.13: Riemann problem with vacuum at the right state=#h, = 0.001toh =
ho/16, 6t = h/8 — Velocity att = 0.05.

(F;)neg(p) C R be such that

1Pl :
— (op—pp)+ D, Fy=0. (2.47)
ne&(P)

Letv be a twice continuously differentiable function defined @ve+oo). For u} € R,
up € Rand(uy),cepy C R let us define:

Rpst = [|;Dt| (ppup p*PuP Z F! *} up)
ne (P
[|§t‘ [pp¢(m>) ppU(up)] + Z Fr ¢(u;)]

ne&(P)

Then:
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exact solution
dx=1/1000
dx = dx/2

dx = dx/4

dx = dx/8

dx = dx/16

————————————————————————————————————

______________________________

Figure 2.14: Riemann problem with vacuum at the right state=hy, = 0.001toh =
ho/16, 6t = h/8 —Mass flowrate at = 0.05.

(¢) the remainder ternRp 5, reads:

Rps =5 % pp (up — up)?y" (@) — 3 Fy (u, = up) " (@)
ne&(P)
+ > Fy(uy — up) (up —ujp) (@) (2.48)

ne&E(P)
with @), 7% € [[up, up), andvny € E(P), @, € [[us, up).

(i) If we suppose that the functianis convex and that; = u} as soon ag; > 0,
thenRp s is non-negative under the CFL condition:

P "
5t < Plorty (2.49)

- Znef(P)(Fﬁk)_ (Ell;)z/%f

) —
Whereg;’) = Mg fup,u}) ’(/)//(S), @DP = MaXse[up,up] ’(/)//(S) and
y;; = minse\[u}g,u,’;ﬂ ¢”<8)'
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1.2

o——o0—=0 exact solution
——— numerical solution

Figure 2.15: Riemann problem with vacuum appearanée= 0.001, 6t = h/12 —
Density att = 0.03.

For ¢ (s) = s%/2 (and therefore)”(s) = 1, Vs € (0, +00)), this CFL condition

simply reads:
‘P|PP
0t < ——""—"—. (2.50)
2neer)(F7)”
Proof. Let T be defined by:
P
Tp= [|5t‘ (ppup — ppup) + Z Ey *} up).
ne&E(P)

Using equation(2.47) multiplied by},, we obtain:

Tp = [|;Dt| pr ( Z Ey (uy —up) ] P (up).

ne&(P)

We now define the remainder termsand(r;),ce(p) bY:

e = (up—u) ¥/ (up) — [0 up) —0(up)], 5 = (up—ey) ¥/ ()~ [(up) (a5
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o———0——0 exact solution \
#———% numerical solution ! ! ! ! ! !
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Figure 2.16: Riemann problem with vacuum appearance=0.001, 6t = h/12 - Mass
flowrate att = 0.03.

With these notations, we get:

1o = 2y ) v + 3 F o) — )]
nee(P)

+BPPTP— Z Fyor+ Z Fy (uy — up) (V' (up) — V' (u}p)).

ot
ne&(P) ne&(P

Using once again equation (2147), this time multiplied/y.},), we obtain:

P
Tp = |5t‘ [ppi(up) = ppb(up)] + Y Frib
ne&(P)
+— ppTp — Z F*T*‘i‘ Z F* Un_up (W(UP)_@D/(U*P))-
neE(P) ne&(P

The expression (2.48) of the remainder telfms, follow by remarking that, by a Taylor
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expansion, there existé;l),ﬂg) € |[up, up], andvn € E(P), u;, € |[uy, up] such that:

1 — * * 1 —% * *
rp = B ?/)”(Ugal)) (up — uP)2v Ty, = 2 @D”(Un) (Un - UP)27

W (up) — ' (up) = 0" (@2 (up — ujp).

If ¢ is convexy p is non-negative. If, in additiony}, — u; vanishes/n € £(P) whenF
is non-negatives-r; is non-negative. By Young's inequality, the last termiip 5, may
be bounded as follows:

S B - ) (up — i) v @)

neE(P)

V() oo 1 s L N (g e (e
< X B ] e g 2 ) - ),

ne&(P) neE(P)

so this term may be absorbed in the first two ones under the GRdlitton (2.49). O
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Chapter 3

The full Euler equations

3.1 Introduction

We address in this chapter the so-called Euler equationshwéad:

Bip + div(pu) = 0, (3.1a)
O(pu) +divipu @ u) + Vp =0, (3.1b)
8,(p E) + div(p Ew) + div(pu) = 0, (3.1c)
p=(r-pe,  E=gluPte (3.1d)

wheret stands for the timey, u, p, E ande are the density, velocity, pressure, total energy
and internal energy respectively, and> 1 is a coefficient specific to the considered
fluid. The problem is supposed to be posed d¢ver (0, 7'), wheref2 is an open bounded
connected subset &, 1 < d < 3, and(0, T') is a finite time interval.

System|[(3.11) is complemented by initial conditions foe andu, denoted by, e
andug respectively, withp, > 0 andey, > 0, and by a boundary condition which we
suppose to be:

u-n=>_0
at any time ané.e.on 052, wheren stands for the normal vector to the boundary.

Let us suppose that the solution is regular, andlelbe the kinetic energy, defined by
Ej, = 1 |ul?. Taking the inner product of (3.1Lb) hy yields, after formal compositions
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of partial derivatives and using the mass balahce3.1a):
O (pEy) + div(p Epu) + Vp-u = 0. (3.2)

This relation is referred to as the kinetic energy balaneds8acting this relation from
the total energy balance (3l1c), we obtain the internalggniealance equation:

Oi(pe) + div(peu) + pdiv(u) = 0. (3.3)

Since,

- thanks to the mass balance equation, the first two termegilefthhand side of (313)
may be recast as a transport operatpfpe) + div(peuw) = p [Ore + u - Ve,

- and, from the equation of state, the pressure vanishes whe,

this equation implies, it > 0 att = 0 and with suitable boundary conditions, that
remains non-negative at all times.

The objective pursued in this work is to develop and studynfa theoretical point of
view, an explicit scheme for the solution 6f (8.1). More psety, we intend to build an
explicit variant of pressure correction schemes that wexeldped and studied recently
in the framework of the simulation of compressible flows aspkeds/[17, 29, 26, 27],
and implemented in the industrial open-source computee d¢8¢5 [33]. Indeed, our
initial motivation was to provide in the same software ancedfit alternative of these
schemes for quickly varying unstationary flows, with a clhtgastic Mach number in
the range or greater than the unity. In order to remain sialilee incompressible limit,
the starting-point algorithms are based mri-6upstable) staggered finite volume or finite
element discretizations, and the present scheme thusedies on these space approxi-
mations. In our approach, the upwinding techniques whiehraplemented for stability
reasons are performed for each equation separately andesiplect to the material ve-
locity only. This is in contradiction with the most commomadegy adopted for hyper-
bolic systems, where upwinding is built from the wave suetof the system (seg.
[61,[19]6] for surveys). However, it yields algorithms win&re used in practice (seq.
the so-called AUSM family of schemes [45,44]), because eirtgenerality (a closed-
form solution of Riemann problems is not needed), their anm@ntation simplicity and
their efficiency, thanks to an easy construction of the fluatabe cell faces.
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Another salient feature of the propose scheme is that weedize the internal energy
balance[(3.13) instead of the total energy balahcel(3.lis)ptlesents two advantages:

- first, it avoids the space discretization of the total ependhich is rather unnatural
for staggered schemes since the degrees of freedom for lingtyeand the scalar
variables are not collocated,

- second, by a suitable discretization bf {3.3), we obtaicteeme which ensures,
“by construction”, the positivity of the internal energy.

However, for solutions with shocks, Equatidn (3.3) is natieglent to [3.1k); more
precisely speaking, at the locations of shocks, positivaguees should appear, at the
right-hand side of Equatiofn_(3.3). Discretizirig (3.3) eed of [3.1c) may thus yield a
scheme which does not compute the correct weak discontssmutions; in particular,
the numerical solutions may present (smeared) shocks wloictot satisfy the Rankine-
Hugoniot conditions associated o (3.1c). The essensaltef this chapter is to provide
solutions to circumvent this problem. To this purpose, wesely mimic the above per-
formed formal computation:

- we start from the discrete kinetic energy balarcel (3.3),ramark that the residual
terms at the right-hand side do no tend to zero with the spadéime steps (they
are the discrete manifestations of the above mentioneduresgs

- we thus compensate these residual terms by correctives farthe internal energy
balance.

We provide a theoretical justification of this process byvging that, in the 1D case, if
the scheme is stable and converges to a limit (in a sense tefimed), this limit satisfies
a weak form of[(3.1c) which implies the correct Rankine-Huigbconditions.

This chapter is structured as follows. We begin with the @néstion of the scheme
(Section 3.R), then the discrete kinetic energy balancetla@dorrection source terms
of the internal energy equation are given in Section 3.3. fidy section is dedicated
to the proof, in 1D, of the consistency of the scheme (Se@id). We then present
some numerical tests, to assess the behaviour of the &lgof&ectiori 3)5). Finally, the
conclusion and perspectives are given in Se¢tioh 3.6.
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3.2 The scheme

We refer to Chapterl1, Sectién 1.2 for the space discrebizatFor the discretization
in time, let us consider a partitidh = t, < t; < ... < ty = T of the time interval
(0,T), which we suppose uniform for the sake of simplicity, andStet= ¢, — ¢, for
n=0,1,..., N —1 be the (constant) time step. We consider an explicit-iretatheme,
which reads in its fully discrete form, for<n < N — 1:

|K| n+l n

VK € M, — (i Z Fpr, =0, (3.4a)
cel(K

K

VK € M. %m’;{“e?ﬁ—p& W0+ Y Figeh K] v (diva)j = i
ce&(K)
(3.4b)

VK eM,  pt=(y—1) o e (3.4c)

Forl <i<d, Vo€ &Y,

| Ds|
ot

(O uptt = pp )+ D Fral, + D] (Vp)at' =0,

0,0 o€ et

Eeg(Da)

(3.4d)

where the terms introduced for each discrete equation direedehereatfter.

Equation[(3.4a) is obtained by the discretization of thestmdance equatiof (311a)
over the primal mesh, anﬂ’};f;l stands for the mass flux acrossoutward &', which,
because of the impermeability condition, vanishes on eatdaces and is given on the
internal faces by:

Vo= K|L€&w,  Fi,=lo| ol uj,, (3.5)

whereuy , is an approximation of the normal velocity to the fac@utward K. This
latter quantity is defined by:

ul; e -y, for o € £ in the MAC case,
U, = (3.6)
u, - ng, in the CR and RT cases,

wheree® denotes theé-th vector of the orthonormal basis Bf'. The density at the face
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o = K|L is approximated by the upwind technique:

pk  fug, >0,
Py = | (3.7)
ol otherwise

We now turn to the discrete momentum balarice (3.4d), whidbtained by dis-
cretizing the momentum balance equation (B.1b) on the dallsl @ssociated to the faces
of the mesh. For the discretization of the time derivative,must provide a definition
for the valueg},™ andp?, , which approximate the density on the facat timet"*' and
t" respectively. They are given by the following weighted ager.

foro = K|L € &y, for k =nandk =n + 1, |D,| o5, = |Drol| pic + |Dro| pf.

(3.8)
Let us then turn to the discretization of the convection tefire first task is to define the
discrete mass flux through the dual faceutwardD,,, denoted by ; the guideline for
its construction is that a finite volume discretization of tihass balance equation over
the diamond cells, of the form

|D0| n+1l n
Vo € &, 50 (P, Z (3.9)
Eeg(Do'

must hold in order to be able to derive a discrete kineticggnbalance (see Sectibn B.3
below). For the MAC scheme, the flux on a dual face which istledan two primal
faces is the mean value of the sum of fluxes on the two primaisfaand the flux of a
dual face located between two primal faces is again the malaie wf the sum of fluxes

on the two primal faces [30]. In the case of the CR and RT sckefoe a dual face
included in the primal celk, this flux is computed as a linear combination (with constant
coefficientsj.e.independent of the face and the cell) of the mass fluxes thrthegfaces

of K, i.e.the quant|t|es{F}éJ; )oce(x) @ppearing in the discrete mass balamce {3.4a). We
refer to [1,[17] for a detailed constructlon of this approation. Let us remark that a
dual face lying on the boundary is then also a primal face thadlux across that face is
zero. Therefore, the value$;" are only needed at the internal dual faces, and we make

Explicit Staggered Schemes for Compressible Flows 89



NGUYEN Tan-Trung

the upwind choice for their discretization:

Uy, if F'e >0,
fore=D,|D., u!,= (3.10)
(e otherwise
The last terr'ﬂ(Vp)Z;rl stands for theé-th component of the discrete pressure gradient
at the facer. The gradient operator is built as the transpose of theetisaperator for the
divergence of the velocity, the discretization of which &séd on the primal mesh. Let
us denote the divergence of ! over K € M by (divu)%™; its natural approximation
reads:

for K € M, (diva) it = =N Z lo| u?;ral (3.11)

|K| cel(K)

Consequently, the components of the pressure gradienivee loy:

foro = K|L € &y, (Vp)utt = \|D “ (pit = p Y mg - e, (3.12)

this expression being derived thanks to the following dyaklation with respect to the
L2 inner product:

> K| ppt (diva) "+1+Z > D, utt (Vp)itt = 0. (3.13)

KeM 1= 10'65()

Note that, because of the impermeability boundary conustithe discrete gradient is not
defined at the external faces.

Equation [(3.4b) is an approximation of the internal energhahce over the primal
cell K. The positivity of the convection operator is ensured if vée @n upwinding
technique for this term [42]:

ey if Fg, >0,
foro = K|L € &y, el =
et otherwise.

The discrete divergence of the velocitdivu)y, is defined by[(3.11). The right-hand
side,S%, is derived using consistency arguments in the next section

Finally, the initial approximations fqgs, e andw are given by the average of the initial
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conditionspy, ey on the primal cells and, on the dual cells:

1 1
VK € M, p(}(:ﬁ/l(po(w)dm, andeg{zﬁ/l{eo(m)dw

“|Ds| Jp,

(3.14)
for1<i<d, Voe&l

(up(x)); de.

The following positivity result is a classical consequentéhe upwind choice in the
mass balance equation.

Lemma 3.2.1(Positivity of the density) Let p° be given by@3.14) Then, sinceu is
assumed to be a positive functigfi,> 0 and, under theCFL condition:

K]

ot < - ;
EUGE(K) o] max(uK’o,O)

VK e M, for0<n<N —1, (3.15)

the solution to the scheme satisfigs> 0, for 1 <n < N.

3.3 Discrete kinetic energy balance and corrective source
terms

We begin by deriving a discrete kinetic energy balance eégnaEquation[(3.16) below
is a discrete analogue of Equatién (3.2), with an upwindrdiszation of the convection
term. Its proof may be found in Chapiér 2, Lemima 2.3.1.

Lemma 3.3.1(Discrete kinetic energy balance)
A solution to the systel8.4) satisfies the following equality, far< i < d, o € 5§” and
0<n<N-1:

DU n n n n 1 n n n n
Dol gt ) 13 S0 L 1D (V) s = R
e€€(Dy)

(3.16)
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with:

n 1 |D0| () n n 1 n — n n
Ro‘,—zi'_l = §Wij_1(ua,—:1 - ucr,i)2 + 5 Z (FDJ,E) (uo’,i - uo,i)2
e=Dy|D,1€€(Do

)
— Y (Fp ) (ke — k) (e =), (3.17)

¢=Do|D,1€€(Dy)

where, fora € R, = > 0 is defined by~ = — min(q, 0).

