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General synthesis

1 Introdu
tionThis work was performed at the Institut de Radioprote
tion et de Sûreté Nu
léaire (IRSN). The skill�elds of IRSN 
over all risks related to ionizing radiation, used in industry or medi
ine, or naturalradiation. Spe
i�
ally, IRSN 
arries expertises and 
ondu
ts resear
h in the domain of nu
lear safety,prote
tion against ionizing radiation, 
ontrol and prote
tion of nu
lear materials and prote
tion againstmali
ious a
ts. An essential part of the safety analysis 
onsists in studying the di�erent situations thata nu
lear rea
tor 
an fa
e, from normal operation 
onditions to severe a

idents. Many �ows of interestin this 
ontext are 
ompressible, either monophasi
 (hydrogen 
ombustion, de�agration or detonation inthe rea
tor 
ontainment in the late phases of severe a

ident s
enarii, explosion of gaseous mixtures inindustrial environment,. . .) or multi-phasi
 (primary a

ident depressurization, bubbling pools generatedby the intera
tion between the molten stru
tures of the vessel and the 
ore and the 
on
rete �oor of the
ontainment, on
e again in severe a

idents late phases, . . .).Our aim here is to 
ontribute to the development of a 
lass of s
hemes for the 
omputation of 
ompres-sible �ows. The 
onsidered systems of governing equations are 
oupled and strongly nonlinear, and the(industrial) appli
ations in view involve 
omplex geometry and �ows, possibly 
ombining quasi-steadystates with qui
k transient phases, with strong physi
al properties (in parti
ular, density or 
ompressi-bility) 
ontrasts. A

ordingly, the algorithms are developed so as to realize a 
ompromise between twomain requirements : preserve the stability in a wide range of Ma
h numbers and introdu
e su�
ientde
oupling to fa
ilitate the resolution of dis
rete algebrai
 systems. Pressure 
orre
tion methods seemto be a good 
hoi
e to address these requirements. This 
lass of s
hemes was �rst introdu
ed in theframework of in
ompressible �ows a long time ago [8, 67℄, and su
h algorithms are now quite widespreadand well understood in this 
ontext (see, for example, [55℄ for an introdu
tion and [29℄ for a review of1



2 General synthesismost of the variants). Pressure 
orre
tion s
hemes are less popular in the 
ontext of 
ompressible �ows,even though their appli
ation to 
ompressible Navier-Stokes equations may also be tra
ed ba
k to thelate sixties, with the seminal work of Harlow and Amsden [35, 36℄, who developped an iterative algo-rithm (the so-
alled ICE method) in
luding an ellipti
 
orre
tor step for the pressure. Later on, pressure
orre
tion equations appeared in numeri
al s
hemes proposed by several resear
hers, essentially in the�nite-volume framework, using either a 
ollo
ated [62, 15, 46, 64, 43, 56℄ or a staggered arrangement[7, 41, 42, 44, 3, 10, 69, 73, 74, 70, 72℄ of unknowns ; in the �rst 
ase, some 
orre
tive a
tions are to beforeseen to avoid the usual odd-even de
oupling of the pressure in the low Ma
h number regime. Someof these algorithms are essentially impli
it, sin
e the �nal stage of a time step involves the unknown atthe end-of-step time level ; the end-of-step solution is then obtained by SIMPLE-like iterative pro
esses[71, 44, 15, 46, 64, 43, 56℄. The other s
hemes [41, 42, 62, 3, 10, 75, 69, 74, 70, 72℄ are predi
tor-
orre
tormethods, where basi
ally two steps are performed sequentially : �rst a semi-expli
it de
oupled predi
tionof the momentum or velo
ity (and possibly energy, for non-barotropi
 �ows) and, se
ond, a 
orre
tionstep where the end-of step pressure is evaluated and the momentum and velo
ity are 
orre
ted, as inproje
tion methods for in
ompressible �ows (see [8, 67℄ for the original papers, [55℄ for a 
omprehensiveintrodu
tion and [29℄ for a review of most variants). The Chara
teristi
-Based Split (CBS) s
heme (see[60℄ for a re
ent review or [77℄ for the seminal paper) was developed in the �nite-element 
ontext andbelongs to this latter 
lass of methods.In this work, impli
it-in-time dis
retizations are addressed for their (relative) simpli
ity in view of thetheoreti
al studies ; however, non-iterative pressure 
orre
tion s
hemes are our main 
on
ern for pra
ti
al
omputations. We 
onsider here staggered�in�spa
e dis
retizations, with the aim to build s
hemes whi
hare stable and a

urate at all Ma
h numbers and, in parti
ular, boil down to a usual algorithm forin
ompressible �ows (or, more generally, for the asymptoti
 model of vanishing Ma
h number �ows [54℄)when the Ma
h number tends to zero. This last requirement also implies that, if we implement upwindingte
hniques (and we will have to for stability reasons), upwinding may have to be performed for ea
hequation separately and with respe
t to the material velo
ity only. This is in 
ontradi
tion with the most
ommon strategy adopted for hyperboli
 systems, where upwinding is built from the wave stru
ture ofthe system (see eg. [68, 4℄ for surveys and [34, 33, 14℄ for analysis of these s
hemes at low Ma
h number),and yields algorithms whi
h are used in pra
ti
e (see, eg., the so-
alled AUSM family of s
hemes [53, 52℄),but sar
ely studied from a theoreti
al point of view. One of our main 
on
erns here will thus be tobring, as far as possible, theoreti
al arguments supporting our numeri
al developments. Let us �rst re
alla (possible) 
ommon skeleton of 
onvergen
e studies in the �nite volume 
ontext [16℄. The proof mayusually be de
omposed into three steps :
(i) The �rst step is to get the existen
e and some a priori estimates on the approximate solution, or,in other words, to obtain stability results for the s
heme.

(ii) Next, up to the extra
tion of a subsequen
e, 
ompa
tness arguments yield the existen
e of a(possibly weak) limit to a sequen
e of dis
rete solutions obtained with a sequen
e of dis
retizationsthe spa
e step and, for unsteady problems, the time step of whi
h tend to zero. At this point, apriori estimates may imply some regularity of the limit.
(iii) Finally, the fa
t that the limit is a solution to (a weak form) of the 
ontinuous problem is provenby passing to the limit in (a weak formulation of) the s
heme.



2. Meshes and unknowns 3For the problems studied here, namely the 
ompressible Navier-Stokes or Euler equations, the realizationof the 
omplete program seems out of rea
h, due to the la
k of 
ontrol (Step (i)) of spa
e translatesof the unknown ; hen
e we obtain a 
onvergen
e of sequen
e of dis
rete solutions (Step (i)) in a sensetoo weak to allow the passage to the limit in the s
heme (Step (iii)). There is thus no hope at thepresent stage to prove the 
onvergen
e of the s
hemes in the general 
ases (i.e. ex
ept for the barotropi
vis
ous Navier-Stokes equations, see [51, 19, 61℄ for theoreti
al analysis of the 
ontinuous prolem and[21, 18, 17℄ for s
heme 
onvergen
e analysis in the simpli�ed 
ase of the steady Stokes problem), and ourtheoreti
al analyses are then ne
essarily somewhat in
omplete. However, in both the barotropi
 and thenon-barotropi
 
ases, and at least for most variants of the s
hemes, we do get the following results :
(i) We show that the dis
rete solution satis�es dis
rete analogues of the estimates known in the
ontinuous 
ase : positivity of the density and, in the non-barotropi
 
ase, of the internal energy,de
rease of the total energy, and, for the vis
ous barotropi
 �ows, 
ontrol of the velo
ity in the

L2(H1) norm. These estimates allow to prove the existen
e of at least one solution to the s
heme,by topologi
al degree arguments.
(ii) Supposing the 
onvergen
e of the s
heme in strong enough norms, we then show that the limits ofsequen
es of solutions are weak solutions to the 
ontinuous problem, whi
h may be seen (and isrefered to hereafter) as a 
onsisten
y property of the s
hemes.Finally, we 
onfort these theoreti
al experiments by numeri
al tests, performed with the open-sour
esoftware ISIS [40℄, developed at IRSN on the basis of the software 
omponent library and programmingenvironment PELICANS [63℄.This paper is organized as follows. We �rst introdu
e the 
onsidered spa
e dis
retizations (Se
tion 2).Then we turn to the barotropi
 Navier-Stokes equations (Se
tion 3), to the "
omplete" Navier-Stokesequations (Se
tion 4), and, �nally, to the Euler equations (Se
tion 5) ; for ea
h 
ase, we present thes
hemes, summarize the theoreti
al results and the numeri
al tests.In several theoreti
al developments, we are lead to use a derived form of a dis
rete �nite volume 
onve
tionoperator (for instan
e, typi
ally, a 
onve
tion operator for the kineti
 energy, possibly with residual terms,obtained from the �nite volume dis
retization of the 
onve
tion of the velo
ity 
omponents) ; an abstra
tpresentation of su
h 
omputations is given in the Appendix of this thesis.This organization 
losely follows the thesis one : barotropi
 �ows are adressed in the �rst two 
hapters(numeri
al tests, fo
ussed on the invis
id 
ase, then theory), then a s
heme for Navier-Stokes equations ispresented and its stability is proven ; �nally, we show how to adapt it to 
ompute dis
ontinuous solutionof Euler equations.2 Meshes and unknownsLet the 
omputational domain Ω be an open polygonal subset of R

d, d ≤ 3, and M be a partition of Ω,supposed to be regular in the usual sense of the �nite element literature (eg. [9℄). The 
ells may be :- for a general domain Ω, either 
onvex quadrilaterals (d = 2) or hexahedra (d = 3) or simpli
es,both types of meshes being possibly 
ombined in a same mesh,



4 General synthesis- for a domain the boundaries of whi
h are hyperplanes normal to a 
oordinate axis, re
tangles(d = 2) or re
tangular parallelepipeds (d = 3) (the fa
es of whi
h, of 
ourse, are then also ne
essarilynormal to a 
oordinate axis).By E and E(K) we denote the set of all (d−1)-fa
es σ of the mesh and of the element K ∈ M respe
tively.The set of edges in
luded in the boundary of Ω is denoted by Eext and the set of internal ones (i.e. E \Eext)is denoted by Eint ; a fa
e σ ∈ Eint separating the 
ells K and L is denoted by σ = K|L. The outwardnormal ve
tor to a fa
e σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the measureof K and by |σ| the (d− 1)-measure of the fa
e σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E the subset of thefa
es of E whi
h are perpendi
ular to the ith unit ve
tor of the 
anoni
al basis of Rd.The spa
e dis
retization is staggered, using either the Marker-And Cell (MAC) s
heme [37, 36℄, or non-
onforming low-order �nite element approximations, namely the Ranna
her and Turek element (RT) [65℄for quadrilateral or hexahedri
 meshes, or the Crouzeix-Raviart (CR) element [11℄ for simpli
ial meshes.For all these spa
e dis
retizations, the degrees of freedom for the pressure, the density and the internalenergy are asso
iated to the 
ells of the mesh M, and are denoted by :
{
pK , ρK , eK , K ∈ M

}
.Let us then turn to the degrees of freedom for the velo
ity.- Ranna
her-Turek or Crouzeix-Raviart dis
retizations � The degrees of freedom for the velo-
ities are lo
ated at the 
enter of the fa
es of the mesh, and we 
hoose the version of the elementwhere they represent the average of the velo
ity through a fa
e. The set of degrees of freedomreads :

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.- MAC dis
retization � The degrees of freedom for the ith 
omponent of the velo
ity, de�ned at the
entres of the fa
e σ ∈ E(i), are denoted by :
{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.For the de�nition of the s
hemes, we need a dual mesh whi
h is de�ned as follows.- Ranna
her-Turek or Crouzeix-Raviart dis
retizations � For the RT or CR dis
retization, thedual mesh is the same for all the velo
ity 
omponents. When K ∈ M is a simplex, a re
tanglesor a 
uboid, for σ ∈ E(K), we de�ne DK,σ as the 
one with basis σ and with vertex the mass
enter of K. We thus obtain a partition of K in m sub-volumes, where m is the numbers of fa
esof the mesh, ea
h sub-volume having the same measure |DK,σ| = |K|/m. We extend this de�nitionto general quadrangles and hexahedra, by supposing that we have built a partition still of equal-volume sub-
ells, and with the same 
onne
tivities ; note that this is of 
ourse always possible, butthat su
h a volume DK,σ may be no longer a 
one, sin
e, if K is far from a pallelogram, it may notbe possible to built a 
one having σ as basis, the opposite vertex lying in K and a volume equalto |K|/m. The volume DK,σ is referred to as the half-diamond 
ell asso
iated to K and σ.For σ ∈ Eint, σ = K|L, we now de�ne the diamond 
ell Dσ asso
iated to σ by Dσ = DK,σ ∪DL,σ ;for an external fa
e σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.
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 Navier-Stokes equations 5- MAC dis
retization � For the MAC s
heme, the dual mesh depends on the 
omponent of thevelo
ity. For ea
h of them, its de�nition di�ers from the RT or CR one only by the 
hoi
e of thehalf-diamond 
ell, whi
h, for K ∈ M and σ ∈ E(K), is now the re
tangle of basis σ and of measure
|DK,σ| equal to half the measure of K.We denote by |Dσ| the measure of the dual 
ell |Dσ|, and by ε = Dσ|Dσ′ the fa
e separating two diamond
ells Dσ and Dσ′ (see Figure 1).

Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=
K
|L

ε = D
σ |D

σ ′

Fig. 1 � Primal and dual meshes for the Ranna
her-Turek and Crouzeix-Raviart elements.
3 Compressible barotropi
 Navier-Stokes equationsThe addressed problem in this se
tion reads :

∂tρ+ div(ρu) = 0, (1a)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (1b)
ρ = ℘(p), (1
)where t stands for the time, ρ, u and p are the density, velo
ity, and pressure in the �ow, τ (u) standsfor the shear stress tensor, and the fun
tion ℘ is the equation of state. The problem is supposed to beposed over Ω×(0, T ), where (0, T ) is a �nite time interval. This system must be supplemented by suitableboundary 
onditions, and initial 
onditions for ρ and u, the initial 
ondition for ρ being supposed positive.The 
losure relation for τ (u) is assumed to be :

τ (u) = µ(∇u + ∇
tu) − 2µ

3
divu I,where µ stands for a non-negative parameter, possibly depending on x. When the vis
ous term τ (u)vanishes, the system (1) be
omes hyperboli
.



6 General synthesisLet us denote by Ec the kineti
 energy Ec = 1
2 ρ |u|2. Taking the inner produ
t of (1b) by u yields, afterformal 
ompositions of partial derivatives and using (1a) :

∂tEc + div
(
Ec u

)
+ ∇p · u = div

(
τ (u)

)
· u. (2)This relation is refered to as the kineti
 energy balan
e.Let us now de�ne the fun
tion P , from (0,+∞) to R, as a primitive of s 7→ ℘(s)/s2, where ℘ = ℘−1 ;this quantity is often 
alled the elasti
 potential. Let H be the fun
tion de�ned by H(s) = sP(s), ∀s ∈

(0,+∞) ; it may easily be 
he
ked that ρH′(ρ)−H(ρ) = ℘(ρ) ; therefore, by a formal 
omputation detailedin the appendix (see Equation (A.1)), multiplying (1a) by H′(ρ) yields :
∂t
(
H(ρ)

)
+ div

(
H(ρ)u

)
+ p div(u) = 0. (3)Let us denote by S the quantity S = Ec + H(ρ). Summing (2) and (3), we get :

∂tS + div
(
(S + p)u

)
− div

(
τ (u) u

)
= −τ (u) : ∇u. (4)This shows that, in the hyperboli
 
ase, S is an entropy of the system, and an entropy solution to (1) isthus required to satisfy :

∫ T

0

∫

Ω

[
−S∂tϕ− (S + p)u · ∇ϕ

]
dxδt

−
∫

Ω

S(x, 0) ϕ(x, 0) dx ≤ 0, ∀ϕ ∈ C∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0. (5)Then, formally, if we suppose that the velo
ity is pres
ribed to zero at the boundary (the normal velo
ity,in the hyperboli
 
ase), integrating (4) yields, sin
e the vis
ous dissipation term τ (u) : ∇u is non-negative :

d

dt

∫

Ω

[1
2
ρ |u|2 + H(ρ)

]
dx ≤ 0. (6)Sin
e the fun
tion P is in
reasing, Inequality (6) provides an estimate of the solution.We study two s
hemes for the numeri
al solution of System (1) whi
h di�ers by the time dis
retization :the �rst one is impli
it, and the se
ond one is a non-iterative pressure-
orre
tion s
heme introdu
ed in[20℄. This latter algorithm (and, by an easy extension, also the �rst one) was shown in [20℄ to have at leastone solution, to provide solutions satisfying ρ > 0 (and so p > 0) and to be un
onditionally stable, in thesense that its (their) solution(s) satis�es a dis
rete analogue of Inequality (6). The results presented inthis se
tion 
omplement this work in several dire
tions. For the impli
it s
heme :- We �rst derive dis
rete analogues of (2) and (3), the �rst (lo
al) balan
e equation, i.e. the dis
retekineti
 energy balan
e, being obtained on dual 
ells, and the se
ond one, i.e. the elasti
 potentialbalan
e, on primal 
ells.These equations are used a �rst time to obtain the stability of the s
heme by a simple integrationin spa
e (i.e. summation over the primal and dual 
ontrol volumes).- Se
ond, in one spa
e dimension and for the hyperboli
 
ase, we prove that the limit of any
onvergent sequen
e of solutions to the s
heme is a weak solution to the problem (in fa
t, sa-tis�es the Rankine-Hugoniot 
onditions, and thus exhibits "
orre
t" sho
ks).
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 Navier-Stokes equations 7- Finally, passing to the limit on the dis
rete kineti
 energy and elasti
 potential balan
es, we showthat su
h a limit also satis�es the entropy inequality (5).For the pressure 
orre
tion s
heme, the results are essentially the same : the s
heme is un
onditionallystable, and the passage to the limit in the s
heme shows that, in 
ase of 
onvergen
e, the predi
ted andend-of-step velo
ities ne
essarily tend to the same fun
tion, and that the limit is still a weak solution tothe problem, satisfying the entropy inequality.Numeri
al tests, performed with the pressure 
orre
tion s
heme, 
onfort these theoreti
al results.We �rst summarize in this se
tion the obtained theoreti
al results (Se
tions 3.1 and 3.2.
). whi
h aredetailed in Chapter 2 of this do
ument. Then we show results of a numeri
al test (Se
tion 3.2.d), extra
tedfrom a more 
omprehensive study also addressing an extension of the s
heme to two-phase �ows, presentedin Chapter 1 of this do
ument.3.1 An impli
it s
heme s
heme3.1.a The s
hemeLet us 
onsider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), and let
δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the 
onstant time step.We begin with the dis
retization of the mass balan
e equation (1a). For both the MAC and RT or CRdis
retizations, let us denote by un+1

σ · nK,σ the outward normal velo
ity to the fa
e σ of K, whi
h is
omputed, for the RT and CR elements, by taking the inner produ
t of the velo
ity at the fa
e with theoutward normal ve
tor (as implied by the notation) and whi
h is given, for the MAC s
heme, by thevalue of the 
omponent of the velo
ity at the 
enter of the fa
e (up to a 
hange of sign). The dis
reteequations are obtained by an upwind �nite volume dis
retization and read :
∀K ∈ M,

|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

FK,σ = 0, with FK,σ = |σ| un+1
σ · nK,σ ρ̃n+1

σ , (7)and where ρ̃n+1
σ is the upwind approximation of ρn+1 at the fa
e σ with respe
t to un+1

σ · nK,σ. Thisapproximation ensures that ρn+1 > 0 if ρn > 0 and if the density is pres
ribed to a positive value atin�ow boundaries.For both MAC and RT or CR dis
retizations, for 1 ≤ i ≤ d and σ ∈ E(i), we denote by (divτ(un+1))σ,ian approximation of the i-th 
omponent of the vis
ous term asso
iated to σ, and we denote by (∇pn)σ,ithe i-th 
omponent of the dis
rete pressure gradient at the fa
e σ. With these notations, we are able towrite the following general form of the approximation of the momentum balan
e equation :
|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσ unσ,i) +
∑

ε∈E(Dσ)

Fn+1
σ,ε un+1

ε,i

+|Dσ|(∇pn+1)σ,i − |Dσ|(divτ(un+1))σ,i = 0,

(8)for 1 ≤ i ≤ d, and for σ ∈ E \ED in the 
ase of the RT or CR dis
retizations, and σ ∈ E(i) \ED in the 
aseof the MAC s
heme. In this relation, ρn+1
σ and ρnσ stand for an approximation of the density on the fa
e
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σ at time tn+1 and tn respe
tively (whi
h must not be 
onfused with the upstream density ρ̃σ used inthe mass balan
e), Fn+1

σ,ε is the dis
rete mass �ux through the dual fa
e ε outward Dσ, and un+1
ε,i standsfor an approximation of un+1

i on ε whi
h may be 
hosen either 
entred or upwind.The �nite element dis
retization of the i-th 
omponent of the pressure gradient term reads :
|Dσ|(∇pn+1)σ,i = −