The next step is now to define corrective terms in the inteenargy balance, with
the aim to recover a consistent discretization of the tatakgy balance. The first idea
to do this could be just to sum the (discrete) kinetic energhaitice with the internal
energy balance: it is indeed possible for a collocated disxation. But here, we face
the fact that the kinetic energy balance is associated tduaémesh, while the internal
energy balance is discretized on the primal one. The wayrtoivent this difficulty is
to remark that we do not really need a discrete total ener@nba; in fact, we only need
to recover (a weak form of) this equation when the mesh ane sit@ps tend to zero. To
this purpose, we choose the quantiti€% ) in such a way as to somewhat compensate

the termg R}") given by [3.17):

d
VK € M, St = Z Syt with St = %p?{ﬂ Z 7|D£’U| (ugfl—ugl)z
=1 cef(K)neY
‘Fgff n n \2 n n+1 n n n
+ Z QK e [ 2 (uo,i - uo’,i) + Fo,e (U‘U,i - uo,i) (ucr’,i - ucr,i)i| .
eeég), eNK#0,
€=Do|D 1, Fg <0

(3.18)

The coefficientyx . is fixed tol if the facee is included ink’, and this is the only situation
to consider for the RT and CR discretizations. For the MAGeseh, some dual faces are
included in the primal cells, but some lie on their boundéoy;such a boundary edge
we denote byV, the set of cells\/ such that\/ Ne # § (the cardinal of this set is always
4), and computey . by:

K|

Oe= e (3.19)
" EMENE M‘

For a uniform grid, this formula yieldsx . = 1/4.
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The expression of th@S‘}L{“)KeM is justified by the passage to the limitin the scheme
(for a one-dimensional problem) performed in the next sectiWe note however here
that:

Z Sn-‘rl Z Z Rn-‘rl (320)

Indeed, the first part 05}};1, thanks to the expressioE(B.S) of the density at the face
P, !, results from a dispatching of the first part of the residuadrahe two adjacent
cells:

1 |DU| () n n \2 |D U| n n n \2
5 (st ij_l( o‘jl_uo,i) = CSI; pK+1( +1—U 2)

O’Z o,

N | —

affected to K

1|D 0‘ n n n \2
+§ 5Lt pL—’_l(O',—?’;l—uO',’i)'

affected to L

-~

The same argument holds for the terms associated to thealed, fwhich explains, in
particular, the definition of the coefficients; .. The scheme thus conserves the integral
of the total energy over the computational domain.

The definition [3.1B) of S}:™") ke allows to prove that, under a CFL condition, the
scheme preserves the positivityeof

Lemma 3.3.2.Let us suppose that, for< n < N — 1 and for all K € M, we have:

K D " n+1

K] and ot < | Dol Pl —, Vo e&(K).
/7 Z |O-‘ Z aK,E (Fo,e)
oe€(K) e€€(Do), eNK#D

(3.21)
Then the internal energi¢™)o<,<n given by the schem@.4)is positive.

Proof. Let n such thatd < n < N be given, and let us assume thkét > 0 for all
K € M. Since, by assumption, the CFL condition (3.15) is satisfiethave, by Lemma
B.21,p% > 0andpstt > 0, for all K € M. In the internal energy equation (314b), let
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us express the pressure thanks to the equation of stat (8 dlatain:

e = [k = Y (B = (= Dek Y ol (i) ek
oe&(K) ceE(K)

+ Z (Fr)er+(v=1pker Y ol (ug,)”+Sp. (3.22)
oce&(K ce&(K)

Using the fact that, whenj; , > 0, the upwind density at the facep%, we have:

(Fr o)™+ (v = Dlol| pi (uie )" = ol pi (uk,)"

and hence Relation (3.22) reads:

K] i1 n K]
WPKHQKH = [ -7 Z o] (u } Pl €k
ocel(K
+ Z FK,U “ep+ (v — 1) p ek Z o] ()™ + Si
oeE(K) oeE(K)

Let us suppose for a while that:"! > 0. Then we get’x* > 0 under the following

CFL condition:
| K|

ry Zoeg ‘O-|<UK0>+'
Let us now derive a condition for the non-negativity of these term. Applying Young
inequality to the last term of";', denoted by .S};')s, we obtain

FTL
Sz Y a2 -y

Eegg), eNK#0,
e:Dg\DU/ s F;ﬁESO

2
=D e (g )
eeég), eNK#0,
¢=Dg|D,1, F} <0
Gathering all terms of ' yields:
Sn+1> 1 n+1 n \2 |DK7€T‘ n—+1 Fn
Ko = Z i(uo,i —uo'yi) 5t pK - Z aK,G( 0'75) )
oc&(K) c€€(Dy), eNK£D
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thus Sy is non-negative under the CFL condition:

|DK,0| p?(—i_l

S© ake(Fr)T

e€€(Dy), eNK#D

ot <

Vo € £(K),

which concludes the proof. O

3.4 Passing to the limit in the scheme

The objective of this section is to show, in the one dimersioase, that if a sequence of
solutions is controlled in suitable norms and convergeslimig, this latter necessarily
satisfies a (part of the) weak formulation of the continuowdfem.

The 1D version of the scheme which is studied in this sectiag be obtained from
Schemel(314) by taking the MAC variant of the scheme, usirig @me horizontal stripe
of grid cells, supposing that the vertical component of taleity (the degrees of free-
dom of which are located on the top and bottom boundariesykas, and that the mea-
sure of the vertical faces is equal to 1. For the sake of rebigabowever, we completely
rewrite this 1D scheme, and, to this purpose, we first intcedsome adaptations of the
notations to the one dimensional case. For &hy M, we denote by its length
(so hx = |K]); when we writeK = [o0'], this means that eithek’ = (z,,z,/) or
K = (z,,x,); if we need to specify the ordeite. K = (z,, x,) With z, < z,/, then
we write K = [o0’]. For an interfacer = K|L between two celld and L, we define
he = (hx + hr)/2, so, by definition of the dual mesh, = |D,|. If W(ﬂized to specify
the order of the cell$C and L, say K is left of L, then we writes = K|L. With these
notations, the explicit schemg (B.4) may be written as ¥adlan the one dimensional
setting:

1 1
K O = — d 0 :—/ d
v EMu Pr |F{|Lp0($) €, €K |F{| K€0(x) Z,
1

(3.23a)
Vo € & uy = —— uo() d
int» o |D0| D 0 )
H
VK = [o0'] € M,
@( mHL_ gny L FT  F = () (3.23b)
5t Pk T PK of T Fe T '
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H
VK = [o0'] € M,

K
Ll e — i) + Fien, — Fyes +luty =) = 8%
(3.23c)
VE € M. bt = (=) o e (3239

—
Vo = K|L € gint;
| Ds |
ot

n+1l, n+l1 n ,n n,n n,n n+1 n+1l __
(PDU Ug — — pD{,uO') + Frup — Fruye +pp —p - =0.

(3.23e)

The mass flux in the discrete mass balance equation is gmend &, by £ = plu?,
where the upwind approximation for the density at the fageis defined by[(3]7).

In the convection terms of the internal energy balance, gpEaximation fore? is
upwind with respect t& (i.e, foro = K|L € &y, € = e if F > 0 ande = e}

[

otherwise). The corrective tersf; reads, forl <n < N andvVK = [0’ — o]:

K Fn—l
St = g T — )2 4 G — )+ T gy

— PR (g —ug ™) (ug ™ —up ), (3.24)

where the notatiod’ = [0/ — o] means that the flow goes fromto o (i.e., if Fjt >0,
— —,

K = [o'o] and, if Ft <0, K = [00"]). Atthe first time step, we thus séf, = 0, VK €

M.

In the momentum balance equation, the application of thequiare described in
Sectior 3.2 yields for the density associated to the dualieewith « = K|L and for
—
the mass fluxes at the dual face located at the center of the les [o0]:

1
2| D, |

(K| ok +1E0 ), F= 5 (B2 + F),

(3.25)
and the approximation of the velocity at this face is upwin{: = «? if Fjz > 0 and
uj = u, otherwise.

fork =nandk =n+1, pf, =

Let a sequence of discretizations1™, §t™),.cx be given. We define the size
h(m™ of the meshM ™ by K™ = supe vom hix. Letp™, pi™ e™ andu™ be the
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solution given by the schemie (3123) with the meghf™ and the time stept™. To the
discrete unknowns, we associate piecewise constant funsctin time intervals and on
primal or dual meshes, so the density, the pressurg(™, the internal energy™ and
the velocityu™ are defined almost everywhere @nx (0, T") by:

N-1
P (@, t) =D > (P X () X (1), (3.26a)
n=0 KeM
N-1
ul™ (2, 1) =Y N (w2 Xp, (2) X (1), (3.26b)
n=0 oe&
N-1
P () =D > (0" Xic(w) X i) (B), (3.26¢)
n=0 KeM
N-1
6( = K XK X(n,n-ﬁ-l} (t)v (326d)
n=0 KGM

whereXy, Xp, and X, 1) stand for the characteristic function of the intervals D,
and(t", t"1] respectively.

For discrete functiong andv defined on the primal and dual mesh, respectively, we
define a discret&!((0,7); BV(Q2)) norm by:

N N
lallresy =Y 0t > g —ail,  [ollresy=Y_06 > i -l

n=0 C’—:[(|L€8im n=0 EZDG‘DU/ Egint

and a discreté&'(Q; BV((0,7'))) norm by:

N-1

lqll7e8v = Z | K| Z | — gl vll7 By = Z | D, | Z gt — 7.
KeM n=0 oe€ n=0

For the consistency result that we are seeking (Thebrer# Befow), we have to assume

that a sequence of discrete solutiqps™ , p™, u(™) _ satisfiesp™ > 0, pt™ > 0

ande™ > 0, Vm € N (which may be a consequence of the fact that the CFL stability
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condition [3.1I5b) is satisfied), and is uniformly bounded.th((0, 7)) x Q)3, i.e.

VK € M™ for0<n < N™, ¥meN,
0< (i <C,  0<(P™)k<C  0< (™) <O (3.27)

and
(u™)2] < C, Yo e &M, for0<n < N™, vm €N, (3.28)

whereC' is a positive real number. Note that, by definition of thei@itonditions of the
scheme, these inequalities imply that the functipns, andu, belong toL.>°(2). We
also have to assume that a sequence of discrete solutidsfiesathe following uniform
bounds with respect to the discrete BV-norms:

1" 728y + 12" |70,8v + 1€ [l 708v + [0 |l 72ny < C, VmeN. (3.29)
and:
[u™ |7 epv < C, Vm €N. (3.30)

We are not able to prove the estimates (B.27)—(3.30) for dhetisns of the scheme;
however, such inequalities are satisfied by the “intergslaffor instance, by taking the
cell average) of the solution to a Riemann problem, and aservled in computations (of
course, as far as possibig. with a limited sequence of meshes and time steps).

A weak solution to the continuous problem satisfies, for @amy C>* (2 x [0,7)):

T

_ / / [P Oy + pu@xgo} drxdt — / po(z) p(x,0)dz =0, (3.31a)
oT Q 0

_ / / [Pu@ﬁﬂ + (pu® +p) &ESO} dz dt — / po(x) up(z) p(z,0)dz =0, (3.31b)
0o Ja 0

—/ [P B+ (0 B+ p)udeg] dedi — / po() Eol) g(x, 0) da = 0,
Qx(0,7) Q
(3.31c)
1 1
p=(r=1pe, E=gu'+e, Ey=guj+e (3.31d)

Note that these relations are not sufficient to define a welakkigo to the problem, since
they do not imply anything about the boundary conditionswieler, they allow to derive
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the Rankine-Hugoniot conditions; hence if we show that #reysatisfied by the limit of

a sequence of solutions to the discrete problem, this imple®sely speaking, thahe
scheme computes correct shoikes. shocks where the jumps of the unknowns and of the
fluxes are linked to the shock speed by Rankine-Hugoniotitiond). This is the result
we are seeking and which we state in Theofem B8.4.2. In ordpraee this theorem,
we need some definitions of interpolates of regular testtfons on the primal and dual
mesh.

Definition 3.4.1 (Interpolates on one-dimensional meshest (2 be an open bounded
interval of R, letp € C°(2 x [0,7")), and letM be a mesh oveR. The interpolatep
of ¢ on the primal mestM is defined by:

N-1
OMm = Z Z QO?{—H XK X[tn’tn+l)7
n=0 KeM

where, for0 < n < N and K € M, we setp}, = o(xx,t"), with zx the mass center of
K. The time discrete derivative of the discrete functign is defined by:

n+1

N—-1 n
Orom = Z Z W X X[t",t"“)a
n=0 KeM

and its space discrete derivative by:

n+1 n+1

N-1
¥ — ¥
61:@/\/1 = E E LK h K XDU X[tn7tn+1).
n=0 =7 g

= O':K|L€€im
Let s be an interpolate of on the dual mesh, defined by:
N-1
e =D D ¢utt X, i,
n=0 oce&

where, forl < n < N ando € &, we sety” = ¢(z,,t"), with z, the abscissa of
the interfaces. We also define the time and space discrete derivatives ofitbcrete
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function by:

N-1 SOH—H _ 4,0
Oupe = D) 05" Ap, Kpnaos),

n+1 n+1

xﬁpé‘ - Z Z % XK X[t”,t”+1)-

Finally, we definé, o ¢ by:

nt+l _  n+l
:vSOM & — Z Z % XDK,U X[t7L7t7L+1)
[UU']EM
SOZ—H 9071?_1

+ XDK’J, X[tn7tn+1).

h/2

We are now in position to state the following result.

Theorem 3.4.2(Consistency of the one-dimensional explicit scheme)

Let2 be an open bounded interval Bf We suppose that the initial data satisfigse
L>(Q), pp € BV(Q), eg € L®(Q) anduy € L®(Q). Let (M™ 5tM), .y be a
sequence of discretizations such that both the timesgt&pand the siz& ™ of the mesh
M(™) tend to zero asn — oo, and let(p™, p(™) (™) (™) be the corresponding
sequence of solutions. We suppose that this sequencessdtisfiestimate8.27)3.30)
and converges if? (2 x (0,7))%, for1 < p < oo, to(p, p, €, u) € L=(Q x (0,T))™

Then the limit(p, p, e, u) satisfies the syste@.31)

Proof. It is clear that with the assumed convergence for the seguehsolutions, the
limit satisfies the equation of state. The fact that the Isatisfies the weak mass balance
equation[(3.37a) and the weak momentum balance equati®hi(3is proven in Chap-
ter[2, Theorem 2.412. The proof of this theorem is thus obthlny passing to the limit
in the scheme, in the internal and the kinetic energy balaqoations.

Letyp € C*(Q x [0,T)). Letm € N, M™ andst™ be given. Dropping for short
the superscript™, let ¢\, be the interpolate ap on the primal mesh and I8¢ ., and
0.0 be its time and space discrete derivatives in the sense dfibb&ii3.4.1. Thanks
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to the regularity ofp, these functions respectively convergd.iii€2 x (0,7")), forr > 1
(includingr = +00), to ¢, dyp andd, ¢ respectively. In additionp (-, 0) (which, for
K € Mandz € K, isequal topl. = p(xk, dt)) converges te(-,0) in L"(Q2) for r > 1.
We also definepe, 0,0 andd, ¢, as, respectively, the interpolate pfon the dual
mesh and its discrete time and space derivatives, stillensénse of Definitioh_3.4.1;
once again thanks to the regularity@fthese functions converge Iri(£2 x (0,7")), for
r > 1,toy, 0yp andd, p respectively. As for the interpolate on the primal mes, 0)
(which, foro € £ andz € D,, is equal top! = p(x,, 6t)) converges tg(-,0) in L™(Q)
forr > 1.

Since the support @f is compact irt2 x [0,7"), for m large enough, the interpolates
of ¢ vanish on the boundary cells and at the last time step(after, we systematically
assume that we are in this case.

On one hand, let us multiply Equatidn (3.4b) &y, and sum the result fdr <
n < N —1andK € M. On the second hand, let us multiply the discrete kineticggne
balance[(3.16) byt o7+, and sum the result over for < n < N — 1 ando € Epy.
Finally, adding the two obtained relations, we get:

Tl(m) i Tz(m) I Tg(m) 4 Tl(m) 4 T~2(m) + T~3(m) — gm) _ p(m) (3.32)
where:
N-1
M= bt ot e e A R
n=0 KeM
N-1
T =0t > [phenul — plerul] o
=0 g_lr]eM
N-1
T =30 Yk (ul —ul) g
=0 g lso'leM
N-1
H(m 1 ‘DU| n n 7 n n
T =3 ot OB (™) = pr(up)?] ot
2 ot
n=0 0€Eint
1 N-1
T =230t Y [FE () - R ig)?] o,
—)

n=0 " G _K[LeEmn
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=36t Y o - upt et
_ —

g(m) — 5t S}L{ QO?(—H, Zat Z Rn-l—l n+1

n=0 KeM = o€Eint

and the quantitie§;-"' and R**! are given by Equation (3.24) and (the one-dimensional
version of) Equatior(3.17) respectively.