∑

M∈M

∫

M

pn+1 divϕ(i)
σ dx,with ϕ

(i)
σ reads ϕ

(i)
σ = ϕσe

(i), where ϕσ is the �nite element shape fun
tion asso
iated to σ and e(i)stands for the ith ve
tor of the 
anoni
al basis of Rd. Sin
e the pressure is pie
ewise 
onstant, using thede�nition of the RT or CR shape fun
tions, an easy 
omputation yields for an internal fa
e σ = K|L :
|Dσ|(∇pn+1)σ,i = |σ| (pn+1

L − pn+1
K ) nK,σ · e(i),and, for an external fa
e σ ∈ E(K) ∩ Eext \ ED :

|Dσ|(∇pn+1)σ,i = −|σ| pnK nK,σ · e(i).These expressions 
oin
ide whi
h the dis
rete gradient in the MAC dis
retization.The �nite element dis
retization of the vis
ous term (divτ(un+1))σ,i, asso
iated to σ and to the 
omponent
i, reads :

|Dσ|(divτ(un+1))σ,i = −µ
∑

K∈M

∫

K

∇un+1 · ∇ϕ(i)
σ − µ

3

∑

K∈M

∫

K

div un+1 div ϕ(i)
σ .The MAC dis
retization of this same vis
ous term is detailed in [2℄.The main motivation to implement a �nite volume approximation for the �rst two terms in (8) is toobtain a dis
rete equivalent of the kineti
 energy balan
e (see next se
tion). For this result to be valid,the ne
essary 
ondition is that the 
onve
tion operator vanishes for a 
onstant velo
ity, i.e. that thefollowing dis
rete mass balan
e over the diamond 
ells is satis�ed [1, 20℄ :

∀σ ∈ Eint,
|Dσ|
δt

(ρn+1
σ − ρnσ) +

∑

ε∈E(Dσ)

Fn+1
σ,ε = 0. (9)This governs the 
hoi
e for the de�nition of the density approximation ρσ and the mass �uxes Fσ,ε. Thedensity ρσ is de�ned by a weighted average : ∀σ ∈ Eint, σ = K|L, |Dσ| ρσ = |DK,σ| ρK + |DL,σ| ρL and

∀σ ∈ Eext \ ED, σ ∈ E(K), ρσ = ρK . For a dual edge ε in
luded in the primal 
ell K, the �ux Fσ,ε is
omputed as a linear 
ombination (with 
onstant 
oe�
ients, i.e. independent of the edge and the 
ell) ofthe mass �uxes through the fa
es of K, i.e. the quantities (Fn+1
K,σ )σ∈E(K) appearing in the dis
rete massbalan
e (7). We do not give here this set of 
oe�
ients, and refer to [1, 38, 25℄ for a detailed 
onstru
tionof this approximation.3.1.b Kineti
 energy balan
e, elasti
 potential identity and stabilityWe begin by deriving a dis
rete kineti
 energy balan
e equation. Let δup be a 
oe�
ient de�ned by

δup = 1 if an upwind dis
retization is used for the 
onve
tion term in the momentum balan
e equation
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 Navier-Stokes equations 9(8) and δup = 0 in the 
entered 
ase. With this notation, the momentum balan
e equation reads :
|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) +

∑

ε=Dσ |Dσ′

1

2
Fn+1
σ,ε (un+1

σ,i + un+1
σ′,i )

+ δup
∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i ) + |Dσ| (∇pn+1)σ,i − |Dσ|(divτ(un+1))σ,i = 0.Taking the inner produ
t of this equation with the 
orresponding velo
ity unknown, i.e. un+1

σ,i , yields
T conv
σ,i + T up

σ,i + T p,τσ,i = 0, with :
T conv
σ,i =

[ |Dσ|
δt

(
ρn+1
σ un+1

σ,i − ρnσu
n
σ,i

)
+

∑

ε=Dσ |Dσ′

1

2
Fn+1
σ,ε (un+1

σ,i + un+1
σ′,i )

]
un+1
σ,i ,

T up
σ,i = δup

[ ∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i ,

T p,τσ,i = |Dσ| (∇pn+1)σ,i un+1
σ,i − |Dσ|(divτ(un+1))σ,i un+1

σ,i .Lemma A.0.2, applied on the dual mesh, yields :
T conv
σ,i =

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+
|Dσ|
2 δt

ρnσ
(
un+1
σ,i − unσ,i

)2
.Let us de�ne Rn+1

σ,i by the sum of T up
σ,i and the last term of T conv

σ,i :
Rn+1
σ,i =

1

2

|Dσ|
δt

ρnσ
(
un+1
σ,i − unσ,i

)2
+ δup

[ ∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i . (10)With this notation, we thus obtain the following relation :

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+ |Dσ| (∇pn+1)σ,i un+1
σ,i − |Dσ|(divτ(un+1))σ,i un+1

σ,i = −Rn+1
σ,i . (11)We re
ognize at the left-hand side a dis
rete kineti
 energy balan
e, i.e. a reasonable dis
retization ofEquation (2), with a 
onservative �nite volume dis
retization of the kineti
 energy 
onve
tion terms. Theright-hand side 
onsists in a numeri
al residual, the sign of whi
h will be studied later.We now turn to the elasti
 potential balan
e. Multiplying the dis
rete mass balan
e equation (7) by

H′(ρK) and invoking Lemma A.0.1 yields, ∀K ∈ M :
|K|
δt

(H(ρn+1
K ) −H(ρnK)) +

∑

σ∈E(K)

|σ|
[
H(ρn+1

σ ) + pK
]

un+1
σ · nK,σ = −Rn+1

K , (12)with :
Rn+1
K =

1

2

|K|
δt

H′′(ρn,n+1
K )(ρn+1

K − ρnK)2 − 1

2

∑

σ∈E(K)

|σ| un+1
σ · nK,σ H′′(ρn+1

σ )(ρn+1
σ − ρn+1

K )2,



10 General synthesiswhere the quantity ρn,n+1
K ∈ [min(ρn+1

K , ρnK),max(ρn+1
K , ρnK)] and, for any fa
e σ ∈ E(K), ρn+1

σ ∈
[min(ρn+1

σ , ρn+1
K ),max(ρn+1

σ , ρn+1
K )].Equation (12) is a �nite volume dis
retization of the (non 
onservative) elasti
 potential balan
e (3),with a non positive residual term, thanks to the fa
t that the fun
tion H is 
onvex and that an upwindapproximation of the density is used in the mass balan
e.The stability of the s
heme is then obtained by summing :

(i) Equation (11) over the 
omponents i and the fa
es σ ∈ E for the RT or CR dis
retizations, andover i and σ ∈ E(i) for the MAC s
heme,
(ii) Equation (12) over K ∈ M,

(iii) and, �nally, the two obtained relations.Let us suppose that the velo
ity vanishes at the boundary, and let us then invoke three arguments. First,the dis
rete gradient and divergen
e operators are dual with respe
t to the L2 inner produ
t, in the sensethat : ∑

i,E

|Dσ| (∇pn+1)σ,i un+1
σ,i +

∑

K∈M

pK
∑

σ∈E(K)

|σ| un+1
σ · nK,σ = 0,where the notation ∑i,E means that we sum over the 
omponent index i and on σ ∈ E for the RT andCR dis
retizations, and on i and σ ∈ E(i) for the MAC s
heme. Se
ond, we suppose that (see Se
tion 4) :

∑

i,E

|Dσ| (divτ(un+1))σ,i un+1
σ,i ≥ 0.Third, reordering the summations yields, for the part of the remainder of the momentum balan
e equationasso
iated to the upwinding :

∑

i,E

T up
σ,i = δup

∑

i,Ē (ε=Dσ |Dσ′ )

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )2 ≥ 0,where the notation∑i,Ē (ε=Dσ |Dσ′ ) means that we perform the sum over i and the fa
es of the dual meshasso
iated to the 
omponent i of the velo
ity, and that, for a fa
e ε in the sum, the two adja
ent dual
ells are denoted by Dσ and D′

σ. Finally, sin
e the 
onservative �uxes vanish in the summation, we thusget :
1

2

∑

i,E

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
∑

K∈M

|K|
δt

(H(ρn+1
K ) −H(ρnK)) ≤ 0, (13)whi
h is a dis
rete analogue to (6).3.1.
 Passing to the limit in the s
heme (1D 
ase)We fo
us in this se
tion on the invis
id 1D form of Problem (1), and show that, if a sequen
e of solutionsis 
ontrolled in suitable norms and 
onverges to a limit, this latter ne
essarily satis�es a (part of the)weak formulation of the 
ontinuous problem.Let (M(m), δt(m))m∈N be a sequen
e of meshes and time steps, su
h that the time step δt(m) and the size

h(m) of the mesh M(m), de�ned by :
h(m) = sup

K∈M(m)

diam(K),
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 Navier-Stokes equations 11tend to zero as m→ ∞.Let ρ(m), p(m) and u(m) be the solution given by the s
heme with the mesh M(m) and the time step
δt(m), or, more pre
isely speaking, a 1D version of the s
heme whi
h may be obtained by taking theMAC variant, only one horizontal stripe of meshes, supposing that the verti
al 
omponent of the velo
ity(the degree of freedom of whi
h are lo
ated on the top and bottom boundaries) vanishes, and that themeasure of the fa
es is equal to 1. To the dis
rete unknowns, we asso
iate pie
ewise 
onstant fun
tionson time intervals and on primal or dual meshes, so the density ρ(m), the pressure p(m) and the velo
ity
u(m) are de�ned almost everywhere on Ω × (0, T ) by :

ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))nK XK X(n,n+1), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK X(n,n+1),

u(m)(x, t) =
N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
X(n,n+1),where XK , XDσ

and X(n,n+1) stand for the 
hara
teristi
 fun
tion of K, Dσ and the interval (tn, tn+1)respe
tively.We suppose a uniform 
ontrol on the translates in spa
e and time of the sequen
e of solutions, whi
h wenow state. For dis
rete fun
tion q and v de�ned on the primal and dual mesh, respe
tively, we de�ne adis
rete L1
(
(0, T ); BV(Ω)

) norm by :
‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ∈E, σ=K|L

|qnL − qnK |, ‖v‖T ,x,BV =

N∑

n=0

δt
∑

ε∈Ē, σ=Dσ |D′
σ

|vnσ′ − vnσ |,and a dis
rete L1
(
Ω; BV((0, T ))

) norm by :
‖q‖T ,t,BV =

∑

K∈M

hK

N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

hσ

N−1∑

n=0

|vn+1
σ − vnσ |,where, for σ = K|L, hσ = (hK + hL)/2. We suppose the following uniform bounds of the sequen
e ofsolutions with respe
t to these two norms :

‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N, (14)and :
‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (15)A weak solution to the 
ontinuous problem satis�es, for any ϕ ∈ C∞

c

(
[0, T )× Ω

) :
−
∫

Ω×(0,T )

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)ϕ(x, 0) dx = 0, (16a)
−
∫

Ω×(0,T )

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)u(x, 0)ϕ(x, 0) dx = 0, (16b)
ρ = ℘(p). (16
)Note that these relations are not su�
ient to de�ne a weak solution to the problem, sin
e they do notimply anything about the boundary 
onditions. However, they allow to derive the Rankine-Hugoniot



12 General synthesis
onditions ; so, if we show that they are satis�ed by the limit of a sequen
e of solutions to the dis
reteproblem, this implies, loosely speaking, that the s
heme 
omputes the right sho
ks, whi
h is the result weare seeking. It is stated in the following theorem.Theorem .3.1Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequen
e of meshes and timesteps, su
h that h(m) and δt(m) tend to zero as m tends to in�nity. Let (ρ(m), p(m), u(m)
)
m∈N

be the
orresponding sequen
e of solutions. We suppose that this sequen
e satis�es (15) and (14) and 
onvergesin Lr
(
(0, T )× Ω

)3, for 1 ≤ r <∞, to (ρ̄, p̄, ū) ∈ L∞
(
(0, T ) × Ω

)3.Then the limit (ρ̄, p̄, ū) satis�es the system (16) and the entropy 
ondition (5).Proof The passage to the limit in the equations of the s
heme is te
hni
al, but invokes rather standardarguments.Obtaining the entropy 
ondition is more intri
ate. We need to pass to the limit in the kineti
 energybalan
e (11) and in the elasti
 potential balan
e (12) simultaneously. To this purpose, for ϕ ∈ C∞
c

(
[0, T )×

Ω
), we de�ne two interpolates : one is de�ned over the dual 
ells and is used as a test fun
tion for (11)and the se
ond one is de�ned over the primal 
ells, and is used as a test fun
tion for (12). We then pass tothe limit in the "di�erential terms" of these dis
rete equations, and disregard the non-negative residuals(at the left-hand side). A problem is posed by the residual asso
iated to the upwinding, whi
h reads :

Rσ =
[ ∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i ,and the sign of whi
h is unknown. To get an intuition of how to deal with this term, let us remark thatit may be seen as a dis
rete analogue to a di�usion term −µ∆u u with a numeri
al vis
osity µ tendingto zero as the spa
e step. Let us now 
ompare this term to µ|∇u|2, in the sense of distributions. For ψ aregular fun
tion with a 
ompa
t support, remarking that −µu∆u− µ|∇u|2 = −div(µu∇u), we get :

∫ T

0

∫

Ω

[
−µu∆u− µ|∇u|2

]
ψ dxδt =

∫ T

0

∫

Ω

µu∇u · ∇ψ dxδt ≤ Cψ ‖u‖L∞ ‖u‖W 1,1µ,and therefore, if ‖u‖L∞ and ‖u‖W 1,1 are bounded, the di�eren
e between −µu∆u and µ|∇u|2 behaves like
µ. Returning at the dis
rete level, this 
omputation suggests that Rσ behaves at the limit as a dissipationterm (i.e. a dis
rete equivalent of µ|∇u|2), the sign of whi
h is guaranteed. The same argument is used ina di�erent way in the non-barotropi
 
ase : the "vis
ous term" Rσ is 
ompensated in the internal energybalan
e by a "dissipation term" (see Se
tion 5.1). �Remark 1 (Control of the translates)In the assumptions of the theorem .3.1, we 
an sharpen (14) and (15). Indeed, to prove that the limit isa weak solution, it is su�
ient to have :

lim
m→+∞

h(m)
[
‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖u(m)‖T ,x,BV

]
= 0.In addition, this estimate may be proven (and not supposed) by adding to the s
heme a numeri
al di�usions
aled by (h(m))β , with 0 < β < 2. To obtain that the limit is the entropy weak solution, the followingassumption is su�
ient :

lim
m→+∞

δt
[
‖u(m)‖T ,t,BV

]
= 0.



3. Compressible barotropi
 Navier-Stokes equations 133.2 A pressure 
orre
tion s
heme3.2.a The s
hemeIn this se
tion, we derive the pressure 
orre
tion s
heme from the impli
it s
heme. The �rst step, as usual,is to 
ompute a tentative velo
ity by solving the momentum balan
e equation with the begining-of-steppressure. Then, the velo
ity is 
orre
ted and the other variables are advan
ed in time, in the so-
alled
orre
tion step. For stability reasons, or, in other words, to be able to derive a kineti
 energy balan
e, weneed that the mass balan
e over the dual 
ells (9) holds ; sin
e the mass balan
e is not yet solved whenperforming the predi
tion step, this leads us to do a time shift of the density at this step.In the time semi-dis
rete setting, the proposed algorithm reads :1 - Pressure renormalization step � Solve the following ellipti
 problem for p̃n+1 :
div
[ 1

ρn
∇p̃n+1

]
= div

[ 1

(ρn ρn)1/2
∇pn

] (17)2 - Predi
tion step � Solve the following semi-dis
rete linearized momentum balan
e equation for ũn+1 :
ρn ũn+1 − ρn−1 un

δt
+ div(ρn ũn+1 ⊗ un) + ∇p̃n+1 − div(τ (ũn+1)) = 0. (18)3 - Corre
tion step � Solve (simultanuously) the following non linear equations for pn+1, un+1 and

ρn+1 :
ρn

un+1 − ũn+1

δt
+ ∇(pn+1 − p̃n+1) = 0, (19a)

ρn+1 − ρn

δt
+ div(ρn+1 un+1) = 0, (19b)

ρn+1 = ℘(pn+1). (19
)The solution of Step 3 is performed by 
ombining equations (19a) and (19b), therefore obtaining a non-linear ellipti
 problem for the pressure, whi
h reads in the time semi-dis
rete setting :
℘(pn+1) − ρn

δt2
− div

[ ρn+1

ρn
∇(pn+1 − p̃n+1)

]
= − 1

δt
div(ρn+1ũn+1).The fully dis
rete equations are obtained from the impli
it s
heme by a mere 
hange in time levels, ex
eptfor Equations (17) and (19a), whi
h are new. The �rst one is obtained by using the dis
rete gradient anddivergen
e operators already introdu
ed, and reads :

∀K ∈ M,
∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(
p̃n+1
K − p̃n+1

L

)
=

∑

σ=K|L

1√
ρnσ ρ

n−1
σ

|σ|2
|Dσ|

(pnK − pnL) .Relation (19a) is dis
retized similarly to the momentum balan
e (8), i.e. a �nite volume te
hnique isused for the unsteady term in both the MAC, RT and CR dis
retizations :
|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇pn+1)σ,i − (∇p̃n+1)σ,i

]
= 0,for 1 ≤ i ≤ d, and for σ ∈ E \ ED in the 
ase of the RT or CR dis
retizations, and σ ∈ E(i) \ ED in the
ase of the MAC s
heme.



14 General synthesis3.2.b Stability and kineti
 energy balan
e equationWe repeat the pro
ess that we followed for the impli
it s
heme, to prove the stability of the s
heme andderive a dis
rete kineti
 energy balan
e equation. To this purpose, we multiply the velo
ity predi
tionequation by the 
orresponding degree of freedom of the predi
ted velo
ity ũn+1
σ,i , to obtain :

|Dσ|
δt

(
ρnσũ

n+1
σ,i − ρn−1

σ unσ,i
)

ũn+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũn+1

σ,i

+ |Dσ| (∇p̃n+1)σ,i ũn+1
σ,i − |Dσ|(divτ(un+1))σ,i ũn+1

σ,i = 0. (20)We then write the velo
ity 
orre
tion equation as :
[ |Dσ|
δt

ρnσ

]1/2
un+1
σ,i +

[
|Dσ| δt

]1/2

(ρnσ)1/2
(∇pn+1)σ,i =

[ |Dσ|
δt

(ρnσ

]1/2
ũn+1
σ,i +

[
|Dσ| δt

]1/2

(ρnσ)1/2
(∇p̃n+1)σ,i,and square this relation, sum with (20) and get, applying Lemma A.0.2 (again on the dual mesh) to the�rst two terms of (20) :

1

2

|Dσ|
δt

[
ρnσ(un+1

σ,i )2 − ρn−1
σ (unσ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũn+1
σ,i ũn+1

σ′,i + |Dσ| (∇pn+1)σ,i un+1
σ,i

− |Dσ|(divτ(un+1))σ,i ũn+1
σ,i +

|Dσ| δt
ρnσ

[
|(∇pn+1)σ,i|2 − |(∇p̃n+1)σ,i|2

]
= Rn+1

σ,i , (21)where Rn+1
σ,i takes the same expression as in the impli
it 
ase (i.e. is given by Equation (10)), repla
ing

un+1 by ũn+1. Summing Relation (21) over the 
omponents and edges, Relation (12) over the 
ells and�nally the two resulting equations together yields :
1

2

∑

i,E

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(unσ,i)
2
]

+
∑

K∈M

|K|
δt

(H(ρn+1
K ) −H(ρnK))

+
∑

i,E

|Dσ| δt
ρnσ

[
|(∇pn+1)σ,i|2 − |(∇p̃n+1)σ,i|2

]
≤ 0,whi
h would be a dis
rete analogue to (6), up to a detail : to obtain a di�eren
e of the same quantitytaken at two 
onse
utive time steps, we need to 
hange ρnσ |(∇p̃n+1)σ,i|2 to ρn−1

σ |(∇pn)σ,i|2. This is thepurpose of the pressure renormalization step, whi
h was already introdu
ed in [28℄ ; we �nally get :
1

2

∑

i,E

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(unσ,i)
2
]

+
∑

K∈M

|K|
δt

(H(ρn+1
K ) −H(ρnK))

+
∑

i,E

|Dσ| δt
[ 1

ρnσ
|(∇pn+1)σ,i|2 −

1

ρn−1
σ

|(∇pn)σ,i|2
]
≤ 0.Note that this inequality yields a 
ontrol on (δt times) a H1 dis
rete semi-norm of the pressure, 
onfortingthe robustness of the s
heme, but also in
reasing its dissipation. In our numeri
al experiments, thepressure renormalization step did not appear to have a signi�
ant in�uen
e on the results, and was thensystemati
ally omitted.