Reordering the sums ifi"™ yields:

n+1

N-1 "
m nQO ¥
Tf):—z&fZUﬂ Pk € KTK_Z|K|P?<6(;{<P}<7

n=0 KeM KeM

so that:

_ _/O /Qp(m) e(m)ét@/\/l drdt — /(p(m))o(x) (e(m)>0<x) SOM(«T, 0) Ao,

Q

The boundedness ¢f), ¢, and the definition[(3.23a) of the initial conditions for the
scheme ensures that the sequerf¢g8)?),.cx and((e™)?),,cx converge tg, ande
respectively in."(Q2) for » > 1. Since, by assumption, the sequence of discrete solutions
and of the interpolate time derivatives convergeLifQ x [0, 7)) for » > 1, we thus
obtain:

lim 7" //,oeat@dxdt / o(2) eo@) p(, 0) da.

m——+00

Reordering the sums [ﬁz(m), we get:

N-1
Tz(m) _ Z 5t Z pg en (902+1 _ 4,07[?_1).
n=0 P

o=K|Le&
Using the fact that, = |D,|, this relation reads:

N-1 n+1 n+1

T = =6t 3 Da| gy P

_ —
=0 ,_K[Lee
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thusZy™ = 7, + RY™ with:

m ot — ot
7y :_Z(St Z |:|DKU|pK€K+‘DLU|pL€L] nh—o’
n=0 0:K_|I>/E€
m_ N ot — !
Ry = =30t D (1Dl pi el — Dol i ek = 1Duol gl e uy g P
n=0 0:K_|I>/E€

The first expression reads:

/ / ™) By da dt,

and thus, thanks to the convergence assumptions for thiecsolu

T
lim 7™ —/ /peu@xwdxdt.
0 Q

m——+00

Let us make a change of notation for the orientation of such a way that? = p’. and
el = el (in other words, we choose to call the downwind cell tar instead of the left
cell, which we denote by = K — L). We thus get, WithC,, = (|00 | ;.00 (0.7

N-1
IRYVI<C, Y 6t > |Dpl

n=0 o=K—Le&

Pi €k = PLer] |ugl

Applying the identity2 (ab — cd) = (a — ¢)(b+d) + (a + ¢)(b — d), which holds for any
{a,b,c,d} C R, to the quantity’. ¢}, — p} €}, we obtain:

[RY| < O, b Hu(m)||L°°(Q><(O,T)) [Hp(m)HL"O(QX(O,T)) e r-amv

+ ||6(m)||L°°(Q><(O,T)) (AR

and thuQRgm)\ tends to zero whem tends to+oco.
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For the termi™, the definition[[3.25) of,, yields:

N-1 n+1

= (m n PKE - — Pk
T ==Yt > [IDical i + Dyl g iy S5

t
n=0 U:K‘Leg

- > [IDK,U\p%JrIDL,oIp% Uy e,

o=K|Le&

so, by similar arguments as for the tefff”, we get:

III_E T1 / / pu* Oypdrdt — / po() ug(z)? p(z,0) dr.
m——+0o0

Let us now to the terrffz(m). Reordering the sums, we get:

m(m 1 n n
W= 0t D Fr(h)? (e =,

H
K=[oo'leM

so, by the definition of the mass flux at the dual edges:

N-1

~(m 1 n._ n n ., n n n

TQ( ) - _1 E ot E (pcruo + po"uo’) ( ) (S00'+1 80‘74_1)7
n=0

H
K=[oo'leM

where we recall that’; is equal to either:? or v}, depending on the sign df;;. Let us
write 7™ = 7™ + R{™, with:

N-1
~(m 1 n n n Y
T — _EZ& Z e [ + (u))*] (ot — grthy.
=0 K—loolleM
We have:
_ T r1
o _ _/ / = 5 ()3 5,00 d dt,
0 Q 2
and hence:

T
1
1 — — 5@ Oy dx dt.
i T == [ e
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The remainder term reads:

N-1
R =10t S [l (g i (i +i)®) | (e ).

=0 g lso'leM
Possibly exchanging the notations for the face&’ofve may writeu}, = w2, to obtain:
m € n, n n,n n n n n n n
REV = —=3 "0t > [(busrenn) (=i ((wny+(ui)?) | (eut' =i,
n=0  K=[oo'|eM
withe = +1. Since, for0 <n < N — 1 andK € M,
(Pouy + porug) (up)? = pe ((ug)® + (ug)’) =
— (P — P5) (ug)’ + plc ugs (uy + ) (uy —ug) — (P — plyr) ugs (ug)?,

we have:

S (m m m) 3
REV) < Co |1 01y o7
m m 2 m
+ Hp( )||L°°(Q><(0,T)) ||“( )||L°°(Q><(0,T)) ||“( )HT,z,BV )
where the real number,, only depends omp. Hence\?igm)| tends to zero whem tends

{0 +o0.

We now turn toT?fm) andfgfm). By a change in the notation of the time exponents,
using the fact thap,, vanishes at the last time step(s), we get:
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with:
~ N-1
T =370t Y - ) ul et
n=0 U:meglnt
B N-1
R =6t > W) -p)ulel+Y st Y )ug (05 — o).
=7 n=0 =7
O':K|L€glnt o= K‘Legmt

We have, thanks to the regularity of

RY] < o 6t 1™ oy 1™ vy + 15 e oy 1™ 7ev] -

Therefore, invoking the regularity of the initial conditis, this term tends to zero when
m tends to+oco. We now have for the other terms, reordering the summations:

N-1
PR =36t Y b (o = et pieul (T — i)

n=0 K=[7o']leM
/ / m‘PM £ dz dt.

So, sinceéd, v ¢ converges td,p in L™(Q2 x (0,7")) for anyr > 1, we get:

T
lim T T(m ——/ /pu@xapdxdt.
0o Ja

m——+00

Finally, it now remains to check théitn,, , .. 5™ — R™ = 0. Let us write this
quantity ass™ — k(™ = R™ 1 RU™ where, usings). = 0, VK € M:

Rgm Z&L Z Sn+1 n+1 ZRn+1 n+1

= KeM oce€
Ry = Zét 37 Sk (o — o).
n=1 KeM

First, we prove thatim,, Rﬁm) = 0. Gathering and reordering sums, we obtain
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RI™ =R + R{Y + R with

N-1
m ]- |DK,U| () n n n n
Rg,l) =3 Z ot Z [TPKH(UJH - UJ)Z(SOKH —ph
n=0  o=K|LeE

X [Diol mL (gl )2 (ol n+1)]

St L o Uy L — %o
(m) 1N_1 n n n \2 n+1 n+1
Rl,? = 5 ot Z |FK| (ua _uo’) (()OK — Yo )7
n=0 KeM
N-1
Ry = ot Fit (g — ) (up™ = up) (05 = 05,

We thus obtain:

|R§?| < ptm Co ||p(m)||L°°(Q><(O,T)) ||U(m)||Loo(Qx(o,T)) ||U(m)||T,t,BVa
m m m m m 2 m
and  [RYD|HRYE] < 2™ Cou 0™ [l oy 1™ N 0.y 1™ I78v

so all these terms tend to zero. The fact tHR§™ | behaves ast™ my be proven by
very similar arguments.

Gathering the limits of all terms concludes the proof. O

3.5 Numerical results

We assess in this section the behaviour of the scheme orusdgst cases. To this pur-
pose, we address the five Riemann problems studied in [61ot€@h4]. More precisely,
we perform a detailed study of the test referred.in [61, Céragf as Test 3, and give the
results obtained on the other tests for the sake of com@ssen

3.5.1 Test3

In this test, the chosen left and right states are given by:

pr =1 pr =1
leftstate: | w; =0 |; right state: | urp =0
pr. = 1000 pr = 0.001
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o———0——0 exact solution
#———% numerical solution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.1: Test 34 = 0.001 andjt = h/100 — Density att = 0.012.

The computational domain i3 = (0, 1) and the final time i§" = 0.012. The (known)
analytical solution of this problem consists in a rarefactave, travelling to the left,
and a shock wave, travelling to the right, separated by theteat discontinuity.

3.5.1.1 Results

The density, pressure, internal energy and velocity obthatt = 0.012 = T with

h = 0.001 and§t = h/100 are shown on Figurds 3.0, B[Z,13.3 3.4 respectively.
We observe that the scheme is rather diffusive especiallgdatact discontinuities for
which the beneficial compressive effect of the shocks doéspply. More accurate
variants may certainly be derived, using for instance MUS& techniques; this work

is underway.

In addition, we perform a convergence study, successiveiglidg by two the space
and time steps (so keeping the CFL number constant). Therelif€e between the com-
puted and analytical solution at= 0.025, measured ii.'(2) norm, are reported in the
following table.
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o——o0—=0 exact solution
——— numerical solution

900 —
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200 —---ee e
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Figure 3.2: Test 3 -4 = 0.001 anddt = h/100 — Pressure at= 0.012.

space step | hp = 0.001  hy/2 ho/4 ho/8 ho/16
llp — ﬁHLl(Q) 0.0651 0.0455 0.0310 0.0217 0.0153
|lp — p||L1(Q) 1.87 1.05 0530 0.284 0.164
||u — @Hm(n) 0.0967 0.0536 0.0258 0.0134 0.00795

We measure a convergence rate which is slightly lower to thewariables which
are constant through the contact discontinuity.  andu), and equal to 1/2 fop.

Finally, we test the behaviour of the scheme obtained whimgeo zero the cor-
rective terms in the internal energy balance. Results with0.001 andét = h/100 are
reported on Figures 3.6=8.8. From further numerical expents with more and more
refined meshes, it seems that the scheme converge, but tat avhioh is not a weak
solution to the Euler system: indeed, the Rankine-Hugarvadition applied to the to-
tal energy balance, with the states obtained numerical®ydy a right shock velocity
slightly greater than the analytical solution one, while #ame shock velocity obtained
numerically is clearly lower.
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3000

o——0——0 exact solution
#——— numerical solution

2000 —

1500 —

1000 —

500 —

Figure 3.3: Test 34 = 0.001 anddt = h/100 — Internal energy at = 0.012.

3.5.1.2 On anaive scheme

We also test the “naive” explicit scheme obtained by evatgadll the terms, except in
time-derivative one, attim&. In the one dimensional setting and with the same notations
as in Sectiofn 314, this scheme thus reads:

VK——z M K]t Fr — F" = 3.33
_[UU]E ) 5t (pK pK>+ o/ o _07 ( . a)
=7 DU 7n n n n mn. n mn, n n n

Vo = K‘L € Eints | ot | (ﬂ]:)jlqurl - pDnuo) + Fruy — Fruyg +pp — px =0,

(3.33b)
— K

VK = [o0'] € M, %(p?{ﬂe?{“ — prel) + Frel, — Frel + phe(uls — ul) = St
(3.33¢)

VK € M, Pttt = (y = 1) pt et (3.33d)

Hereafter and on the figure captions, this scheme is refeorég thep ~» u~~ e~ p
scheme (since the pressure is updated after the computdttbe velocity rather than
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27 T ———— exact solution r _________________________

% ! ! ! H————— numerical solution !

%0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.4: Test 34 = 0.001 anddt = h/100 — Velocity att = 0.012.

after the computation of the density). Note that we are dbiehis scheme also, to prove
a consistency result similar to Theorem 3.4.2.

The computed density, pressure, internal energy and wglactime?T = 0.012 are
plotted on figure§ 319, 3.10, 3111 and 3.12 respectivelymAiteese results, it appears

clearly that thep ~ u ~~ ¢ ~~ p scheme generates discontinuities in the rarefaction wave,

and further experiments show that this phenomenon is nedchy a reduction of the
time and space step.

3.5.2 Testl

In this test, the chosen left and right states are given by:

PL = 1 PR = 0.125
left state: |u;, =0] ; right state: | urp =0
PrL = 1 Pr — 01
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o———0——0 exact solution
#———% numerical solution
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] | | | | ] | | |

10_ _______________________________________________________________ [ 2 S DU N,
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] | | | | ] | | |

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.5: Test 3, without corrective termgi— 0.001 anddt = h/100 — Density at
t = 0.012.

The computational domain i8 = (0, 1) and the final time i¥" = 0.25. The (known)
analytical solution of this type of problem consists in twenginely nonlinear waves
(i.e.rarefaction or shock waves) separated by a contact diseotyti For the initial data
chosen in this section, the left wave is a rarefaction wavkthe right one is a shock.

Results obtained witth = 0.001 anddét = h/6 att = T are shown on Figures
B.13£3.16.

3.5.3 Test?

The chosen left and right states are given by:

pr =1 pr=1
left state: |u; = —2| ; right state: | up =2
pr, =04 pr =04

The computational domain i3 = (0, 1) and the final time i¥" = 0.15. Both left and
right waves are rarefaction waves.
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| ! ! ! | o——= exact solution
X : ! ! ! ————— npumerical solution
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Figure 3.6: Test 3, without corrective termg— 0.001 anddjt = h/100 — Pressure at
t = 0.012.

Results obtained with = 0.001 anddt = h/5 att = T are shown on Figures
8.17+3.20.

3.5.4 Test4
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3000

Om———o——0C  exact solution
S numerical solution

2000 —

1500 —

1000 —

500

0.0

Figure 3.7: Test 3, without corrective termsh— 0.001 andét = h/100 — Internal
energy at = 0.012.
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25

Om——O——0  exact solution
e numerical solution

Figure 3.8: Test 3, without corrective termg:— 0.001 anddt = h/100 — Velocity at
t = 0.012.
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Om——O——0  exact solution
e numerical solution
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Figure 3.9: Test 3p ~» u ~» e ~»p scheme -h = 0.001 andét = h/100 — Density at
t = 0.012.
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Figure 3.10: Test 3p~» u~-e~>p scheme -h = 0.001 anddét = h/100

t=0.012.
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S numerical solution
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Figure 3.11: Test 3~ u~>e~>pscheme & = 0.001 anddt = h/100 — Internal energy
att = 0.012.
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Density at = 0.25.

Figure 3.13: Test 1 £ = 0.001 anddt = h/6
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Figure 3.15: Test 1 £ = 0.001 anddot = h/6 — Internal energy at = 0.25.
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h/6 — Velocity att = 0.25.

Figure 3.16: Test 1 & = 0.001 anddt
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= h/5 — Density at = 0.15.

Figure 3.17: Test 2 4 = 0.001 andJt
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Figure 3.18: Test 2+ = 0.001 anddét = h/5 — Pressure at= 0.15.

o——-o0——= exact solution

S nUMerical solution

0.15.

Figure 3.19: Test 2 £ = 0.001 andot = h/5 — Internal energy at =
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Figure 3.20: Test 2 4 = 0.001 andét = h/5 — Velocity att = 0.15.
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o——o0—=0 exact solution
——— numerical solution
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Figure 3.21: Test 4 £ = 0.001 anddot = h/30 — Density att = 0.035.

The chosen left and right states are given by:

pr =1 pr =1
left state: | u; =0 | ; right state: | up =0
pr = 0.01 pr = 100

The computational domain i3 = (0, 1) and the final time i§" = 0.035. The left wave
is a shock and the right one is a rarefaction wave.

Results obtained with = 0.001 anddt = h/30 att = T are shown on Figures
8.21£3.24.
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Figure 3.22: Test 4 £ = 0.001 andot = h/30 — Pressure at= 0.035.

3.5.5 Test5

The chosen left and right states are given by:

pr = 5.99924 pr = 5.99242
left state: |u; = 19.5975] ; right state: |up = —6.19633
pr, = 460.894 pr = 46.0950

The computational domain i3 = (0, 1) and the final time i§" = 0.035. Both left and
right waves are shocks.

Results obtained witlh = 0.001 anddét = h/40 att = T are shown on Figures
8.17+£3.20.
3.6 Conclusion

We have presented in this chapter an explicit scheme basetlaggered meshes for
Euler equations. This algorithm uses a very simple firseougpwinding strategy which
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Figure 3.23: Test 4 # = 0.001 anddét = h/30 — Internal energy at = 0.035.

consists, equation by equation, to implement an upwindeligation with respect of the
material velocity of the convection term. In addition, itaes the internal energy balance
instead of the total energy balance, and thus turns out tobeanservative: indeed, the
total energy conservation law is only recovered at the lohianishing time and space
steps, thanks to the addition of corrective source term&endiscrete internal energy
balance. Under CFL-like conditions based on the materialcity only (by opposition
to the celerity of waves), this scheme preserves the pigio¥ the density, the internal
energy and the pressure (in other words, the scheme predeeseonvex of admissible
states), and its solution satisfies a property of consenvéin fact, as often at the discrete
level, non-increase) of the integral of the total energyrdiie computational domain.
Finally, the scheme has been shown to be consistent for 1Blgms, in the sense that,
if a sequence of numerical solutions obtained with more ancemefined meshes (and,
accordingly, smaller and smaller time steps) converges the limit is a weak solution
to the continuous problem.