3. Compressible barotropi
 Navier-Stokes equations 153.2.
 Passing to the limit in the s
heme (1D 
ase)We obtain for the pressure 
orre
tion s
heme results whi
h are similar to the impli
it s
heme ones. Theyare stated in the following theorem.Theorem .3.2Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequen
e of meshes and time steps,su
h that h(m) and δt(m) tend to zero as m tends to in�nity. Let (ρ(m), p(m), u(m), ũ(m)
)
m∈N

be the
orresponding sequen
e of solutions. We suppose that this sequen
e satis�es the 
ontrol over the timeand spa
e estimates given by (14), (15) and :
‖ũ(m)‖T ,x,BV ≤ C, ∀m ∈ N.We assume in addition that it 
onverges in Lr

(
(0, T )×Ω

)4, for 1 ≤ r <∞, to (ρ̄, p̄, ū, ¯̃u) ∈ L∞
(
(0, T )×

Ω
)4.Then we have ¯̃u = ū, and the triplet (ρ̄, p̄, ū) satis�es the system (16) and the entropy 
ondition (5).3.2.d Numeri
al experimentsWe now des
ribe the behaviour of the pressure 
orre
tion s
heme for a Riemann problem, i.e. an invis
idmonodimensional problem, the initial 
ondition of whi
h 
onsists in two uniform left (L) and right (R)states, separated by a dis
ontinuity, lo
ated by 
onvention at the origin x = 0. The two initial 
onstantstates are given by :

(
ρ

u

)

L

=

(
1

0

)
,

(
ρ

u

)

R

=

(
0.125

0

)
,and the equation of state is given by p = ρ. The problem is posed over the interval (−2, 3). The solutionof this problem 
onsists in a rarefa
tion wave travelling to the left and a sho
k travelling to the right.The problem is solved with a one dimensional s
heme, whi
h may be obtained from the previous expositionby taking one horizontal stripe of meshes (of 
onstant size) with the MAC dis
retization, and applyingperfe
t slip boundary 
onditions at the top and bottom boundary.On Figure 2, we show the solution at t = 1 obtained with various meshes and time steps. These latterparameters are adjusted to have CFL = 1, taking as referen
e velo
ity the sum of the maximum velo
ity

v = 1 and the speed of sound a = 1. In these 
omputations, we use a 
entred dis
retization of the 
onve
-tion term in the momentum balan
e equation, surprinsingly without observing any spurious os
illations.However, note that results obtained with the CR and RT dis
retizations (not shown here) di�er in thisrespe
t : the introdu
tion of a residual vis
osity (either physi
al or by upwinding) is ne
essary to avoidthe odd-even de
oupling phenomenon, as usually observed with 
entred approximations of the 
onve
tionoperator.We then report, on Figure 3, the obtained numeri
al error as a fun
tion of the time and spa
e step. Theobserved order of 
onvergen
e is 
lose to 0.9, for both the velo
ity and the pressure.
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Fig. 2 � Sod sho
k tube problem � Centred s
heme � Exa
t solution and numeri
al solution of theproblem at t = 1 with CFL=1. Velo
ity (left) and pressure (right).
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Fig. 3 � Sod sho
k tube problem � Centred s
heme � L1 norm of the error between the numeri
al solutionand the exa
t solution at t = 1, as a fun
tion of the mesh (or time) step, for CFL=1. Velo
ity (left) andpressure (right).4 Compressible Navier-Stokes equationsWe now address the 
ompressible Navier-Stokes equations (22).
∂tρ+ div(ρu) = 0, (22a)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (22b)
∂t(ρE) + div(ρE u) + div(pu) + div(q) = div(τ (u) · u), (22
)
ρ = ℘(p, e), E =

1

2
|u|2 + e, (22d)



4. Compressible Navier-Stokes equations 17where E and e are the total energy and internal energy in the �ow, and q stands for the heat 
ondu
tion�ux, assumed to be given by :
q = −λ∇e,with λ ≥ 0. We suppose that the equation of state may be set under the form p = ℘(ρ, e) with ℘(·, 0) = 0and ℘(0, ·) = 0. This system must be 
omplemented by suitable boundary 
onditions and initial 
onditionsfor u, ρ and e, whi
h we suppose positive for the two latter unknowns.Let us suppose that the solution is regular. Subtra
ting the kineti
 energy balan
e equation from thetotal energy balan
e, we obtain the internal energy balan
e equation :

∂t(ρe) + div(ρeu) + p div(u) = τ (u) : ∇u. (23)Sin
e,
(i) the vis
ous dissipation term τ (u) : ∇u is non-negative,

(ii) thanks to the mass balan
e equation, the �rst two terms may be re
ast as a transport operator :
∂t(ρe) + div(ρeu) = ρ [∂te+ u · ∇e],

(iii) and, �nally, be
ause, from the assumption on the equation of state, the pressure vanishes when
e = 0,this equation implies that e remains non-negative at all times.In the framework of in
ompressible or low Ma
h number �ows, the natural energy balan
e equation isthe internal energy one (23), so dis
retizing (23) instead of the total energy balan
e (22
) is a reasonable
hoi
e in view to get an algorithm valid for all the �ow regimes. In addition, it presents two advantages :- �rst, its allow to avoid the spa
e dis
retization of the total energy, whi
h is rather unatural forstaggered s
hemes sin
e the velo
ity and the s
alar variables are not 
olo
ated,- se
ond, a suitable dis
retization of (23) may yield, "by 
onstru
tion" of the s
heme, the positivityof the internal energy.However, integrating (22
) over Ω yields a stability estimate for the solution, whi
h reads, if we supposefor short that u is pres
ribed to zero on the whole boundary ∂Ω, and that the system is adiabati
, i.e.

∇q · n = 0 on ∂Ω :
d

dt

∫

Ω

[1
2
ρ |u|2 + ρe

]
dx ≤ 0, (24)and we would like (an analogue of) this stability estimate to hold at the dis
rete level.In fa
t, the bridge between the dis
retization of (23) and this latter inequality is on
e again the kineti
energy balan
e equation, and the tools developped in the previous se
tions will readily yield the desiredstability result, if, at the dis
rete level,we are able :

(i) to identify the integral of the dissipation term at the right-hand side of the dis
rete 
ounterpartof (23) with what is obtained from the (dis
rete) L2 inner produ
t between the velo
ity and thedi�usion term in the dis
rete momentum balan
e equation (22b).
(ii) to prove that the right-hand side of (23) is non-negative in order to preserve the positivity of theinternal energy.



18 General synthesisBoth properties are quite natural for �nite element dis
retizations, but may be not so easy to obtain forthe MAC s
heme ; for this latter 
ase, a way to build an approximation of the vis
ous and dissipationterms to get this property is proposed in Chapter 3 ( see also [2℄).Two un
onditionally stable s
hemes for the 
ompressible Navier-Stokes equations are built, on the basis ofthese arguments (Chapter 3) : the �rst one is impli
it, and the se
ond one, used in pra
ti
e, is a pressure
orre
tion s
heme. We only des
ribe here this latter, whi
h reads :Pressure renormalization step � Solve for p̃n+1 :
∀K ∈ M,

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(
p̃n+1
K − p̃n+1

L

)
=

∑

σ=K|L

1√
ρnσ ρ

n−1
σ

|σ|2
|Dσ|

(pnK − pnL) , (25a)Predi
tion step � Solve for ũn+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) in the MAC 
ase,
∀σ ∈ E otherwise,

|Dσ|
δt

(ρnσũ
n+1
σ,i − ρn−1

σ unσ,i) +
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i + |Dσ| (∇p̃n+1)σ,i

−|Dσ| (divτ(ũn+1))σ,i = 0,

(25b)Corre
tion step � Solve for ρn+1, pn+1, en+1 and un+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) in the MAC 
ase,
∀σ ∈ E otherwise,

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇pn+1)σ,i − (∇p̃n+1)σ,i

]
= 0, (25
)

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (25d)

∀K ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ + |K|

(
pn+1 divũn+1

)
K

−div(λ∇e)K = |K|
(
τ (ũn+1) : ∇ũn+1

)
K
,

(25e)
∀K ∈ M, pn+1

K = (γ − 1) ρn+1
K en+1

K . (25f)The 
onstru
tion of this s
heme relies on the same ingredients as in the barotropi
 
ase, in parti
ular thetime shift of the densities.The equation (25e) is a approximation of the internal balan
e over the primal mesh K, whi
h ensuresthe positivity of the internal energy, thanks to two essential arguments :- �rst, the approximation of the 
onve
tion operator e 7→ ∂t(ρe) + div(ρeu) is upwind (i.e. en+1
σ =
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en+1
K if Fn+1

K,σ ≥ 0 and en+1
L otherwise) and this operator satis�es a 
onsisten
y property with themass balan
e ∂tρ+ div(ρu) = 0 whi
h may be stated as the fa
t that it vanishes if e is 
onstant.This property is, of 
ourse, ne
essary for an operator to satisfy a dis
rete maximum prin
iple(
onstants are ne
essarily solutions to an equation obeying a maximum prin
iple. . .) ; it is also
lassi
ally shown [50℄ to be su�
ient.- se
ond, the internal energy balan
e is 
oupled to the algorithm in su
h a way that the pressure inthe dis
retization of the term p divu obeys the equation of state, and thus, in parti
ular vanisheswhen e < 0 (see [58℄ for another pressure-
orre
tion algorithm using the same 
oupling).The te
hnique used to obtain this result is to de�ne :

|K|
(
pn+1 divũn+1

)
K

= ℘(ρn+1
K , (en+1

K )+)
∑

σ∈E(K)

|σ| ũn+1
σ · nK,σ, (26)where (en+1

K )+ stands for the positive part of en+1
K , i.e. (en+1

K )+ = max(en+1
K , 0). Testing then the internalenergy balan
e by the negative part of en+1

K , designed by (en+1
K )− = −min(en+1

K , 0), and summing over
K ∈ M. Supposing, for short, that the normal velo
ity vanishes on the boundaries, Lemma A.0.2 yields :
∑

K∈M

[ |K|
δt

(
ρn+1
K en+1

K − ρnKe
n
K

)
+

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ

]
(en+1
K )− ≥

−1

δt

∑

K∈M

̺n+1
K

[
(en+1
K )−

]2 − ̺nK
[
(enK)−

]2
,while, ∀K ∈ M, (pn+1 divũn+1

)
K

(en+1
K )− = 0 and the right-hand side is non-negative, whi
h yieldsthe result. A topologi
al degree argument, applied to the algebrai
 system 
orresponding to the whole
orre
tion step, yields the existen
e of at least one solution and, sin
e, for this solution, e ≥ 0, (en+1

K )+ =

en+1
K and the dis
retization (26) is 
onsistent.The obtained stability result is stated in the following theorem.Theorem .4.1There exists a solution to the s
heme whi
h satis�es ρ > 0, e > 0 and for all n ≤ N , the followinginequality holds :
∑

K∈M

|K| ρnKenK +
1

2

∑

σ∈Eint

|Dσ| ρn−1
σ |unσ|2 +

δt2

2
|pn|2ρn−1, M

≤
∑

K∈M

|K| ρ0
Ke

0
K +

1

2

∑

σ∈Eint

|Dσ| ρ−1
σ |u0

σ|2 +
δt2

2
|p0|2ρ−1, M,where, for any dis
rete pressure q :

|q|2ρ, M =
∑

σ=K|L

1

ρσ

|σ|2
|Dσ|

(pL − pK)2.5 Euler equationsFor solutions with sho
ks, Equation (23) is not equivalent to (22
) ; more pre
isely speaking, one 
anshow that, at a sho
k lo
ation, a positive measure should repla
e τ (u) : ∇u (whi
h formally vanishes
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e µ = 0) at the right-hand side of Equation (23). Dis
retizing (23) instead of (22
) may thus yield as
heme whi
h does not 
ompute the 
orre
t weak dis
ontinuous solutions, the manifestation of this non-
onsisten
y being that the numeri
al solutions present sho
ks whi
h do not satisfy the Rankine-Hugoniot
onditions asso
iated to (22
). The essential result of this se
tion is to provide solutions to 
ir
umventthis problem.This study is 
losely related to the analysis performed in the barotropi
 
ase. Indeed, it may be 
he
kedthat the entropy of the barotropi
 problem takes an expression similar to the total energy E (in fa
t, ifthe equation of state in the barotropi
 
ase is derived by supposing that the �ow is isentropi
, we havethe exa
t equality H = ρe) ; the elasti
 potential balan
e (in the barotropi
 
ase) plays the same role asthe internal energy balan
e (in the non-barotropi
 
ase). The only di�eren
e is that the entropy 
onditionis an inequality while the total energy is an equality : in other words, while, for the barotropi
 
ase, wejust 
he
ked that residual terms were non-positive, we now have to ensure that they vanish with thedis
retization steps. To this purpose, we thus follow a strategy quite similar to Se
tion 3 :- Starting from the dis
rete momentum balan
e equation, with an ad ho
 dis
retization of the 
onve
-tion operator, we derive a dis
rete kineti
 energy balan
e ; residual terms are present in this relation,whi
h do no tend to zero with spa
e and time steps (they are the dis
rete manifestations of thethe above mentioned measures).- These residual terms are then 
ompensated by sour
e terms added to the internal energy balan
e.We provide a theoreti
al justi�
ation of this pro
ess by showing that, in the 1D 
ase, if the s
heme isstable enough and 
onverges to a limit (in a sense to be de�ned), this limit satis�es a weak form of(22
) whi
h implies the 
orre
t Rankine-Hugoniot 
onditions. Then, we perform numeri
al tests whi
hsubstantiate this analysis. Two di�erent time dis
retizations are proposed in Chapter 4 : �rst, a fullyimpli
it s
heme (a solution to whi
h may be rather di�
ult to obtain in pra
ti
e) and, se
ond, a pressure
orre
tion s
heme (the algorithm indeed used in the tests presented here) ; we only present here the latteralgorithm.5.1 The dis
rete kineti
 energy balan
e equation and the 
orre
tive sour
etermsWe derive here a slightly di�erent dis
rete kineti
 energy balan
e than in Se
tion 3.2.b. Our startingpoint, however, is still the velo
ity predi
tion step whi
h we multiply by the 
orresponding unknown, i.e.Equation (20), whi
h now reads, sin
e, in the present algorithm, we omit the pressure renormalizationstep :
|Dσ|
δt

(
ρnσũ

n+1
σ,i − ρn−1

σ unσ,i
)

ũn+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũn+1

σ,i + |Dσ| (∇pn)σ,i ũn+1
σ,i = 0.The next step is to multiply the velo
ity 
orre
tion equation by ũn+1

σ,i and use the identity 2a(a − b) =

a2 + (a− b)2 − b2 to get :
1

2

|Dσ|
δt

[
ρnσ(un+1

σ,i )2 − ρnσ(ũ
n
σ,i)

2
]

+ |Dσ|
[
(∇pn+1)σ,i − (∇pn)σ,i

]
ũn+1
σ,i

+
|Dσ|
2 δt

ρnσ
(
un+1
σ,i − ũn+1

σ,i

)2
= 0.



5. Euler equations 21Invoking Lemma A.0.2 for the �rst two terms of the �rst of these relations and summing with the se
ondone yields :
1

2

|Dσ|
δt

[
ρnσ(u

n+1
σ,i )2 − ρn−1

σ (unσ,i)
2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũn+1
σ,i ũn+1

σ′,i

+ |Dσ| (∇pn+1)σ,i ũn+1
σ,i = Rn+1

σ,i , (27)with :
Rn+1
σ,i =

|Dσ|
2 δt

ρnσ
(
un+1
σ,i − ũn+1

σ,i

)2 − |Dσ|
2 δt

ρn−1
σ

(
ũn+1
σ,i − unσ,i

)2

− δup
[ ∑

ε=Dσ |Dσ′

1

2
|Fnσ,ε|

(
ũn+1
σ,i − ũn+1

σ′,i

)]
ũn+1
σ,i .We re
ognize at the left-hand side a 
onservative dis
rete kineti
 energy balan
e. The next step is now todeal with the residual terms at the right-hand side, or, more pre
isely speaking, to somewhat 
ompensatethem by some sour
e term whi
h we introdu
ed in the internal energy balan
e. Let us denote by Sn+1

Kthe sour
e term in the balan
e over the 
ell K. We 
hoose :
∀K ∈ M,

Sn+1
K =

1

2

∑

σ∈E(K)

|DK,σ|
δt

ρn−1
K

(
ũn+1
σ − unσ

)2 − 1

2

∑

σ∈E(K)

|DK,σ|
δt

ρnK
(
un+1
σ − ũn+1

σ

)2

+ δup
∑

ε∩K̄ 6=∅,

ε=Dσ |Dσ′

αK,ε
|Fn+1
σ,ε |
2

(ũn+1
σ − ũn+1

σ′ )2. (28)The 
oe�
ient αK,ε is �xed to 1 if the fa
e ε is in
luded in K, and this is the only situation to 
onsiderfor the RT and CR dis
retization. For the MAC s
heme, some dual edges are in
luded in the primal 
ells,whereas some lie on their boundary ; for ε on a 
ell boundary, we denote by Nε the set of 
ells M su
hthat M̄ ∩ ε 6= ∅ (the 
ardinal of this set is always 4), and 
ompute αK,ε by :
αK,ε =

|K|∑
M∈Nε

|M | .For a uniform grid, this formula yields αK,ε = 1/4.The expression of the terms (SK)K∈M is justi�ed by the passage to the limit in the s
heme (for aone-dimensional problem) performed in Se
tion 5.2. Let us just here remark that :
∑

K∈M

Sn+1
K +

∑

E,i

Rn+1
σ,i = 0,whi
h shows that the introdu
tion of this term allows to re
over the total energy balan
e over the whole
omputational domain Ω. Note however that, the term Sn+1
K may be negative, whi
h we have indeedobserved in 
omputations, and so the above proof of the positivity of the internal energy is not validhere ; however, even in very severe 
ases (as, for instan
e, Test 3 of [68, 
hapter 4℄), at least with areasonable time step, we still obtained e > 0.



22 General synthesisRemark 2 (Form of the 
orre
tive sour
e terms)Comparing with the sour
e term of the 
ontinuous internal energy balan
e (23), it is easy to identify in thelast part of SK the vis
ous dissipation asso
iated to the numeri
al di�usion introdu
ed by the upwinding.In fa
t, this analogy also holds for the �rst two terms : they are dissipation and antidissipation termsasso
iated to the di�usion and antidi�usion introdu
ed by the semi-impli
it time dis
retization.Note by the way that only a dissipation term is obtained for the impli
it 
ase (i.e. the 
orre
tive terms
Sn+1
K are non-negative, see Chapter 4), and thus, for this time dis
retization, the positivity of the internalenergy is ensured.Remark 3 (On the ne
essity of the 
orre
tive sour
e terms)Let us 
onsider a sequen
e of dis
retizations (M(m), δt(m))m∈N, the spa
e and time steps of whi
h tend tozero, an asso
iated sequen
e of dis
rete velo
ities (u(m))m∈N, and the 
orresponding sequen
e of (pie
ewise
onstant fun
tions asso
iated to the) 
orre
tive term (S(m))m∈N. It may be 
he
ked that S(m) tends tozero in L1(Ω× (0, T )) as soon as the time and spa
e derivatives of the fun
tions (u(m))m∈N are boundedin a strong enough norm, and in parti
ular stronger than the BV norm (for instan
e, suppose that thejumps between two 
onse
utive time steps and adja
ent 
ells are bounded by δt and h respe
tively), i.e.everywhere the solution is regular. On the opposite, for a sequen
e (u(m))m∈N obtained by proje
ting adis
ontinuous fun
tion u, S(m) does not tend to zero.5.2 Passing to the limit in the s
hemeAs for the barotropi
 equations, we now pass to the limit in the s
heme.We suppose given a sequen
e of meshes and time steps (M(m), δt(m))m∈N, su
h that the time step andthe size h(m) of the mesh M(m), de�ned by :

h(m) = supK∈M(m) diam(K),tend to zero as m→ ∞.Let ρ(m), p(m), e(m), ũ(m) and u(m) be the asso
iated solution of the pressure 
orre
tion s
heme (25)with the mesh M(m) and the time step δt(m) (or, more pre
isely speaking, as in the barotropi
 
ase, a1D version of the s
heme). To the dis
rete unknowns, we asso
iate pie
ewise 
onstant fun
tions on timeintervals and on primal or dual meshes :
ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK X(n,n+1), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))nK XK X(n,n+1),

e(m)(x, t) =
N−1∑

n=0

∑

K∈M

(e(m))nK XK X(n,n+1), u(m)(x, t) =
N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
X(n,n+1),

ũ(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(ũ(m))nσ XDσ
X(n,n+1).We suppose that the sequen
e of dis
rete solutions (ρ(m), p(m), e(m), u(m), ũ(m)

)
m∈N

is uniformly boundedin L∞
(
(0, T )× Ω

), i.e. :
|(ρ(m))nK | + |(p(m))nK | + |(e(m))nK | ≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (29)
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|(u(m))nσ| + |(ũ(m))nσ| ≤ C, ∀σ ∈ E(m), for 0 ≤ n ≤ N (m), ∀m ∈ N. (30)In addition, we also suppose the following uniform 
ontrol on the translates in spa
e and time :

‖ρ(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV + ‖ũ(m)‖T ,x,BV ≤ C, ∀m ∈ N, (31)and :
‖ρ(m)‖T ,t,BV + ‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (32)As in the barotropi
 
ase, we are not able to prove the estimates (29)�(32) for the solutions of the s
heme,but su
h inequalities are satis�ed by the "interpolation" of the solution to a Riemann problem, and areobserved in 
omputations (of 
ourse, as far as possible, i.e. with a limited sequen
e of meshes and timesteps).A weak solution to the 
ontinuous problem satis�es, for any ϕ ∈ C∞

c

(
[0, T )× Ω

) :
−
∫

Ω×(0,T )

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)ϕ(x, 0) dx = 0, (33a)
−
∫

Ω×(0,T )

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)u(x, 0)ϕ(x, 0) dx = 0, (33b)
−
∫

Ω×(0,T )