This theoretical result may probably be extended in twodtioas: first, to check
whether limits of convergent sequences are entropy saolsitiand, second, to deal with
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Figure 3.24: Test 4 + = 0.001 anddt = h/30 — Velocity att = 0.035.

the consistency issue in the multi-dimensional case. TVestigation of this latter point
should help to clarify the constraints on mesh generalifyased by consistency require-
ments, in particular with the aim to design a discretizatible to cope with non-conform
locally refined meshes. This work is now being undertaken.

Numerical studies show that the proposed algorithm is sfaven if the largest time
step before blow-up is smaller than suggested by the ab@rgiomed CFL conditions.
This behaviour had to be expected, since these CFL conditinly involve the velocity
(and not the celerity of the acoustic waves): indeed, weeg the only limitation, we
would have obtained an explicit scheme stable up to the ipcessible limit. However,
the mechanisms leading to the blow-up of the scheme (or,ecealy, the way to fix the
time step to ensure stability) remain to be understood. ttiaah, still as expected, the
scheme is rather diffusive, especially at contact disonities; MUSCL-like extensions
are under development to cure this problem, possibly coetbwith a strategy similar
to the so-called entropy-viscosity technique! [21, 22] tmdapurious oscillations which
are sometimes observed when the velocity is small (refepten&, Section 215 for a
numerical study of this issue).
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Figure 3.25: Test 54 = 0.001 anddét = h/5 — Density att = 0.035.

Since the proposed scheme uses very simple numerical fitbsasgell suited to large
multi-dimensional parallel computing applications, andls studies are now beginning
at IRSN. Still for the same reasons (and, in particular, beedhe construction of the
discretization does not require the solution of the Riem@armiblem), it seems that the
presented approach offers natural extensions to more exrppdblems, such as reacting
flows; this development is foreseen at IRSN, for applicatitnexplosion hazards.
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Figure 3.27: Test 54 = 0.001 andét = h/5 — Internal energy at = 0.035.

Explicit Staggered Schemes for Compressible Flows



NGUYEN Tan-Trung

S S At Attt Rttt th el

O=——O——0  exact solution
#——— numerical solution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.28: Test 54 = 0.001 anddt = h/5 — Velocity att = 0.035.
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Chapter 4

Radial compressible flows

4.1 Introduction

In the first two chapters, we studied numerical schemes #(lihrotropic) Euler equa-
tions in case of irrotational flows. However, there are situs for which blast waves
propagate in radial and spherical trajectories for two dwde-dimensional flows, re-
spectively, such as the propagation or explosion in a pamedium. This motivates the
development and/or modification of existing schemes fordiseretization of the non-
conservative systems of equations which reads, for thetdo@io Euler equations

Op + ia&n(ro‘pu) =0 (4.1a)
T
1
O (pu) + T—aﬁr(ro‘puz) +0,p=0 (4.1b)
p=p(p)=p (4.1c)

wherer is the radial directiont is time, p, u andp are the density, radial velocity and
pressure in the flow, angl > 1 is a coefficient specific to the considered fluid. The
parametery depends on the space dimensibm = d — 1. Fora = 0, we reproduce
the one-dimensional flow which was surveyed in Chdpter 2 anha cases = 1 and

« = 2 are corresponding to the two and three-dimensional prabiensylindrical and
spherical symmetry coordinates, respectively. The prolesupposed to be posed over
Q x (0,7), whereQ2 = [0, +00) and (0,7 is a finite time interval. This system must
be supplemented by initial conditions fplandu, denoted by, andu,, and we assume
po > 0. It must also be supplemented by a suitable boundary condithere the radial
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velocity vanishes at any time a@if).

A weak solution to the continuous problem (4.1) satisfies,dioy o € C° (Q X
0,7)):

T
—/ /[p@tgp%—pu&ngp} ro‘drdt—/po(x)gp(x,O)radr:O, (4.2a)
0o Ja Q
T
—/ /([pu@tgo—ir(pu?—l—p)@r@] ra—l—pﬁr(raap)) dr dt
o Ja

- / polx) wo(z) (. 0) 1 dr = 0,

p=yp'. (4.2c)

(4.2b)

Let us denote byz; the kinetic energy;, = 5 «?. Taking the product of (4.1b) by
yields, after formal compositions of partial derivativeslaising the mass balance (4.1a):

pudu~+ pu’du+udp=0.
Invoking one more time the mass balance, we obtain the kieetrgy equation

1
O (pEy) + T_a&T (r*p Exu) + ud,p = 0. (4.3)

Let us now define the functioR, from (0, +o00) to R, as a primitive of +— o(s)/s?;
this quantity is often called the elastic potential. #€be the function defined b}t (s) =
sP(s), ¥s € (0,+00). For the specific equation of stateused here, we obtain:

s7

if v > 1,
H(s)=sP(s) =17 " (4.4)
sln(s) if v=1.

Sinceyp is an increasing functior{ is convex. In addition, it may easily be checked that
pH'(p) — H(p) = p(p). Therefore, by a formal computation, detailed in the append

multiplying (4.1&) by#'(p) yields:

O (H(p)) + Tia@r (r*H(p)u) + riap O (r*u) = 0. (4.5)
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Let us denote by the quantityS = pE) + H(p). Summing[(4.B) and (4.5), we get:
1
oS + T—a@r (r*(S +p)u) = 0. (4.6)

In fact, to avoid invoking unrealistic regularity assungpis, such a computation should
be done on regularized equations (obtained by adding @ffiyserturbation terms); when
making these regularization terms tend to zero, positivesues appear at the left-hand-
side of [4.6), so that we get in the distribution sense:

S + iaar (r*(S+p)u) <0. (4.7)
T

The quantityS is an entropy of the system, and an entropy solutiori_ td (4 1hus
required to satisfy:

Vo € C2(Q % [0,7)), ¢ >0,
T
/ / [—S0p — (S +p) udyp] r*drdt — / So p(r,0)r*dr <0, (4.8)
0 Q Q
with Sy = gpoug + H(po). Then, since the radial velocity is prescribed to zero at the

boundary, integrating (4.7) ovéryields:

d 1,

— [ |= “dr <0. .

s Q[zpu + H(p)] r*dr <0 (4.9)
Sincep > 0 by (4.1&) (and the associated initial and boundary condi)iand the func-
tion s — H(s) is bounded by below and increasing at leastsftarge enough, Inequality

(4.9) provides an estimate on the solution.

Let us now turn to the Euler equations on cylindrical and siphkcoordinate systems
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under the non-conservative form:

dip + Tia@r(rapu) ~0 (4.10a)

Or(pu) + Tiaar(raqu) +0,p=0 (4.10b)
O(pE) + Tia@«(ro‘pEu) + Tia@r(ro‘pu) — 0 (4.100)
E = %uQ +e (4.10d)
p=(y—1)pe (4.10e)

where E ande stand for the total and internal energy respectively, and 1 is a co-
efficient specific to the considered fluid. The problem is sl to be posed over
Q2 x (0,7), whereQ2 = [0; +00) and (0, T') is a finite time interval. Substracting the re-
lation (4.3) from the total energy balan¢e (4110c), we abthe internal energy balance
equation:

O¢(pe) + Tia@r(ro‘peu) + Tiapar(ro‘u) = 0. (4.11)

Since,
- thanks to the mass balance equation, the first two termseiiefirhand side of
(4.11) may be recast as a transport operaldyie) + 0, (r*peu) = p [Ore+u O,€],

ro

- and, from the equation of state, the pressure vanishes whe,

this equation implies, it > 0 at¢ = 0 and with suitable boundary conditions, that
remains non-negative at all times.

A weak solution to the continuous problem(4.10) satisfies,ahyy € C*(Q x
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0.7)):

T
- / / [p O + pu@rap] r®drdt — / po(x) o(x,0)r*dr =0, (4.12a)
o Ja Q

T
- / / [pu@gp + (pu® +p) &go} Y+ p0.(rp)drdt
0 JQ (4.12b)

- / polx) wo(z) ol 0) 1 dr = 0,

T
- / / pEoo+ (0B +p)udg] e drar - / po(@) Eolx) gl 0) r dr = 0,
0 Q Q

(4.12c)
1 1

p=(y—1)pe, E = §u2 +e, Ey = §u3 + eo. (4.12d)
Note that relations (412) and (4]12) are not sufficient toreefi weak solution to
the problem[(4]1) and {4.110), respectively, since they doimply anything about the
boundary conditions. However, they allow to derive the Raed{ugoniot conditions;
hence if we show that they are satisfied by the limit of a segei@i solutions to the

discrete problem, this implies, loosely speaking, thatscheme computes correct shocks

(i.e. shocks where the jumps of the unknowns and of the fluxes dtedito the shock

speed by Rankine-Hugoniot conditions).

This chapter gives, in the case of the above equations indmytial and spherical
coordinates, an explicit variant of an all-Mach-numbersptege correction schenie [15,
26] which has been studying in the framework of the simutatb compressible flows
and implementing in the industrial computer code ISIS [3Bhe initial motivation of
ISIS was to provide in the same software an efficient alterador quickly varying
unstationary flows, with a characteristic Mach number inrdrege or greater than the
unity.

We use a staggered finite volume or finite element discratizat space. For the sake
of stability, the upwinding technique is applied equatimrequation with respect to the
material velocity only which is contrary to the Riemann sot/for hyperbolic systems,
where upwinding is performed based on the celerity of walé® pressure gradient is
defined as the transpose of the natural velocity divergemmaeis thus centered. Last but
not least, the velocity convection term is built is such a wagllow to derive a discrete
kinetic energy balance.
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We prove for the scheme(s) the following results:

e A discrete kinetic energy balance with some residual & discrete analogue of
(4.3)) on dual cells.

e A discrete elastic potential equation with some rest tetirasg discrete analogue
of (4.8)) on primal cells for the barotropic Euler equatioiifiese rest terms, nat-
urally arising from computations at the discrete level, ematrolled by a CFL
condition to obtain the discrete version of entropy conditi4.8)

¢ Discrete internal energy balances with some residualg discrete analogue of
(4.11)) on primal cells for the Euler equations. In the cantito rest terms in the
elastic potential equation, the residual here are impasedmplement rest terms
in the discrete kinetic energy balance at the limit, whemtiesh size and time step
tend to zero, in order to recover the total energy equation.

e Finally, passing to the limit in all equations and supposiing convergence of
scheme(s), the limits are shown to be weak solutions of theramous problem(s),
and thus to satisfy the Rankine-Hugoniot conditions. Iripalar, they are entropy
solutions to the barotropic Euler equations.

This chapter is structured as follows. We begin with the @négtion of the space dis-
cretization (Sectioh 412). The next section is dedicatatiedoarotropic Euler equations
(Section 4.B). In this section, we have three subsectiariading the scheme descrip-
tion in Subsection 4.3/1. The construction of discrete ficrenergy and elastic potential
equations are described in Subsection 4.3.2. The consystéthe scheme can be found
in Subsectiof 4.313. The structure for the section of Eulgraéion (Sectioh 414) is the
same as the barotropic Euler equations except the eladeated balance is replaced
by corrective source terms in the internal energy equadof.2). The discrete kinetic
energy and elastic potential balances are obtained aguydarticases of more general
results applying to the explicit finite volume discretipattiof transport operators, which
are established in Chapier 2, Appendix 2.7.1. Finally, ves@nt some numerical tests
to assess the behaviour of the algorithms (Seétian 4.5).
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4.2 Meshes and unknowns

For anyK € M, we denote by its length (sohx = | K|); when we writeK = [00],
this means that eithek’ = (z,,z,/) or K = (z,/, z,); if we need to specify the order,
ie. K = (z,,2,) With z, < z,/, then we writeK" = [ﬁ]. For an interfacer = K|L
between two celld( and L, we defineh, = (hx + hz)/2, so, by definition of the dual
mesh,h, = |D,|. If wgeed to specify the order of the cellsand L, sayK is left of
L, then we writes = K| L.

The volume ofK denoted by V| reads

,r,a/—l-l _ ,r,gl—l—l

Vg| = -2 VK——z M 4.13
Viel = "o, = [oo] € M, (4.13)

while the volume ofD, denoted byV,| can be selected based on the way we define the
dual radius,. In the spirit of ISIS, the mean value of volumes of two priroells K and
L gives the volume of the dual cell,

Vi |+ |V

VO': 3
v = M2

Vo = K|L € . (4.14)

In this way, the primal radiugy reads

a+1 a1 Cl{/—i-l
rre = W%, VK = [00'] € M. (4.15)

Otherwise, givenry = (r, + 7,/)/2, VK € M, we define the volume oD, as the
integral onfrg, r]

a+l _  a+l -
V=2 'K o =K|L € & (4.16)
a+1

The volume ofK N D, denoted by Vi ,,

, in both choices ofV/,|, is given by

1%
Vi.o| = % VK € M, Yo € €. (4.17)

Both definitions for the volumes of dual cells, in fact, givles same numerical solution,
up to a very small tolerance, when mesh size and time stepttenero. Therefore, in
this chapter, we work only with the mean value volume case.
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Let a sequence of discretizations1™, §t™),.cx be given. We define the size
h(m) of the meshM ™ by K™ = supc o hi. Letp™, pi™, ™ andul™ be the
solution given by the schemi_(4142) with the mesii™ and the time stept(™. For
a fixedm, the unknowns in our discretizations are constant on thénm@son primal
cells, p, p, e are constant and is constant on dual cells. To the discrete unknowns, we
associate piecewise constant functions on time intervadsom primal or dual meshes,
so the density(™, the pressurg™, the internal energy(™ and the velocity,(™ are
defined almost everywhere éhx (0,7") by:

P, t) =0 (0" X () Xy (8), (4.18a)

ul™ (z,t) =Y 0 (w2 Xp, (2) X (1), (4.18b)
=0

p" (1) = Z (P X (x) Xy (1), (4.18c)
=0

el™ (z,1) = (™% Xy () Xy (1), (4.18d)

whereXy, Xp, and X, 1) stand for the characteristic function of the intervals D,
and(t", t"1] respectively.

For discrete functiong andv defined on the primal and dual mesh, respectively, we
define a discret&! ((0, 7); BV(£2)) norm by:

N N

lallrepy =6t > lap—ails  lolrepv=)_6 Y |-l
n=0 Cr:[(|L€gint n=0 GIDU‘DOJ egint

and a discreté&'(Q; BV((0,7"))) norm by:

”qHﬂBv—ZWKIZW“—M, ||U||Tth—Z|V|Z|U"+1 ol

KeM el
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4.3 The barotropic Euler equations

4.3.1 The scheme

Let us consider a partitioh = ¢, < t; < ... < ty = T of the time interval(0, T'),
which we suppose uniform for the sake of simplicity, anddlet= t,,.; — ¢, for n =
0,1,...,N — 1 be the (constant) time step. We consider an explicit-iretsuheme,
which reads in its fully discrete form, for<n < N — 1:

1
VK € M, ,0?{ = m po(l’) d{L',
. K (4.19a)
Vo € E, ud = ] up(z) de,
o Ds
H
VK = [o0'] € M,
V 7 n n n
Wil et — i)+ B — 2 =0, (4.19b)
VK € M, pit = p(pi™) = (0i). (4.19c)
—
Vo = KI|L € &,
Vol

(P us™t — pp ul) + Frut — Fruf +re (ppt —pi) = 0.

St o
(4.19d)

where the terms introduced for each discrete equation direedehereatfter.