[
ρE ∂tϕ+ (ρE + p)u ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)E(x, 0)ϕ(x, 0) dx = 0, (33
)
ρ = ℘(p, e), E =

1

2
u2 + e. (33d)On
e again, sin
e the test fun
tion ϕ vanishes at the boundary, these relations do not imply anythingabout the boundary 
onditions, but imply the Rankine-Hugoniot 
onditions. The s
heme 
onsisten
yresult that we are seeking for is stated in the following theorem.Theorem .5.1Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequen
e of meshes and time steps,su
h that h(m) and δt(m) tend to zero as m tends to in�nity. Let (ρ(m), p(m), e(m), u(m), ũ(m)

)
m∈N

be the
orresponding sequen
e of solutions. We suppose that this sequen
e satis�es (29)�(32) and 
onverges in
Lr
(
(0, T ) × Ω

)5, for 1 ≤ r <∞, to a limit (ρ̄, p̄, ē, ū, ¯̃u) ∈ L∞
(
(0, T )× Ω

)5.Then ¯̃u = ū and the limit (ρ̄, p̄, ē, ū) satis�es the system (33).5.3 Numeri
al testsWe now assess the behaviour of the s
heme on a one dimensional Riemann problem. We 
hoose initial
onditions su
h that the stru
ture of the solution 
onsists in two sho
k waves, separated by the 
onta
tdis
ontinuity, with su�
iently strong sho
ks to allow to easily dis
rimate between 
onvergen
e to the
orre
t weak solution or not. These initial 
onditions are those proposed in [68, 
hapter 4℄, for the testreferred to as Test 5 :left state : ρLuL
pL


 =




5.99924

19.5975

460.894


 right state : ρRuR

pR


 =




5.99242

−6.19633

46.0950






24 General synthesisThe problem is posed over Ω = (−0.5, 0.5), and the dis
ontinuity is initially lo
ated at x = 0.Sin
e numeri
al experiments addressing barotropi
 �ows (see Se
tion 3.2.d) show that, at least for onedimensional 
omputations, it is not ne
essary to use upwinding in the momentum balan
e equation, weonly employ a 
entered approximation of the velo
ity at the dual fa
es.The density �elds obtained with h = 1/2000 (or a number of 
ells n = 2000) at t = 0.035, with andwithout assembling the 
orre
tive sour
e term in the internal energy balan
e, are shown together with theanalyti
al solution on Figure 4. The density and the pressure obtained, still with and without 
orre
tiveterms, for various meshes, are plotted on Figure 5 and 6 respe
tively. For these 
omputations, we take
δt = h/20, whi
h yields a CFL number, with respe
t to the material velo
ity only, 
lose to one. The�rst 
on
lusion is that both s
hemes seem to 
onverge, but the 
orre
tive term is ne
essary to obtain the
orre
t solution. In this 
ase, for instan
e, we obtain the 
orre
t intermediate state for the pressure andvelo
ity up to four digits in the essential part of the 
orresponding zone :(analyti
al) intermediate state : [

p∗

u∗

]
=

[
1691.65

8.68977

] for x ∈ (0.028, 0.428)numeri
al results : ∣∣∣∣∣∣

p ∈ (1691.6, 1691.8)

u ∈ (8.689, 8.690)
for x ∈ (0.032, 0.417)One 
an 
he
k that the solution obtained without the 
orre
tive term is not a weak solution to the Eulersystem.We also observe that the s
heme is rather di�usive, spe
ially at the 
onta
t dis
ontinuity, where thebene�
ial 
ompressive e�e
t of the sho
ks does not apply.6 Con
lusion and perspe
tivesWe developed a 
lass of s
hemes for barotropi
 and non-barotropi
 �ows, based on staggered spa
edis
retizations and on a fra
tional time-stepping te
hnique falling in the 
lass of pressure 
orre
tionmethods. Upwinding is performed in an equation-by-equation way, and only with respe
t to the materialvelo
ity ; for non-barotropi
 equations, the energy equation is the internal energy balan
e. All of these
hara
teristi
s ensure that the s
hemes boil down to usual in
ompressible �ow solvers for a vanishing Ma
hnumber ; therefore they are hoped to be stable and a

urate in the whole in
ompressible to 
ompressiblerange. Numeri
al tests performed here fo
us on 
ompressible �ows, and assess the fa
t that weak solutionto invis
id problems are 
orre
tly 
omputed ; they are supported by theoreti
al arguments. These testswill be 
ontinued, adressing 
omplex multi-dimensional geometries.From an algorithmi
 point of view, let us �rst mention that, for high Ma
h number �ows, expli
it versionsof these s
hemes are now under development [59℄ ; this would provide e�
ient algorithms (in parti
ular,with an immediate 
onstru
tion of the �uxes at the 
ell fa
es), well suited to fast transient regimes,and o�ering, if ne
essary, the possibility of a partial impli
itation without loosing any stability features(by the s
hemes studied in this work). In expli
it s
hemes, less di�usive spa
e dis
retizations, su
h asMUSCL-like or adaptative numeri
al vis
osity [30, 31℄ te
hniques, are easy to implement ; this will bedone in a near future.
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orre
tive sour
e terms.A lot of theoreti
al questions are suggested by the present study. First, the passage to the limit in thes
hemes in the multi-dimensional 
ase raises only te
hni
al problems, whi
h should not be so di�
ult to�x. A more intri
ate question is that of the boundary 
onditions, whi
h was not addressed here (ex
eptthrough some numeri
al experiments des
ribed in Chapter 1) : the de
oupling of pressure 
orre
tions
hemes is known to produ
e inherent spurious boundary 
onditions, the e�e
t of whi
h is extensivelydis
ussed for in
ompressible �ows ; for 
ompressible problems, this question seems to remain largely open,and should deserve to be studied in the future. We did not prove in this work that the solutions obtained
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orre
tive sour
e terms.for non-barotropi
 Euler equations, if they 
onverge, tend to the entropy weak solution ; this is anotherissue to be addressed in the near future. Yet another topi
 is to analyse more indepth the behaviourof the proposed s
hemes in the low Ma
h number regime. In parti
ular, sin
e these algorithms satisfystability estimates, it seems possible, at least with a �xed mesh and using the norm equivalen
e propertyof �nite dimensional problems, to pass to the limit for a vanishing Ma
h number. This is interesting boththeoreti
ally and from an engineering point of view, to get some insight in what physi
al model is indeedsolved by the 
ode in su
h situations. Last but not least, we performed here some parts of the 
onvergen
eanalysis ; this should be 
ontinued as far as possible, in parti
ular for barotropi
 vis
ous �ows.
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28 Chapitre I. Pressure 
orre
tion staggered s
hemes for barotropi
 monophasi
 and two-phase �ows
W

e assess in this paper the 
apability of a pressure 
orre
tions
heme to 
ompute irregular solutions (i.e. solutions withsho
ks) of the homogeneous model for barotropi
 two-phase�ows. This s
heme is designed to inherit the stability properties of the 
onti-nuous problem : the unknowns (in parti
ular the density and the dispersedphase mass fra
tion y) are kept within their physi
al bounds, and the entropy ofthe system is 
onserved, thus providing an un
onditional stability property. Inaddition, the s
heme keeps the velo
ity and pressure 
onstant through 
onta
tdis
ontinuities. These properties are obtained by 
oupling the mass balan
eand the transport equation for y in an original pressure 
orre
tion step. Thespa
e dis
retization is staggered ; the numeri
al s
hemes whi
h are 
onsideredare the Marker-And Cell (MAC) �nite volume s
heme and the non
onforminglow-order Ranna
her-Turek (RT) �nite element approximation ; in either 
ase,a �nite volume te
hnique is used for all 
onve
tion terms. Numeri
al experi-ments performed here address the solution of various Riemann problems, often
alled in this 
ontext "sho
k tube problems". They show that, provided thata su�
ient dissipation is introdu
ed in the s
heme, it 
onverges to the (weak)solution of the 
ontinuous hyperboli
 system. Observed orders of 
onvergen
eas a fun
tion of the mesh and time step at 
onstant CFL number vary with thestudied 
ase and the CFL number, and range from 0.5 to 1.5 for the velo
ityand the pressure ; in most 
ases, the density and mass fra
tion 
onverge with a
0.5 order. Finally, the s
heme shows a satisfa
tory behaviour up to large CFLnumbers.
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I.1 Introdu
tionWe address in this paper the following homogeneous two-phase �ow model, des
ribing for instan
e the�ow of a mixture between a liquid phase and a gas phase :
∂tρ+ div(ρu) = 0, (I.1)
∂tz + div(z u) = 0, (I.2)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (I.3)where ∂t is the time derivative, ρ, u and p are the (average) density, velo
ity and pressure in the �ow, zstands for the partial density of the gas phase. The �rst two equations, (I.1) and (I.2), are the mixtureand the gas mass balan
e equations respe
tively, and the third equation (I.3) is the mixture momentumbalan
e equation. The tensor τ is the vis
ous part of the stress tensor, given by the following expression :
τ (u) = µ (∇u + ∇

tu) − 2

3
µ (divu) I. (I.4)The vis
osity µ is supposed to be 
onstant (in spa
e), so this relation yields :

div(τ (u)) = µ

[
∆u +

1

3
∇divu

]
. (I.5)The problem is de�ned over an open bounded 
onne
ted subset Ω of Rd, d ≤ 3, and over a �nite timeinterval (0, T ). We suppose that suitable initial and boundary 
onditions are provided for ρ, u and z ; inparti
ular, the pres
ribed values for ρ and z are supposed to be positive, and ρ, u and z are supposed tobe pres
ribed at the in�ow boundaries.To 
lose the problem, we need an additional relation, whi
h results from the 
ombination of the mixtureequation of state and of phasi
 equations of state, i.e. relations satis�ed by the density of ea
h phase.Let us begin with the latter ones. The liquid density ρℓ is supposed to be 
onstant, and the gas density

̺g is assumed to depend on the pressure only :
ρg = ̺g(p), (I.6)where ̺g is de�ned and in
reasing over [0,+∞), ̺g(0) = 0 and lims→+∞ ̺g(s) = +∞. Su
h a �ow (i.e. a�ow where phasi
 densities are fun
tions of the pressure only) is usually referred to as a barotropi
 �ow.Finally, the mixture equation of state is usually written :

ρ = (1 − α) ρℓ + αρg, z = αρg = ρy, or ρ =
1

y

ρg
+

1 − y

ρℓ

, (I.7)where α is 
alled the void fra
tion (the volume of gas per spe
i�
 volume), and y = z/ρ is the gas massfra
tion (the gas mass per spe
i�
 mass). Note that Relation (I.7) may be re
ast as :
ρ =

[
1 − z

̺g(p)