Equation[(4.19b) is obtained by the discretization of thesrtzalance equation (411a)
over the primal mesh, anfl)’ stands for the discrete mass flux acressutward K,
which, because of the impermeability condition, vanishes)@ and is given on the

internal edges by:
Vo = K|L € &y, Fr =ryplul, (4.20)

where the upwind approximation for the density at the edfeis defined by
P if uy >0,

Py = (4.21)
o7 otherwise

We now turn to the discrete momentum balarice (4.19d), wisidbtained by dis-
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cretizing the momentum balance equation (#.1b) on the dallsl @ssociated to the faces
of the mesh. For the discretization of the time derivative nged to provide a definition
for the valuesp’gj1 andp?, , which approximate the density on the facat timet™*! and

t" respectively. They are given by the following weighted ager.

foro = K|L € &, fork =nandk =n + 1, Vol o, = Vol Pl + Vol P}
(4.22)
where|Vi .| = |Vk|/2, VK € M. The discrete mass fluk;; in the discretization of the
convection term reads

VK = [o0') € M,  FP— % (" + F7), (4.23)

Therefore, we obtain the discrete mass balance equationarcells:

— VU
Vo =K|L €€, ‘&‘ (Pt = pp )+ FJ — F =0, (4.24)
Let us remark that a dual edge lying on the boundary is them algrimal edge, and
the flux across that face is zero. Thanks to the discrete masifl dual cells, the
approximation ofu. is given by the upwinding technique:

— UZ |fF}éZO,

VK = olo’ € M, u (4.25)

=S

u?, otherwise

g

We denot€d,p)"*+! and(9,u )%, respectively, the discrete derivatives of pressure at the
edgeos and the velocity on primal cel. The last term in Equation (4.19d) known as
the discrete version of pressure derivative on the duallgglls built as the transpose of
velocity derivative on the primal celk. The natural approximation for the derivative of
the velocity on primal cells reads

_> 1
VK =o|o’ € M, (D)t = h—(rf;, ulhtt = ultt. (4.26)
K

Consequently, the discrete derivative of pressure at the @@ given by

— 1
Vo = K|L € &y, (0, )Z“ = h—rfj (pz—H — p”K“). (4.27)
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Hence, we obtain the duality relation between derivatifgg@ssure and velocity:

S b i Q)i+ > hpul™ (Op)at = 0. (4.28)

KeM o€&nt

Note that, because of the impermeability boundary conabtidhe discrete pressure
derivative is not defined at the external edges.

Finally, the initial approximations fop andwu are given by the average of the initial
conditionsp, andu, on the primal and dual cells respectively:

1
VKGM, p([)(:m/Kpo(’f’)’f’ad’f’,
(4.29)
1

Vo € En, ©l wo(r) re dr.

7 Vel Jn,

The following positivity result is a classical consequentéhe upwind choice in the
mass balance equation.

Lemma 4.3.1(Positivity of the density) Let p° be given by@.29) Then, sinceu is
assumed to be a positive functigl,> 0 and, under theCFL condition:

V|

ror (g )* g (up)~

5t < (4.30)

the solution to the scheme satisfigs> 0,for1 <n < N.

4.3.2 Discrete kinetic energy and elastic potential balares

We begin by deriving a discrete kinetic energy balance éguiaas was already done
for the implicit and fractional time step scheme described6]. Equation[(4.31) is

a discrete analogue of Equatidn (4.3), with an upwind diszagon of the convection

term.

Lemma 4.3.2(Discrete kinetic energy balance)
A solution to the systeifdl.19) satisfies the following equalityvn € {0,..., N — 1},
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1 n n n ]' n n n n n
S o = i (] + 5 [ ) = B (u3e)?] + Vol (D)

=R (4.31)

with:

n 1‘VU| n n n NN~ (T n Y (u” "
Ry = Srett o i — ) 5 [ (F)) (e — ) + (PR (i — )

— (F) ™ (ugn — ) (ug™ = ug) = (F)(ug — up) (ug™ —uy), (4.32)
where, fora € R, a= > 0 is defined bya~ = —min(a,0). This remainder term is
non-negative under the following CFL condition:

‘V ‘ pn+1
(F7)~ + (FR)*™

—
Vo =K|L € &, 6t < (4.33)
Proof. The proof of this lemma is obtained in the similar way to Lenfx@1 of Chapter
2. O

Similarly, the solution to the scheme (4.19) satisfies ardiscversion of the elastic
potential identity[(4.6), which we now state.

Lemma 4.3.3(Discrete potential balance).et H be defined by4.4). A solution to the
system(4.19)satisfies the following equality, fdt = o|0’ € M, o = P|K, ¢/ = K|Q
and0 <n <N —1:

V|

o | = Hpk) | + 5 H(ph) wgr =g Hpg) g + Vil i (Opu™) e = —RE

(4.34)
In this relation, the remainder term is defined by:

1|VK| n n a n.n n
55 Mk 1) (P =Pl 4+ (7S plult =15 prul) (o — o) 1 (Pl o)

1 - n n I (—n (0% n T T N (—n
5| ) ol = i) A (Bl) + s () (0 — k) H (7). (4.35)

Rn—i—l

With 7. s € [0 okl 25 € ok o)l andz € [[ok. pa), where, fora, b < R,

we denote bya, b]| the interval|a, b]| = {fa + (1 — 0)b, 6 € [0, 1]}.
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Proof. The proof of this lemma is obtained in the similar way to Leni@a2 of Chapter
2. O

Unfortunately, it does not seem th&f;"* > 0 in any case, and so we are not able
to prove a discrete counterpart of the total entropy eséni@i®), which would yield a
stability estimate for the scheme. However, under a cayditdor a time step which is
only slightly more restrictive than a CFL-condition, andlensome stability assumptions
for the solutions to the scheme, we are able to show that tbsille non-positive part of
this remainder term tends to zerolih(Q2 x (0, 7)), which allows to conclude, in the 1D
case, that a convergent sequence of solutions satisfieatilop inequality[(4.8): this is
the result stated in Lemnila 4.B.6 below.

4.3.3 Passing to the limit in the scheme

The objective of this section is to show, in the one dimeradioase, that if a sequence of
solutions is controlled in suitable norms and convergeslimig this latter necessarily
satisfies a (part of the) weak formulation of the continuowsbfem. In order to prove
this theorem, we need some definitions of interpolates ailaegest functions on the
primal and dual meshes.

Definition 4.3.4 (Interpolates on one-dimensional mesheast 2 be an open bounded
interval of R, letp € C°(2 x [0,7")), and letM be a mesh oveR. The interpolatep
of ¢ on the primal mestM is defined by:

N-—1
P =D D PR X K,
n=0 KeM

where, for0 <n < N andK € M, we setp’}. = p(xk,t"), with z, the mass center of
K. The time discrete derivative of the discrete functign is defined by:

N-1 QOTH_I _ (,On
0o = Z Z KTK X Xpgn gn1y,
n=0 KeM
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and its space discrete derivative by:

n+1 n+1

6xSOM = z_: Z % XDU X[tn fn+1).

_ —
=0 G _K[LcEm

Let s be an interpolate of on the dual mesh, defined by:

N—1
e = Z Z @ZH Xp, X[w,w“);

n=0 o€

where, forl < n < N ando € &, we sety” = ¢(z,,t"), with z, the abscissa of
the interfaces. We also define the time and space discrete derivatives ©fltbcrete
function by:

N-1 n+1

6%,08 = Z Z %715_()00 Xp, X[tn tn+1),

n=0 oce&

n+1 n+1

xﬁpé‘ - Z Z % XK X[t”,t”+1)-

N-1 n+1 n+1

Yk — ¥s
6:BS0M,5 = Z Z K hK/2 XDK,O’ X[t7L7t7L+1)

n+1 n+1
Por  — Pk

TR

XDK,G’ X[tn,t”Jfl)'

For the consistency result that we are seeking (Theérerd #s8ow), we have to
assume that a sequence of discrete solut{ph®, p™, u(™) _ satisfiesp™ > 0 and
p™ > 0, Vm € N (which may be a consequence of the fact that the CFL stability
condition [4.3D) is satisfied), and is uniformly bounded.th((0, 7)) x Q)3, i.e.

0< (P™) <0< (pmMy<C, YKeM™ for0<n<N™, ¥meN,
(4.36)
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and
(™) < C, Voe&™ for0<n<N™ vmecN, (4.37)

where(' is a positive real number. Note that, by definition of theiaitonditions of
the scheme, these inequalities imply that the functjgnandw, belong toL.>(2). We
also have to assume that a sequence of discrete solutiosfeesathe following uniform
bounds with respect to the discrete BV-norms:

0™ |17 emv + [[u™ |72y < C, V¥m eN. (4.38)

We are not able to prove the estimates (4.36)—(4.38) for dhatisns of the scheme;
however, such inequalities are satisfied by the “intergslatfor instance, by taking the
cell average) of the solution to a Riemann problem, and aserkd in computations (of
course, as far as possibigs. with a limited sequence of meshes and time steps).

Theorem 4.3.5(Consistency of the one-dimensional explicit scheme,tbapa case)

Let(2 be an open bounded interval Bf We suppose that the initial data satisfigse
L>(Q) andug € L>=(Q). Let(M™ §t(™), -y be a sequence of discretizations such
that both the time stef(™ and the sizé.(™ of the mesh\ (™ tend to zero asn — oo,

and (p™), p™ 4™y be the corresponding sequence of solutions. We suppose that
this sequence satisfies the estimg@86)4.38)and converges if”(Q x (0,7))3, for

1 <p<oo,to(p, p,u) €L x(0,T))>

Then the limit(p, p, @) satisfies the syste(@.2).

Proof. It is clear that, with the assumed convergence for the seguehsolutions, the
limit satisfies the equation of state. The proof of this tleeors thus obtained by passing
to the limit in the scheme for the mass balance equation dingt then for the momentum
balance equation.

Mass balance equation- Lety € C(Q x [0,T)). Letm € N, M™ anddét(™ be
given. Dropping for short the superscrifit, let o1, be the interpolate af on the primal
mesh and le?, o andd, o, be its time and space discrete derivatives in the sense of
Definition[4.3.4. Thanks to the regularity of these functions respectively converge in
L"(22 x (0,7)), for r > 1 (includingr = +00), to ¢, 0, andd,p respectively. In
addition,p (-, 0) (which, for K € M andz € K, is equal tap}; = ¢(z, 6t)) converges
to¢(-,0) in L7 (2) for » > 1. Since the support @f is compact irf2 x [0, T"), for m large
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enough, the interpolate o¢f vanishes at the boundary cells and at the last time step(s);
hereafter, we systematically assume that we are in this case

Let us multiply the first equatiofi (4.19b) of the schemeby’-", and sum the result
for0 <n < N —1andK € M, to obtainT™ + T\™ = 0 with

N-1 N-1
=3 > Vel s e, T =06t Y (Fp - Fp) et
n=0 KeM n=0 KZ[Q}EM

Reordering the sums [ﬁfm) yields:

N-1 n+1 n
" = —Z5t Z V| pk KTK - Z V| Pk ¢k
n=0 KeM KeM

so that:

T
o = _/ /p(m)5t¢m r“drdt—/(p(m))o(x) om(z,0)r*dr.
0 JQ Q

The boundedness gf, and the definition[(4.19a) of the initial conditions for the
scheme ensures that the sequeiig&”)°),,.cx converges t@, in L7 (2) for» > 1. Since,
by assumption, the sequence of discrete solutions and ahtidgolate time derivatives
converge irL" (2 x [0,T)) for r > 1, we thus obtain:

T
lim T\™ = —/ /ﬁatwadrdt—/po(x) p(z,0)r*dr.
0 Q Q

m——+00

Using the expression of the mass fluX and reordering the sums Tim), we get

N-1 SOH—H - (pn—i-l
oM ==t Y herS plul L
n=0 crzmeg 7

Since|V,| = (|Vk| + |V.])/2 andp? is the upwind approximation gf" at the facer,
remarking thatV,| = h, r2 wherer, € (rx,r.), we can rewritd\™ = T, + R™ +
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R™ with
N-1 n+1 n+1
0 ==o (St Tt ) A B
=0 ,_K[Les
-1 n+1 n+1
m « « n n ¥ 2
Rg ):Z& Z he (re —r®) plul L - K
n=0 U:I(—\[>/6€ 7
N-1 n+1 n+1
m n n |VK| n\— |VL| n 14 - 2
R S S et
— —_— g
=0 ,_K[Lee
where, fora € R, a™ = max(a,0) anda™ = —min(a,0) (S0a = a* — a™). We have,

for the term7,™:
T
7'2(m) =— / / pMuE, g dr dt
0 Q

and therefore, we obtain at the limit:

T
lim 7;(m) = —/ /ﬁﬂ Orpredrdt.
m——+oo 0 Q
i (m) (m) s :
The remainder termig;" andR," are bounded as follows, With; = (|0, ¢ ||« 0.7

IRY™| < C0 T a Q) 0" e o) 6™ | ox o) B™,
N-1

RY < cn Nt > ok — phl [l Vsl

n=0  o=K|LeE

< CL P 7 wmy 14 | oy 124 A,

and therefore tend to zero whentends to+oo, by the assumed stability of the solution.

Momentum balance equation— Let ¢¢, 0,0¢ and d,ps be the interpolate op
on the dual mesh and its discrete time and space derivaiivése sense of Definition
[4.3.4, which converge in" (2 x (0,7")), for r > 1 (includingr = +o0), to ¢, 9, and
O, respectively. Let us multiply Equatioh (4.19d) by, and sum the result for
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0<n<N-—-1lando € &,. We obtairifl(m) + TZ( ™ 4 T3 = 0 with

N-1

T =30 0 Vol (o5 us™ = i ul) o3,
n=0 o€&nt
N-1

Tz(m) = ot Z [FL uy, — Fuy @Zﬂa
n=0 U:megnt
N-1

T =36t Y et et el

—)

Reordering the sums, we get i’ﬁfm):

N-—1
==Y "6t > Vil g n e 0 AR

n=0 O'Eg nt O'Eg nt

Thanks to the definition of the quantity, (namely the fact thatl;| p};, = (|Vk| pk +
\VL| p)/2), we have:

T
107 = [ [ o™ auge s drae [ (6)0(a) (™)) el 0) 1 dr
0 Q

Q

By the same arguments as for the mass balance equation, reéotiesobtain:

hI_E T1 / /puatgor drdt — / o(z) up(z) e(x,0) r*dr.

Let us now turn th . Reordering the sums and using the definition of the mass
fluxes at the dual faces, we get:

N-1
T,V == 0t Y Frug (et —ent)

—)
K=[oo'|eM

N-1
1 a . n, n n n
- _5 j ot g (T Polhs +r ’pcr’u ’) (gpo—i_l S00'+1)'
=0 g_lr]eM
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Using the relation

T
/ / p(m u™? Oxpe r¢drdt
0o Jo

1 (0% 3 n n n n
=300t 3wk [+ )] (e — e,
with % = |Vk|/hg, we can rewrite the terrﬁz(m) as

T
T — / / P ul™’ B,00 ¢ dr dt + R + R,
0 Q

where:
1 N-1
RIW = =230t > 08 =) b+ (5 — 1) ol | w (27 — i),
=0 k_i5olleM
1 N-1
R = =53 ot i (s (i = pieu) + s (P — ety
— —
n=0 K=[oo'|leM
(Spn,—i-l o (pn-i-l)‘

The first residual is bounded by the following inequality
IR™| < CLT o | [0 |Loe @0, 10 om0, A™-

We now turn to the second one. At first, applying the ideritiyb — cd) = (a — ¢)(b +

d) + (a + ¢)(b — d), V(a,b,c,d) € R, to the termp?u? — pku” and using the fact
that the quantitiep? — p}. andu! — v’ are either zero or differences of the density
at two neighbouring cells and the velocity at two neighbogifiaces respectively, then
performing in the same manner g vy — piul,, we obtain

R < CL o™ @ 1™ oy (107 7w + 1 7 v) 5.

Explicit Staggered Schemes for Compressible Flows 149



NGUYEN Tan-Trung

Therefore, the remainder terngm) + Ré”” tends to zero whem tends to+oo and:

lim T / /pu Orp r®drdt.
m—r+00
Let us finally studyT(’” Reordering the sums, we obtﬂ@m = R(m with:

N—1
T =360t > (0 pi) e et
n=0

o=K|L€EE&nt
N—-1
RE =36t > o (en—erty =t Y () —ph) e ek
n=0 o= [{—Iieglnt U:I{_‘iegint

The bounds for remainder terms read

RE1< (Ilhioxtom Co + 10l @xtomy D 7any ) 101 620

Wherng is the bound of initial pressure all over computational domaherefore, the
residual of7g(m) tends to zero whem tends to+oo and, since

/ / (re gpg )drdt
IIIE T / /p@ ©)drdt.

Conclusion— Gathering the limits of all the terms of the mass and monraittalance
equations concludes the proof. O

we obtain that:

We now turn to the entropy condition (4.8). To this purpose nged to introduce the
following additional condition for a sequence of discratians:
5tm)
lim =0. (4.39)

m—+00 maneM(m) hK

Note that this condition is slightly more restrictive thas@ndard CFL condition. It
allows to bound the remainder term in the discrete elastiemi@l balance as stated in
the following lemma.
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Lemma 4.3.6. Let 2 be an open bounded interval &. Let (M™), §t(), . be a
sequence of discretizations such that the time §t&p tends to zero as: — oo, and
(pt™, ptm) 4(m), .y be the corresponding sequence of solutions. We supposthifat
sequence satisfies the estimaf@S86)-(4.37) In addition, we assume th&p(™),,cx
satisfies the following uniform BV estimate:

P N7 ev < C, ¥m €N, (4.40)
and, fory < 2 only, is uniformly bounded by beloirg. that there exists > 0 such that:
c< (pmn, VK e M™ for0<n < N™ v¥meN, (4.41)

Let us suppose that the CFL conditi@39)hold. LetR(™ be defined by:
R = Z oty (R
n=0 KeM

with R given by(@.38) Then:

lim R™ = 0.

m——+00

. — —
Proof. For K = [00’] € M, witho = M|K ando’ = K|L, we write R = (T})% +
(Tg)%—i_l —+ (Tg)%—i_l, with:

1|Vik|
2 ot

7 ()™ 1) (0 = P2 + 7 (i) M0 (= P’

1
2
(L) = [res pi i = 75 e ws| W (Bco) (o = i),

(T = H' (pq) (P = k)7,

()i =

wherepi . iy € i okl 7 € llok. o3l andas € [k, iy The first two

terms are non-negative, and thug;™')~ < |(T3)%|. Using the identity2(ab — cd) =
(a—c)(b+d)+ (a+c)(b—d)and(a —b)(a*+b*) = a®T — > + ab(b*' — a®71),
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V(a,b,c,d) € R gives(T3) i = (R + (Ry)w + (R3)% where

n 1 e o n n —n
(B =) oty 5 = r3) (op g+ oy uy) (P = pic) M (Plc2),
n=0 KeM
n+1 — 1 a+1 a+1 n,n n+1 " 1
(Ro)™ = Q 0t ) (g™ —15™) (b ugr = po i) (P — pi) H' (i) 7— o
n=0 KeM
n+1 — 1 a+1 . a+1 a—1 a—1 n n+1 n
(R3>K = ot iro Ty (TO' — T )(p _pa O’) (pK pK)
n=0 KeM
W (B)
K2 hK

We obtain from the expressidn (4113) for the volumes of pticeds:

1
S — %) < Vi,
e (g = ) < (Vi

Since botty, u and, fory < 2, 1/p are supposed to be bounded, there exists 0 such

that:
N—

S ot ST <€ C————— (0™ v

min h
n=0 KeM KeM 'K

,_.

which yields the conclusion by the assumption (4.39). O

Then we are now in position to state the following consisyeesult.

Theorem 4.3.7(Entropy consistency, barotropic casegt the assumptions of Theorem
[4.3.5hold. Let us suppose in addition that the considered sequeittiscretization satis-
fies(@.39) and that(p™),,.cy satisfies the BV estimafé.40)and, fory < 2, the uniform
control (@.41)of 1/p(™ . Then the limit p, p, @) satisfies the entropy conditid@.8).

Proof. Lety € C(Q x [0,7)), ¢ > 0. With the same notations for the interpolate of
¢ as in the preceding proof, we multiply the kinetic balancaatipn [4.31)1(4.32) by
¢!, and the elastic potential balan¢e (4.34)-(#.35)44y', sum over the edges and
cells respectively and over the time steps, to obtain therelis version of (418):

Tl(m) + Tz(m) + Tg(m) + Tl(m) + T2(m) + T3(m) _ _R(m) o é(m)
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where
e Vel
m K n n n
Tl ) — ot W[H(ﬂ]:—l) - H<pK)] SOK+17
n=0 KeM
N-1
T =Y ot Y [ o) uy — s He) sl
=0 g_lroleM
N-1
Ty =t [Pic(rgug — g ug)] it
=0 g_lr5leM
N-—1
m 1 |VO'| n n n n n
I =353t 5o lon (ug™)? = o ()] 05,
n=0 0EEint
) 1=
=gy 0t D> )’ = FRi)’] ¢, with K = [o'0), L = [o0)
n=0 O'ZI(—‘f/egmt
~ N-1
LW =3"6 Y 0 - s el
n=0 U:megint
N—1 R N-—1
R =36t S REF g R =3 gt S R gt
n—=0 KeM n=0 o€

and the quantitie’-"' and R"*! are given by Equatiori (4.85) arld (4.32) respectively.
By the same arguments as the proof of theoffems|2.4 /4 and Weldbtain desired results.
0]

4.4 The Euler equations

4.4.1 The scheme

The derivation of the explicit-in-time scheme for the Eudguations is obtained in the
same manner to the barotropic Euler equations (Section #® fully discrete form of

Explicit Staggered Schemes for Compressible Flows 153



NGUYEN Tan-Trung

the scheme reads, for<n < N — 1:

1 N 1 N
VK € M, p(}(zm/l{po(x)r dr, e%:m/Keo(x)r dr,

) ] ) (4.42a)
Vo € &g, U, = m uo(z) r*dr,
o Dy
H
VK = [o0'] € M,
v 7 7 n n
V] 5;( | (P = i) + E = F =0, (4.42b)
H
VK = [o0'] € M,
v
Wicl ertegen — picei) + Fiely — Fgel + pieracs — ru) = i
(4.42¢)
VE e M, pit = (v —1) o e, (4.42d)
—
VO' = K‘L c 81111:7
VU n n n o, mn n,,n n ., Mn a (1 n
|5t| (Pt — pfy up) + Fpup — Fpuge +rg (™ = pi™) = 0.

(4.42¢€)

The Equation[(4.42b) and Equatidn (4.42¢) are introducekution{ 4.3/1. Therefore,
we describe only terms associated to the internal energe Eduation[(4.42c) is an
approximation of the internal energy balance over the grogl K. The positivity of
the convection operator is ensured thanks to the upwindinge fore?:

n

; er if F' >0,
e otherwise.

The last term on the left-hand side is a natural approximaticthe velocity derivative
on primal cells which is given by (4.27). The right-hand sid¢, is derived by using
consistency arguments in the next section. Finally, thigalnrapproximations fok is
given by the average of the initial conditioason the primal cells.
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4.4.2 Corrective source terms

The next step is now to define corrective terms in the inteenakgy balance, with the
aim to recover a consistent discretization of the totalgynéalance. The first idea to do
this could be just to sum the (discrete) kinetic energy badanith the internal energy
balance: it is indeed possible for a collocated discrabmatBut here, we face the fact
that the kinetic energy balance is associated to the duahmésle the internal energy
balance is discretized on the primal one. The way to circurhtleis difficulty is to
remark that we do not really need a discrete total energynbalan fact, we only need
to recover (a weak form of) this equation when the mesh and $it@ps tend to zero. To
this purpose, we choose the quantiti€% ) in such a way as to somewhat compensate

the termg R* ') given by [4.32):

— V
VK e M, K =[00'], Sp= % P [l —ul ™) + (u) — ulh)?]
|FI?_1| n—1 _ , n—1\2 n—1 n—1 _ , n—1 n _ ,n—1
+ 9 (ucr ucr’ ) +FK (uo’ Uy )(UK uK )7 (443)
whereu?. — v} is a downwind choice with respect fg; '
ul, —ult i FRt >0,

! n n—1
VK =olo’ € M, U — Uy =
u? — ! otherwise

The expression of theS} ) ke a4 IS justified by the passage to the limit in the scheme
performed in the next section. Indeed, the first pa§pf thanks to the expressidn (4122)
of the density at the faqé‘Djl, results from a dispatching of the first part of the residual
over the two adjacent cells:

1 |VU| ()

- 1 |VL,U| 7
2 ot PP

pic (ug —uy ™) 5 =7 o

affecféd to K affecféd toL

(up — uZ_l)Q =

(uZ — u"_1)2 .

(e

The same argument holds for the terms associated to the aces.f Therefore, the
scheme conserves the integral of the total energy over tin@gtational domain.

The definition [(4.4B) of S}.) ker allows to prove that, under a CFL condition, the
scheme preserves the positivityeof
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Lemma 4.4.1.Let us suppose that, far< n < N and forall K = o|o’ € M, we have:

5t < Vil and ot < VKl Pk . (4.44)
v[re (up)t +rg (up)-] [Fo-t 4 F1Y

Then the internal energfe™)o<,.<n given by the schen@.42)is positive.

Proof. We refer to Lemm&a3.3.2 in Chapiér 3 for the proof. O

4.4.3 Passing to the limit in the scheme

For the consistency result that we are seeking (Thebrer® dedow), we have to assume
that a sequence of discrete solutigps™, pt™, w(™) ~_ satisfiesp™ > 0, pt™ > 0
ande™ > 0, Vm € N (which may be a consequence of the fact that the CFL stability
condition [4.30) is satisfied), and is uniformly bounded.ta((0, 7') x Q)3 i.e..

VK € M™ for0<n < N™ vYmeN,
0< (™ <C,  0<@E™M)E<C  0< (M) <C, (4.45)

and
|(u™)" < C, Voe&™ for0<n<N™ vmecN, (4.46)

whereC' is a positive real number. Note that, by definition of thei@itonditions of the
scheme, these inequalities imply that the functipfis, andw, belong toL.>°(Q2). We
also have to assume that a sequence of discrete solutiasfeesathe following uniform
bounds with respect to the discrete BV-norms:

16 v + D™ l7emv + 1™ I7any + a7 ey < C, Ym €N, (4.47)

and:
|u™ | 78v < C, Vm € N. (4.48)

We are not able to prove the estimates (4.45)—(4.48) for dhetisns of the scheme;
however, such inequalities are satisfied by the “intergslatfor instance, by taking the
cell average) of the solution to a Riemann problem, and aserwkd in computations (of
course, as far as possibigs. with a limited sequence of meshes and time steps).

Explicit Staggered Schemes for Compressible Flows 156



NGUYEN Tan-Trung

Theorem 4.4.2(Consistency of the one-dimensional explicit scheme, zdee)

Let2 be an open bounded interval Bf We suppose that the initial data satisfigse
L>(Q), po € BV(Q), ep € L®(Q) anduy € L®(Q). Let (M™ 5tM), .y be a
sequence of discretizations such that both the timesgt&pand the siz& ™ of the mesh
M(™) tend to zero asn — oo, and let(p™, p(™) (™) (M) be the corresponding
sequence of solutions. We suppose that this sequencessatisfiestimated.45)-(4.48)
and converges if? (2 x (0,7))%, for1 < p < oo, to(p, p, €, u) € L=(Q x (0,T))™%

Then the limit(p, p, e, u) satisfies the syste(@.12)

Proof. It is clear that with the assumed convergence for the seguehsolutions, the
limit satisfies the equation of state. The fact that the ligaitisfies the weak mass bal-
ance equatior (4.1Pa) and the weak momentum balance eqdil®b) is proven in
Theoreni 4.3]5. The proof of this theorem is thus obtaineddsging to the limit in the
scheme, in the internal and the kinetic energy balance emsat

Letyp € C*(Q x [0,T)). Letm € N, M™ andst™ be given. Dropping for short
the superscript™, let ¢\, be the interpolate af on the primal mesh and I8¢ ., and
0.\ be its time and space discrete derivatives in the sense afib@ifil4.3.4. Thanks
to the regularity ofp, these functions respectively convergd.ir{2 x (0,7)), forr > 1
(includingr = +0), to ¢, d; andd, respectively. In additionp (-, 0) (which, for
K € M andz € K, is equal topl, = ¢(zk, it)) converges te(+, 0) in L™(Q2) for r > 1.

We also definerg, 0,0 andd,p¢, as, respectively, the interpolate gfon the dual
mesh and its discrete time and space derivatives, stillensdnse of Definitioh 4.3.4;
once again thanks to the regularity@fthese functions converge Iri(§2 x (0,7")), for
r > 1,10 ¢, dyp ando, p respectively. As for the interpolate on the primal mesf, 0)
(which, foro € £ andz € D,, is equal top! = p(x,, 6t)) converges tg(-,0) in L™(Q)
forr > 1.

Since the support gf is compact in2 x [0, 7T'), for m large enough, the interpolates
of ¢ vanish on the boundary cells and at the last time step(after, we systematically
assume that we are in this case.

On one hand, let us multiply Equation (4.42c) &y2!, and sum the result for
0<n<N-1andK € M. On the second hand, let us multiply the discrete kinetic
energy balancd (4.81) byt ©**!, and sum the result over far < n < N — 1 and
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o € & Finally, adding the two obtained relations, we get:

T+ T+ T+ T+ T+ T = 50— R

where
N-1

T ) = ot 5t [PKH €K+1 — Pk eK] SOKHa
n=0 KeM
N-1

™ = ot Z (% o eloul, — r8 prenul] o,
n=0 —

K=[oo'|eM

N-1

T =30t Y P (rhul — sl ot
n K=[oo/|eM

N—
T =36t S [ - R’ e, with K = (0], L = [00],
n=0 UZK—‘f/Ggmc
N-1
Tg(m) _ Z 5t Z (p?/—i-l prIL{—i-l) ro ug—i—l QPZ—H,
n=0 U:megint
N-1
St =3 "6t > Spoi Zat > Rt
n=0 KeM n=0  o€&mn

and the quantities”. and R"*! are given by Equation (4.43) arid (4.32) respectively.
Reordering the sums ifi"™ yields:

N—

==Y 0t > Vil ek Pi — Cic ﬂpK = Vil o €% ek

n=0 KeM KeM

,_.

so that:

T
" = _/ / P ™o r® dr dt — /(P(m))o(if) (™0 (z) (2, 0) r*dr.
0 JQ Q

The boundedness ¢f), ¢y and the definition[(4.42a) of the initial conditions for the
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scheme ensures that the sequerf¢g8)?),,cx and((e™)?),,cx converge tg, ande
respectively in.”(Q2) for » > 1. Since, by assumption, the sequence of discrete solutions
and of the interpolate time derivatives convergeLif2 x [0, 7)) for » > 1, we thus
obtain:

lim 7" / /pe@tgor drdt — / o(z) eo() (x,0) r® dr.

m——+00

Reordering the sums [ﬁz(m), we get:

N-1 Son—l-l (pn—i-l
Tz(m):—Z(St Z hero p "e"u"Lh—K.
n=0 0:K_|I>/E€ 7

Using the relation

/ / 5rg0% rdrdt

N-1
Vel w o, Vi
= ot Z (TpKeK+Tp e

=3
=3

n+1 n+1
n QDL SOK
U )
hy

we can rewritéfz(m) as follow

// 5T¢Mrdrdt+7€ +R22,

N-1
Rgz) = E ot E [T Pk T 5 Prer— |5 T Po o

n+1 n+1
un L — P

o hg

Using Taylor expansion fdi/,| — h, ¢ and the upwind choice ¢f! ¢” gives the bounds
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for remainder terms:

IRSY| < T o[ C 1™ [l o,y Nle™ Nl @ o,y 1™ [l @ o,y 2™,

- Vil | [Vl
m r K L n n on
‘R§,2)| < Csa Z(St Z (T + ) lug| L €1 — pk €kl

n=0  o=K|Le&
Applying the identity2 (ab — c¢d) = (a — ¢)(b+d) + (a + ¢)(b — d), which holds for any
{a,b,c,d} C R, to the quantity’ e} — p} e}, we obtain:
|R | < Cy |9 b ||u(m)||Loo(Qx(0,T)) [”P(m)HLoo(Qx(o,T)) €172y

+ He(m)HLOO(QX(O,T)) 10" |7 28 | -

RSE)I + |R§f’§)| tends to zero whem tends to+oo and

lim T / /peu@rapr dr dt.
m——+00

For the termi™, the definition[4.22) of,, yields:
N-1 n+1

= (m n PK— Pk
T = =30t 3 [ Wicol ol + Vil ot up 258

n=0  o=K|LeE !
- > [IVK,U\p%HVL,UIp% Uy e,

o=K|Le&

so, by similar arguments as for the tefff”, we get:
m) T 1 = =2 [ 1 2 o
lim 7™ = — S pu Oppr®drdt — [ < po() uo(z)” (x,0) r dr.
m—>+00 0o Ja?2 Q2
Let us now to the terrffz(m). Reordering the sums, we get:

m 1 n mn
W= 0t D Fr(h)? (e -,

H
K=[oo'leM
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The upwind choice ofj. with respect taFy allows to write7y™ = 757 + T35 with

F(m 1 n n n n n
LY ==32.0 Y FRl)?+ @)’ (e —ert,
=0 g_lroleM
N-1

oty 1FR|[(up)? = (up)’] (037 = p).

n=0  g_lr]eM

Thanks to the definition of the mass flux at dual eddé?{,) turns out

T(m 1 1 a n, n a n,n n n n n
T2(,1) = _Z Z 5t Z 5 ( o Pols + T po’uo’) [(uo)z + (u0/)2] (gpa’—i_l - S00'+1)7
n=0  g_lr]eM

Using the identity2 (a® + %) = (a + b)(a — b)? + (a + b)(a* + b?), which holds for any
a, b € R, to the quantity(u”)® + (u” )3, and the relation

T
/ / — pm (™3 5, 0e v dr dt
0o Ja?2

N

-1
1 (6% mn n n n n
2200 Y sl () )] (e - ent,
— —
n=0 K=[oo'leM
wherer$. = |Vik|/hk, gives

T
~(m 1 ~(m ~(m ~(m
T2(,1) = —/0 /95 P (u™)? B, v dr dt + Rg,l) + Rg,z) + Rg,s),
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with
N-1
ffz(m)__l St a __ ay ,n,n a __ ,aN,n o,n n+l _ n+l
21 8 Z Z (TU TK) Po Uy + (TO', TK) Por Ugr (SOO'/ Po )7
=0 K_[so'leM
N-1
o (m 1 a n n n n n n n
Ré,Z) = g Z ot Z Tk P (ua + ua’) (ua - ua’)2 (Spcr’—‘rl - S00+1)7
=0 K—[oo'leM
~ 1 N-1
Ryy == 2 0t > ri [ = sh)u + (o — pie) )] [(uf)? + (uf)’]
=0 K_(saleM
(SOn/—l—l - (,0”+1>-

In a similar way as preceding proofs, we obtain the boundesimainder terms as follow

REY| < Tl Cp 1™ [l @xiom 4™ 2 @x 0,77 B™
‘,R’gg)| < ‘Q‘QC; ||p(m)||L°°(Q><(O,T)) Hu(m)Hioo(QX(QT)) Hu(m)HT%BV h(m),
IR < 1920% o u™ 1B w0y 12 17y B,

[ Toa”] < 190 € 10" @0 1™ oo 0.y 1™ 7mv 2.
and hence:

T
- 1
lim 7, = — S p i Bupredrdt.
morbos 2 /0/92“‘8“” '

We now turn tngm) andi}fm). By a change in the notation of the time exponents,
using the fact thap, vanishes at the last time step(s), we get:

N-1

T =%t Y WE-pR)rsupen =T+ R
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with:
N-1
=)0t D G- et
n=0 a:me&m
N-1
==Y ot > pr(rSup s —rulenrth,
=0 K—[so']eM
N-1
Ry =6t Y - p)rsuper Y 6t D (= pi) sy (dh — b,
a=m€&m n=0 0=m€&m

We have, thanks to the regularity of

RE™] < Cp 121 5 [ 1) ey 10 vy

+ ||u(m)HL°°(Q><(O,T)) ||P(m)HT,m,BV :

Therefore, invoking the regularity of the initial condiis, this term tends to zero when
m tends tot-oco. In the next step, we take the summf” and7,™ and make appear the
coefficientr?. to obtain{™ + 7™ = 7" + R{™ with:

T =)ot Pl [uly (P = @) — i (5 = 03]

/ / xgngr d’f’dt

N-1
REV =6t D pi |5 = ) (e — )
_>

= (2 =)l (R — o).
In the similar way as preceding proofs, we have the boundi®reémainder term:

RSV < Tl C% 9™ [l @0,y 1™ e @ o,y ™
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So, sinceéd, v ¢ converges td,p in L™(Q2 x (0,7)) for anyr > 1, we get

lim T( / /pu@rgpr dr dt.

m——+00

Finally, it now remains to check théitn,, , .. 5™ — R™ = 0. Let us write this

quantity ass™ — k(™ = R{™ + RU™ where, usings). = 0, VK € M:

n+1 ZRZ¢Z+1 : Rgm Zat Z SK n+1_ n )
n=0 KEM o€l n=1 KeM

First, we prove thatim,, Rﬁm) = 0. Gathering and reordering sums, we obtain

R =R + R{Y +RY% with

RY’?}) _ Z Z [|VK|pn+1 n+1 (,OZ+1) + |V |pn+1( n+1 sz-l-l)]
n=0 ¢=K|Le&
(ug-‘rl - U:)27

1 N-1
IS S I e e -,

n=0 KeM
N-1

o —up) (ug™ =) (P — o).

R =36t > Fp(ul—ul

n=0 K=[o'—0o]eM

We thus obtain:

IRYV| < B Co 0™ Nl 0.9 1™ ooy 1™ 7B

and |R |‘|‘|R ' <2hm Co o™ I (@x(0,7)) ||Um ||L°° (Qx(0,T)) ||u 72,

so all these terms tend to zero. The fact qnag’”\ behaves ast™ may be proven by

very similar arguments.

Conclusion— Gathering the limits of all the terms concludes the proof. O
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4.5 Numerical results

We assess in this section the behaviour of the scheme(s)pboseon and implosion test
cases. To this purpose, we address the Riemann problerediandb1, Chapter 17]. For
the barotropic Euler equations, we chopse p? for the equation of state, so the solved
system turns out to be the so-called shallow water equations

4.5.1 Shallow water equations

Let us consider the implosion on cylindrical coordinatetegs whenn = 1. The initial
data consisting in two constant states separated by a disuaiiy are chosen to obtain
circular shock wave travelling towards the center, a cacabntact surface travelling in
the same direction and a circular rarefaction travelliny wam the origin. The com-
putational domain is the squafe= [0, 2] x [0, 2]. The initial conditions consist of the
region inside of a circle of radiu® = 0.4 centred af(1, 1) and the region outside the
circle:

L ins — 1 . out — 2
inside state:[p ] . outside state:[p ! 2] .
Uout =

Uins =
The density, velocity and pressure obtained at the final fime 0.01 with A = 1/800

anddt = h/10 are shown of Figures 4.1, 4.2, ahdl4.3 respectively, whezetwio-
dimensional solution along the radial line that is coinaideith thez—axis.

4.5.2 Euler equations

For the full Euler equations, we refer {0 [61, Test case 1f6134 spherical explosion test
(corresponding to the case= 2), with two constant states given by:

Pins = 1 Pout = 0.125
inside state: | u;,, = 0] ; outside state:| 1wy, =0
Pins = 1 Pout = 0.1

These initial conditions give the inverse structure of v&awecase of shallow water equa-
tions. In detail, we obtain a circular shock wave travellavgay from the centre, a circu-
lar contact surface travelling in the same direction anda@utar rarefaction travelling to-
wards the origir{1, 1, 1). The computational domain is the cude= [0, 2] x [0, 2] x [0, 2].
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_______________________________________________________________________________________

__________________________________________________

———————————————————————————————————————————————————————————————————————————————————————

< T B e A

T .e.-.-e Pririrop
e S e e e e
Nl
————_numerical solution
0.00.0 0.|1 O.I2 0.|3 0.|4 0.I5 O.I6 0.I7 0.|8 O.I9 1.0

Figure 4.1: Cylindrical implosion & = 1/800, §t = h/10 — Density atl’ = 0.01.

The three-dimensional solutions including density, viyopressure and internal energy
obtained along the radial line that is coincident with thaxis at the final tim& = 0.25

with » = 1/800 anddt = h/10 are shown of Figurds 4.4, 4[5, 4.6 dnd 4.7 respectively.
We do not an exact solution for the three-dimensional Eudeag&ons, however, the nu-
merical solutions obtained by our scheme are compatible thé reference solutions in
[61, Figure 17.7].
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0.0 t } t t } t f f 1
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Figure 4.3: Cylindrical implosion 4 = 1/800, §t = h/10 — Pressure af' = 0.01.
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1.0

s——r——x numerical solution
T T T

0.1 i ; i ; ; ; i : :
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.4: Spherical explosion+= 1/800, dt = h/10 — Density atl’ = 0.25.

1.2

M nuUMerical solution
T T T

s fle N
R R e N R
e I
4 e S e e e e

1 1 1 1 1 1 1 1 1
' 1 1 I ' 1 1 ' 1

02T~ -F----1--------r--------m-------a--------r-------- et Rl el
: 1 1 1 1 1 1 1 1 1
' 1 ' ' 1 ' ' ' 1

0.0 t : : t : : . ¢
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.5: Spherical explosion+= 1/800, §t = h/10 — Velocity atT = 0.25.
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s——r——x numerical solution
T T T
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Figure 4.7: Spherical explosion= 1/800, §t = h/10 — Internal Energy al” = 0.25.
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Appendix A

Exact solutions for the shallow water
equations

A.1 Non-vacuum case

Let us recall the conservative form of the one—dimensiohallew water equations in
case of ideal gas:

Oup + Ou(pu) = 0, (A.1a)
Oi(pu) + 0y (pu®) + dup = 0, (A.1b)
p=r, (A.1c)

The sound speedcorresponding to the equation of staie (A.1c) is given by:

a=p(p)=+2p. (A.2)
Let us rewrite Equatior (A.1a) and (Allb) in differentiatia
U, + F(U), =0, (A.3)

whereU andF(U) are the vectors of conserved variables and fluxes, giverecésply

by:
U U

170

pu

U= )
pu? +p

(A.4)

U2
o 2 2|
us/uq + ui
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The conservation laws (A.3)-(A.4) can be written in quasgar form:
U, + A(U)U, =0, (A.5)

where the coefficient matrix (U) is the Jacobian matrix:

A(U ; ! 0 1 A.6
— 2 = .
(U) — <ﬂ> +2u; 22 —u?+a® 2u (A.6)

ul

and the eigenvalues of the Jacobian matt{X)) are
A =u—a, A2 = u+ a. (A.7)
The corresponding right eigenvectors are given by:

1

u—a

1

u -+ a '

KO — [ ] : K@ — (A.8)

Hence, we have two waves associated with the two genuinelylinear characteristic
field KM and K ®:

_u 1
V), - KO = ol :_97507
- u—a P
- P -
_u 1
Vi, K@ — e :37&0‘
_;_ _u+a_ P

Roughly speaking, the two waves are either shock or raiefact he two waves separate
the relevant domain of interest, < x < zg, t > 0, withz;, < 0 andzr > 0 three
constant states. From left to right these @lre (left data state)lU, (Star Region) and
Ug (right data state). The complete solution of the shallowewaguations is given
by observing the structure of each wave. The Generalizeth&ie Invariants across
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Ai-wave and\;-wave, are respectively

d d

ap _ (pu) <:>du+gdp:0<:>]L(p,pu) ;:u+/2dp:u+2a:const (A.9)
1 u—a p p

dp _ d(pu)

— = @du—gd,o:O@]R(p,pu)::u—/gdp:u—2azconst
1 u+a p p

(A.10)

Let us consider the case of left shock wave. We demnbte = (pr,ur,pr) and
W. = (ps, u«, p«) pre-shock and post-shock values, respectively. The entropdition

AL(Uz) > S; > A(U,) (A.11)

deduces that; < u; whereS; is the shock speed. We transform the problem to a new
frame of reference moving with the shock so that in the nemé&#he shock speed is 0

ﬁL:uL—Sl>0, ﬁ*:u*—Sl.
The Rankine-Hugoniot conditions give:

pL'aL = p*ﬁ* = QL s (A12)
pLﬁzL +pL = p*ﬁi + Ps - (A.13)

Using (A12)-[A.13) and solving fo);, yield:

P« —DPL P« —DPL
———— = QL= — :
Uy — UL, Uy — UL,

(A.14)

Applying (A.12) and the equation of state (Al. 1¢) on the fidgritity of (A.14), we obtain:

(

2
S = pupr(pe + pr). (A.15)
P

* N

ks
~—

@ --

R

From the second identity of (A.l4), we have the equation ef\talocity in the Star
Region:

. — 1 1
Uy = UL, — L Pr = Uy, — (p_ + p—) (p* — pL)- (A16)
% L
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On the other hand, the Rankine-Hugoniot in the original #am

G = PEUL T Petle (A.17)
PL — Px

givesS; as a function of the densipy,:

PLUL — Px {UL - (pi + i) (ps — pL)} .1
= UL — Px (

PL — Px

S =

Thus, the entropy conditiof (A.1L1) yields:
1 1
ur, —\/2pL > up — ps <—+—)7
Px PL

or
Ps > PL- (A.19)

For the right shock wave, in the similar way of computationthie case of left shock,
we obtain:

1 1
Sy = up + pu <— + —) , (A.20)
Px PR
1 1
w = up — (— + —) (pr—p2) (A.21)
Px PR
Ps > PR - (A.22)

We now turn to the rarefaction wave. Using Equation {A.9) 4&dQ) gives the
Generalized Riemann Invariants for left and right states:

Left rarefaction:  wur + 2a;, = u. + 2a, & u, = ur, + 2\/5(\/pL —/p<). (A.23)
Right rarefaction: uz — 2ag = t. — 2a. < u, = ug — 2V2(\/pr — /=) (A.24)

Let us summary the crucial results from researching fouesygf waves which are
able to appear in our problem:
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e Left shock:
1 1
Uy = UL, — (— + —) (p« — pr), (A.25)
Px PL
Ps > PL, Uy < UL. (A.26)
¢ Right shock:
1 1
de = un+ (— ¥ —) (0. — pr). (A27)
Px PR
Px > PR, Ux > UR. (A.28)
e Left rarefaction:
e = ug — 2V2(\/pr — /pr). (A.29)
s < PL, U > UL (A.30)
¢ Right rarefaction:
w, = ug +2V2(v/pr — \/R): (A.31)
P+ < PR, Uy < UR. (A.32)

The solution for the density, in the Star Region is given by the root of the algebraic
equation:

f(p) = frlp) + fr(p) + (up —ur) =0, (A.33)

whereK = L, R and

) (55 + 1) (e =px) if p> pic (shock), A3

2v2(\/p — /PK) if p < px (rarefaction).

Once we obtain the densipy, the solution for velocity, in the Star Region is given by:

ue = g s+ un - Falpr) — ()] (A.35)
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The numerical solution for Equation (A33) is found by NemARaphson method:

h = P — f(pr=1)
o)’

(A.36)

where
TR R
£ if p > pk (shock),

fe) =3 Vi ts (A37)

< if p < pk (rarefaction).

The iteration procedure is stopped whenever the relatigegure change is less than a
prescribed tolerance, for instandé;) L = 10-5:

olok =l o, (A.38)
Pk + Pr—1

The solution inside the left rarefaction wave is sought Hyisg:

u—a= % , (A.39)
u+2a:uL+2aL . (A40)
Through simple algebraic manipulations, we attain:
1 x
=2 <uL + 2a, + 2;) , (A.41)
1
a = = <UL+2CI,L—£> . (A42)
3 t
Using the definition of the sound speegields:
1 T\ 2
P=13 (uL + 2ap, — ?) . (A.43)
In a similar way, we obtain the solution inside the right facion wave:
1 T\ 2
P=13 (—uR+2aR+?> ) (A.44)
1
u=z <uR ~ ap + 2%) . (A.45)

Let us calls = z/t the speed of given particlér,¢) at the final time. We now
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provide a solution sampling procedure to develop a solvdintbthe exact solution of
the complete wave structure for the Riemann problem at aimyt o, ¢). Equations
(A7), (A18) and[(A.2D) give velocities of shock and raatfan waves:

(up — ap; uy, — ay) if p. < pr (left rarefaction),

(vi;07) = (A.46)
O PR (pAL + pi*) if p. > py, (left shock).
(ug + agr; usx + ay) if p. < pr (right rarefaction),
(vg;v3) = (A.47)

wn A+ p (p% + p%) if p, > pg (right shock).

Finally, the complete solution for the shallow water egoagi in case of non-vacuum
reads, withl = (p, u, p):

WL if s S V1,
WLf(m if U1 <8§U{,
Wiz, t) =< W, if vf < s <3, (A.48)

Wheian 1fv; <s <y,

Wgr if vy <s.

\

Wherepoan) UL fanr PRfan anduRfan are given bymB)ﬂﬂl)ms) anms) and
the pressure is obtained by the equation of $tatelA.1c.

A.2 Vacuum case

In a vacuum region characterised by the condijios 0, a shock wave can not appear.
This property can be obtained easily by observing the eptogmdition. Therefore,
we only consider the case of a two-rarefaction wave. Appboaof the Generalised
Riemann Invariant to connect points on left and right stédes point along the contact
gives:

V1 * :uL+2\/2pL, (A49)
Vo * :uR—2\/2pR. (ASO)
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So, we obtain the complete solution for the shallow wateraéqus in the presence of
vacuum withiWy = (0, ug, 0):

W, if s <wy,

Wifan 1o <s <7,

W(z,t) =< W, if vf < s <3, (A.51)
Weian vy <s <y,
Wr if vy <s.

\

whereu, is given by Equation’A.35.
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Appendix B

Playing with Burgers’ equation

B.1 Introduction

Computer codes developed for the simulation of inviscid aowl heat-conducting com-
pressible flows are in general based on the conservative ébrtne Euler equations,
which read in the one-dimensional case:

Op + O0(pu) =0, (B.1a)
Oc(pu) + 0s(pu®) + Oep = 0, (B.1b)
HE + 0, ((E + p)u) =0, (B.1c)

wheret stands for the timey, v andp are the density, velocity and pressure in the flow,
and £ stands for the total energ¥; = pu?/2 + pe, with e the internal energy. This
system must be complemented by an equation of state, gigmig$tance the pressure
as a function of the density and the internal energy o(p, ¢).

For physical reasons, the density and internal energy neusbh-negative (in usual
applications, positive). In addition, for the continuousiem as well as, at the dis-
crete level, for a wide range of schemes (the so-called ceahee schemes), the non-
negativity of these variables allows a (weak) control on gbkition; assuming that
and F are known on the parts of the boundary where the flow is emehia compu-
tational domain, Equations (Blla) and (B.1c) indeed yield.z (0, 7; L' (Q2))-estimate
(with Q x (0,7 the space-time domain of computation) for the density aedttital
energy respectively. The positivity of the density at thecdete level is easily obtained

178



NGUYEN Tan-Trung

from a convenient discretization ¢f (Bl1a). The positiafithe internal energy does not
seem easily obtained other than by replacing Equalion By @ balance equation for
the internal energy in the discrete problem; this balancaton is formally derivedi(e.
supposing that the solution is regular) frdm (B.1b) dnd @Bdnd reads:

Oi(pe) + 0x(peu) + pdyu = 0. (B.2)

In this relation, the discrete convection operator may bk $mas to respect the positivity
of e: provided that the equation of state is such that for anyevalip, p vanishes for
e = 0, testing the discrete counterpartfof (B.2) by the negatareqf e provese > 0 (see
[42] for the initial chapter,[[16, Appendix B] for anotherqaf suitable in this context,
and [29] in the framework of the compressible Navier-Stad@sations).

Instead of Equatior (B.1c), one may also prefer to use a ceatsen equation for
the physical entropy, because this equation (derived for regular solutions)ssrgple

transport equation: 8,(ps) + 9. (psu) = 0. (B.3)

Let us then consider that, for computational efficiency diuiness reasons, (B.2) or
(B.3) are preferred t@ (B.1c). Since bdth(B.2) dnd(B.3)dmeved from[[B.1k) assuming
a regular solution, there is no reason for their discratpato yield the correct weak
solutions in the presence of shocks. Nevertheless, we naspmnably expect to recover
the correct shock solutions if we use the following strategy

(i) regularize the problem by adding a small diffusion term,
(i) derive the counterpart of (B.2) dr (B.3) taking into acmt the diffusion terms,
(ii) solve these equations,

(iv) let € tend to zero.

Of course, stefiii) is performed numerically, and convergence is monitoredhay t
space and time discretization stgpandk; the question which arises is then to find a
convenient way to let and the numerical parametérsandk tend to zero. The aim of
this chapter is to perform numerical experiments in ordenvestigate this issue on a
toy problem, namely the inviscid Burgers equation. Noté w@only consider explicit
schemes in this study.
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B.2 The equations and the numerical schemes

The inviscid Burgers equation reads:
Ou + 0, (u?) = 0, forz € R, t € (0,7), (B.4)
which we complement with the initial condition:
u(z,0) = up(x), forz € R. (B.5)

Following the above mentioned strategy (items (i)-(iv)E first add to[(B.4) a viscous
term, to obtain:d,u + 9, (u?) — €d,,u = 0. Now, multiplying this relation by2u yields
the following perturbed equation:

4
ohu? + 3 Opu® — 2ued,,u = 0. (B.6)
Fore = 0, we get the following “Burgers square entropy” equation:
2 4 3
Jyu” + 3 d,u” = 0. (B.7)

which also reads, setting= u?:

3

v + %a,f(m) — 0. (B.8)

We consider the following initial data, chosen such thateh&ropy solution of[(B.4)-
(B.5) contains a discontinuity:

10, = < —-0.25

uo(z) = { : (B.9)
1, z>-025

It is well known that for such an initial condition, the erppgoweak solutions of equations
(B.4) and [[B.Y) differ. Let us then turn to their numericapegximations. Since the
chosen initial datal (B]9) is positive, the celebrated Gaduscheme reduces for both
equations to the classical upwind scheme, thanks to thethattthe upwind scheme
preserves (for these equations) the sign of the solutiaeviell known that it leads to
an approximate solution which converges, under a so callddddndition, to the exact
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solution as the discretization parameters go to Zero [1#p(that this is not the case for
the centred finite volume scheme, although it is consematior the sake of simplicity,
we consider constant time and space stepsdk. Fori € Z, we setr; = ih and for
n € {0,...,M}, with (M — 1)k < T < Mk, we sett,, = nk. The discrete unknowns
are the real numbelzé”), withi € Z andn € {0,...,M}. The valuemgo) are obtained
with the initial condition:

o _ 1 [
U =g . uo(z)dz. (B.10)

Since the discrete solution is positive, the upwind schemé&fjuation[(B.#) reads:
n n— k n— n—
af =4 2 @) = @) (B.11)

For this particular problem and scheme, the maximum valuéh® solution is reached
at the initial time step so that the CFL number is the nuntbsuch that:
h

h
b= GmaX{QS, s€[1,10]} G%' (B.12)

Similarly, the upwind scheme for Equatidn (B.8) reads:

vl-(") = v}"‘” + ;1—: [(vi(ffl))% — (vlgn_l))%}, (B.13)
and the CFL number is the same num@eiThe numerical solutions obtained with(BlL.11)
for the Burgers equation (B.4) and with (Bl13) for the Busyequare entropy equation
(B.7) are depicted in Figufe B.1. Both are obtained with CEua& to1, for T = 1/20
and with various values aW, starting from/N = 200 and multiplying successively by
two the number of cells up t& = 1600. As expected, the upwind scherie (B.13) yields
a numerical solution which converges (as the discretingpi@ameters go to zero and
under a CFL condition) to a weak solution 6f (B.7) (and eveitdantropy solution),
which is not a weak solution of (B.4), since the Rankine-Higbconditions differ. At
time T = 1/20, the shock for the solution df (B.4) is locatedvat= 0.3, while the shock

of the solution of[(B.F7) is located at> 0.4.

Remark B.2.1(Link with a non-conservative diffusion termlror the Burgers equation
(B.4), upwinding may be seen as adding a diffusion, namely digorgt(sinceu > 0):

O + 0, (u?) — 0, ((hu — 2ku®)0,u) = 0.
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Figure B.1: Upwind Scheme for (B.4)-(B.9) (left) aid (B(B:9) (right) with different
mesh sizes(FL = 1.

Note that one hasu —2ku® > 0 thanks to the CFL condition. For the Burgers square en-
tropy equation(B.7), upwinding may be seen, formally, as solving the followiagpolic
equation (since. > 0): dyu?+ (4/3)0, (u?) — 0, ((2hu? — 4ku?®)d,u) = 0. This equation

is equivalent to the following parabolic perturbation oktBurgers equation:

Dht + 0, (u?) — %&B((hqf — k) Au) = 0,

The third term at the left-hand side may be seen as a numaditfakion (thanks to the
CFL condition) which is not in a conservative form, becaug¢he factor1/u. The
above numerical results show that such a non conservatfigsain may lead to wrong
discontinuities.

B.3 Numerical solution of the perturbed equation

We then discretize the perturbed equation[B.6) with ¢;h*, wheree, > 0 anda > 0
are fixed. Note that, setting= 2, (B.6) can also be recast as:

Njw

4: 1 1
o + gﬁx(v ) —v2egh®0, (v 20,v) = 0,

that is a nonlinear hyperbolic equation augmented with dinear nonconservative dif-
fusion term. The upwind finite volume discretization of tlkiguation reads (in the
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variable), withu'” given by [B.1D),

n . Ak 1, (e .
() = (") g [7) = (")’

+ % eoh® u{" ™" [uﬁ.’_‘;” —2ul" 4 uf._’;;”]. (B.14)

We present in Figurds B.P, B.3 and B.4 the numerical solstaitained with[(B.14)
for « = 0.5, = 1 anda = 2 respectively, and for the same tirfie= 1/20, CFL=0.1
and meshes as in Section B.2. The paramegtés such that h® = 0.2 for N = 200
(whatevern may be). Figuré Bl2 shows that for< « < 1, the sequence of approximate
solutions given by[(B.14) converges to a weak solution ofittiteal Burgers equation
(B.4), ash andk tend to O, under a stability condition, which, sinee< 1, becomes
more stringent than a CFL condition whértends to zero. Figurie B.3 shows that for
a > 1, we obtain the convergence to the solution[of {B.7); figurd hows that for
«a = 1, the location of the discontinuity lies in between the digawuities of the solution
to (B.6) and[(B.¥). These results seem to indicate that theargence to the solution of
(B.7) (resp. [(B.B)) occurs when the added diffusion don@sdtesp. is dominated by)
the numerical one.

Let us finally study the following finite volume centred schefor Equation[(B.7),
which reads:

(n—1) | . (n—1) (n=1) | . (n—1)
(n)\2 _ (, (n=1))2 4k [ Uiog T+ 3 Y Uiy 3}
k a  (n— n— n— n—
+ 73 eoh ug b [ul(-_ll) - 2u2(- Dy uf,rll)]. (B.15)

Results fora = 1, a = 1.5 anda = 2 (ande¢, such thategh® = 0.2 for N = 200,
whatever may be) are reported on Figutes B.5,1B.6land B.7, respegtiVhe numerical
solution now seems to converge to the solutior of(B.7), astléora € (0,2). For the
finest mesh and: = 2, the diffusion is no longer sufficient to prevent some spusgio
oscillations near the shock. Last but not least, the aduitidiffusion which is necessary
to recover the right shock location is considerably redusél respect to the upwind
scheme (even if the scheme still appears more diffusivettimatandard upwind scheme
applied to[(B.4)), which is encouraging in view of practieatensions to Euler equations.
ConclusionWe tested two discretizations for the modified equationl(B.6
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Figure B.2: Upwind Scheme fdr (B.6) with non conservativifudion term,a = 0.5.

—an upwind scheme for which the solution converges to thekwedution of [B.4)
if the viscous term is predominant with respect to the nuca¢wiffusion, that is if
€ = eoh®, With ¢y > 0 anda € (0, 1).

— a centred scheme which yields correct solutions for allesd € (0, 2).

The extension of this work to Euler equations is under wagl,rasults are encourag-
ing. Indeed, it seems that we are able to build convergemrsek, even in the presence
of shocks, using either the entropy or internal energy lwaam next step might be to
use a nonlinear viscosity to avoid an excessive smearingeo$olutions, following the
ideas developed in [22].
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Explicit staggered schemes for compressible flows

Abstract — We develop and analyse explicit-in-time schemes for tinepzdation of compressible

flows, based on staggered in space unstructured discietizatpwinding is performed equation
by equation only with respect to the velocity (like in the AM$amily of schemes). The pressure
gradient is built as the transpose of the natural divergenbéh yields a centered discretization
of this term.

In a first time, we address the barotropic Euler equations. vBtocity convection term is built in
such a way that we are able to derive a discrete kinetic ermigynce, with (at the left-hand side)
residual terms which are non-negative under a CFL conditi'a then show that, in one space
dimension, the scheme is consistent in the sense that, ditesee of discrete solutions converges
to some limit, then this limit is a weak entropy solution t@ ttontinuous problem. Numerical
tests allow to check the convergence of the scheme, and shaddition an approximatively
first-order convergence rate.

We then turn to the fulli(e. non-barotropic) Euler equations. We chose here to solvntamal
energy balance instead of the total energy equation, whiekepts two advantages: first, we
don’t need a discretization of this latter quantity, whistrather unnatural since the velocity and
the scalar unknowns are not approximated on the same masgindgseanad hocdiscretization
of the internal energy balance ensures its positivity. Wansthat, under CFL-like conditions,
the density and internal energy are kept positive, and tta (oe. integrated over the whole
computational domain) energy cannot grow. The difficulinpds to obtain consistency. Indeed,
a scheme using the internal energy equation may not conte@@eveak solution of the original
system in the presence of shocks. This problem is healedebfpliowing strategy:

1. Establish a kinetic energy identity at the discrete I¢wéh some source terms).

2. Choose source term of the internal energy equation suththh total energy balance is
recovered when the mesh and time steps tend to zero.

More precisely speaking, we prove the following theorétiegult. In 1D, if we assume the>
and BV-stability and the convergence of the scheme, pagsitige limit of the discrete kinetic
and discrete elastic potential equations, we show thatrthiedf the sequence of solutions indeed
is a weak solution. This result is supported by numericastes

Finally, we consider the computation of radial flows, goeetrby Euler equations in axisymetrical
(2D) or spherical (3D) coordinates, and obtain similar itssip the previous sections.

Explicit Staggered Schemes for Compressible Flows 195



NGUYEN Tan-Trung

Schémas nuneriques explicites pour le calcul découlements compressibles

Résunt — On étudie des schémas de type explicite en temps suragmitiecalé non structuré
pour I'approximation des écoulements compressibles.r Bloacune des équations considérées,
séparément, un décentrement amont est effectué site$s® matérielle. L'opérateur de gradient
de pression discret est défini comme la transposée derbiogir de divergence discrete, et c’est
donc un opérateur centré.

Dans un premier temps, on s'intéresse aux équations ef'balrotrope. Le terme de convection

non linéaire en vitesse est construit de maniere a ce episdlution approchées satisfassent,
sous condition de CFL, un bilan d’énergie cinétique dis¢avec, au premier membre, un terme
résiduel positif). On montre ensuite qu’en une dimensiesghce (1D), le schéma est consistant,
au sens ou si les solutions approchées convergent verbmite lorsque les pas de temps et

maillage tendent vers 0, alors cette limite est solutiobléagntropique du probleme continu. Des
tests numeériques permettent de vérifier la convergenseliema, avec un ordre proche de un.

Dans un deuxieme temps, on traite les équations d’Eulamptes. Plutdt que de résoudre
I'équation d'énergie totale, choix traditionnel desé&atas colocalisés, on préfére résoudre I'eéqua-
tion d’énergie interne, ce qui présente deux avantagasnegart, on évite d’avoir a discrétiser
I'eénergie totale, qui fait intervenir I'énergie intereéla pression, variables qui ne sont pas définies
sur le méme maillage ; d’autre part, une discrétisatidrhocde I'énergie interne assure la pos-
itivité de cette derniére sous condition de CFL. Cependarilisation de I'équation d’énergie
interne nécessite des précautions : le fait de ne pasilteavsur I'energie totale peut en effet
faire apparaitre des solutions approchées qui ne tepdsnters une solution faible des équations
d’Euler, et qui en particulier, ne vérifient pas les relaiale Rankine et Hugoniot et font ap-
paraitre des mauvaises vitesses de choc. Le remede eassarer que le bilan d’énergie total
soit bien assuré a la limite, en écrivant ce bilan comns®tame du bilan d’énergie interne et du
bilan d’énergie cinétique, et en introduisant dansu#&ipn d’énergie interne discréte un terme de
correction qui compense le terme résiduel (positif) darbil’€nergie cinétique décrit plus haut,
et qui ne tend pas vers 0. Dans ce cas encore, on montre quéedeans 1D, si les solutions
approchées convergent, alors elles convergent vers luteéosdaible des équations d’Euler. Les
résultats numériques corroborent la théorie.

Enfin, dans une troisitme partie, pour des écoulementawadiniquement, on discrétise des
équations d’Euler en coordonnées cylindriques (2D) ciesgues (3D); les résultats obtenus

sont similaires aux précédents.
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