]
ρℓ + z,whi
h shows that it indeed provides a 
losure relation to the system (I.1)-(I.3), i.e. an additional relationinvolving only variables initially present in (I.1)-(I.3).
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orre
tion staggered s
hemes for barotropi
 monophasi
 and two-phase �owsWe now re
all some estimates whi
h are satis�ed, at least formally, by the solution of System (I.1)-(I.3).Equation (I.1) shows that ρ remains non-negative at all time. Repla
ing z by ρy in the gas mass balan
eequation (I.2) and using the mass balan
e equation (I.1), we get :
∂t(ρy) + ∇ · (ρyu) = ρ

(
∂ty + u · ∇y

)
= 0.Let us suppose that ρ does not vanish (whi
h is not ne
essarily true at the 
ontinuous level, sin
e divu isnot bounded in L∞(Ω), but will be true at the dis
rete level). Then this relation implies that y satis�esthe transport equation ∂ty + u · ∇y = 0, and thereby it follows a maximum prin
iple. Spe
i�
ally, if theinitial and boundary 
onditions for ρ and z are su
h that y ∈ [ε, 1] at t = 0, where 0 < ε ≤ 1 (whi
hex
ludes purely liquid zones at the initial time), we obtain that y remains in the interval [ε, 1] at all times.From the se
ond form of (I.7) and the fa
t that ρ > 0, we 
an dedu
e that ρ ∈ [min(ρℓ, ρg), max(ρℓ, ρg)]and, now from the �rst form of (I.7), α ∈ (0, 1], so ρg > 0 and, sin
e ̺g is one-to-one from (0,+∞) toitself, there exists a positive pressure p su
h that ρg = ̺g(p).Let us now de�ne the fun
tion P , from (0,+∞) to R, as a primitive of s 7→ ℘g(s)/s

2, where ℘g = ̺−1
g .Then, if we suppose that the velo
ity is pres
ribed to zero at the boundary, the solution to System(I.1)-(I.3) satis�es :

d

dt

∫

Ω

[1
2
ρ |u|2 + zP(̺g(p))

]
dx ≤ 0. (I.8)The quantity zP(̺g(p)) is often 
alled the Helmholtz energy, 1

2 ρ |u|2 the kineti
 energy and their sum isthe total energy of the system. Sin
e the fun
tion P is in
reasing, Inequality (I.8) provides an estimateon the solution.When µ = 0, the vis
ous term τ(u) vanishes and the system (I.1)-(I.3) be
omes hyperboli
, with asimple wave stru
ture (see [32℄ for a 
omprehensive presentation). The solution to the Riemann problemsalways involves a 
onta
t dis
ontinuity and two additional waves, whi
h are either sho
k or rarefa
tionwaves. Through the 
onta
t dis
ontinuity, the pressure and velo
ity are kept 
onstant, and z, ρ or yare dis
ontinuous. The existen
e of this wave may be inferred by just 
he
king that, provided this is
onsistent with initial and boundary 
onditions, a solution to the system with 
onstant velo
ity andpressure exists : indeed, from the �rst form of (I.7), it may be seen that ρ and z are linked by an a�nerelation with 
onstant (for a 
onstant pressure) 
oe�
ients ; (I.1) and (I.2) then boil down to the sametransport equation (with a 
onstant velo
ity) and (I.3) is trivially satis�ed.Finally, note that, sin
e y satis�es a transport equation, if y = 1 at the initial time (everywhere in domain)and at in�ow boundaries (at all time), the solution satis�es y = 1 for all x ∈ Ω and t ∈ (0, T ). In su
ha 
ase, System (I.1)-(I.3) boils down to the governing equations of barotropi
 monophasi
 �ows ; for theparti
uliar equation of state ̺g(s) = s1/2, we re
over in one or two dimensions the usual shallow-waterequations.The use of pressure 
orre
tion s
hemes for 
ompressible single phase �ow seems to be widespread, see eg.[36℄ for the seminal work and [75℄ for a 
omprehensive introdu
tion. Indeed, pressure 
orre
tion s
hemesare often partly impli
it, thereby ensuring some stability with respe
t to the time step together withintrodu
ing a de
oupling of the equations whi
h helps the numeri
al solution of the nonlinear sytems.Extensions to multi-phase �ows are s
ar
er and seem to be restri
ted to iterative algorithms, often similar
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tion s
heme 33in spirit to the usual SIMPLE algorithm for in
ompressible �ows [66, 57, 47℄. In this paper, we performa numeri
al study of a non-iterative pressure-
orre
tion s
heme introdu
ed in [26℄, based on a low order�nite element and a �nite volume dis
retization, whi
h enjoys the following properties :
(i) the s
heme has at least one solution, and any solution satis�es the above listed "dis
rete-maximum-based" estimates : ρ > 0, the gas mass fra
tion y satis�es a dis
rete maximum prin
iple (so 0 < y ≤ 1),and p > 0.
(ii) the s
heme is un
onditionally stable, in the sense that its solution(s) satis�es a dis
rete analogue ofInequality (I.8),
(iii) the pressure and velo
ity are kept 
onstant through 
onta
t dis
ontinuities.In addition, the s
heme is 
onservative for ρ and z. As in the 
ontinuous 
ase, thanks to the fa
t that yis kept 
onstant if it is 
onsistent with the initial and boundary 
onditions, it also 
ope with monophasi
barotropi
 �ows, a parti
uliar 
ase of whi
h may be formally identi�ed to the shallow water equations.Finally, the s
heme boils down to the usual proje
tion s
heme for in
ompressible �ows (obtained in thepresent framework when y = 0 or, asymptoti
ally, when the fun
tion ̺g be
omes 
onstant), and is indeedroutinely used for the 
omputation of low Ma
h number �ows, as, for instan
e, 
lassi
al bubble 
olumnsof 
hemi
al engineering pro
esses or diphasi
 �ows en
ountered in nu
lear safety studies. Its a

ura
ywas assessed for smooth solutions in [26℄, and the aim of the present paper is to 
he
k its 
onvergen
eand a

ura
y in non-di�usive 
ases, for weak solutions with dis
ontinuities.The paper is organized as follows. We �rst present the s
heme (Se
tion I.2). Then we study severalRiemann problems, �rst monophasi
 (y = 1) (Se
tion I.3.1) then biphasi
 : in this latter 
ase, we �rstaddress a �ow whi
h involves only a 
onta
t dis
ontinuity and sho
ks (Se
tion I.3.2.a), and �nally a �owwith rarefa
tion waves (Se
tion I.3.2.b). Finally, we assess in Se
tion I.4 the behaviour of the s
heme ontwo-dimensional test 
ases.I.2 The pressure 
orre
tion s
hemeI.2.1 Time semi-dis
retizationLet us 
onsider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), whi
h is supposeduniform. Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the 
onstant time step. In a time semi-dis
retesetting, denoting by ρ−1 and u0 initial guesses for the density and velo
ity, the algorithm proposed inthis paper is the following.0 - Initialization � Compute ρ0 by solving the following semi-dis
rete mass balan
e equation :

ρ0 − ρ−1

δt
+ div(ρ0u0) = 0. (I.9)Then, for n ≥ 0 :1 - Predi
tion step � Solve the following semi-dis
rete linearized momentum balan
e equation for ũn+1 :

ρn ũn+1 − ρn−1 un

δt
+ div(ρn ũn+1 ⊗ un) + ∇pn − div(τ (ũn+1)) = 0. (I.10)2 - Pressure 
orre
tion step � Solve (simultanuously) the following non linear equations for pn+1, un+1,
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ρn+1 and zn+1 :

ρn
un+1 − ũn+1

δt
+ ∇(pn+1 − pn) = 0, (I.11a)

ρn+1 − ρn

δt
+ div(ρn+1 un+1) = 0, (I.11b)

zn+1 − zn

δt
+ div(zn+1 un+1) = 0, (I.11
)

ρn+1 = ̺(pn+1, zn+1) = zn+1(1 − ̺g(p
n+1)

ρℓ
) + ρℓ. (I.11d)Step 1 is the usual predi
tion step for the velo
ity, whi
h 
onsists in solving the momentum balan
eequation (I.3) with the beginning-of-step pressure. Step 2 is the pressure 
orre
tion step. Its resolution isperformed by 
ombining equations (I.11a) and (I.11b), therefore obtaining a non-linear ellipti
 problemfor the pressure, whi
h reads in the time semi-dis
rete setting :

ρn+1 − ρn

δt2
− div

[ ρn+1

ρn
∇(pn+1 − pn)

]
= − 1

δt
div(ρn+1ũn+1),with ρn+1 = ̺(pn+1, zn+1) = zn+1(1 − ̺g(p

n+1)

ρℓ
) + ρℓ.

(I.12)Note that, for a given spa
e dis
retization, this equation must be established at the algebrai
 level,with the dis
rete equivalent manipulations whi
h were ne
essary to derive it at the 
ontinuous level (i.e.multiplying the �rst equation by ρn+1/ρn, taking its divergen
e and substra
ting to the se
ond relation)[26℄.Two features are unusual in this algorithm. The �rst one is the time-shift of the densities in the predi
tionstep : thanks to this time-shift, the densities satisfy (I.11b) of the pre
eding 
orre
tion step and thereforethe 
onve
tion operator vanishes for 
onstant velo
ities (i.e. ũn+1 = 1), whi
h ensures the 
onservationof the kineti
 energy [20, 1℄. Se
ond, the pressure 
orre
tion step 
ouples the mixture and dispersed phasemass balan
e equations (I.11b) and (I.11
) ; this 
oupling preserves the a�ne relation between ρn+1 and
zn+1 through the equation of state (I.11d), with 
oe�
ients only depending on the pressure (taken at thesame time level). Thus, as in the 
ontinuous 
ase, both equations boil down to only one relation when thepressure is 
onstant ; 
onsequently, the arguments ne
essary to obtain solutions with 
onstant velo
ityand pressure (i.e. 
onta
t dis
ontinuity waves) still hold at the dis
rete level.I.2.2 Dis
rete spa
es and unknownsThe s
heme has been developed (and a
tually works) with unstru
tured (in parti
ular simpli
ial) dis-
retizations, and for 2D and 3D 
ases. We shall restri
t ourselves here to 1D Riemann problems, andto L-shaped two-dimensional domains. Hen
e, for the sake of 
on
iseness, we only des
ribe here the
ase of stru
tured meshes, using either a �nite volume MAC or a Ranna
her-Turek (RT) �nite elementdis
retization whi
h we now present.Let Ω be a re
tangular domain of Rd, d = 2 or 3, and let M be a de
omposition of the domain Ω intore
tangles or re
tangular parallelepipeds, supposed to be regular in the usual sense of the �nite element
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heme 35literature (e.g. [9℄). By E and E(K) we denote the set of all fa
es σ of the mesh and of the element K ∈ Mrespe
tively. The set of fa
es in
luded in the boundary of Ω is denoted by Eext and the set of internal fa
es(i.e. E \ Eext) is denoted by Eint. For ea
h internal fa
e of the mesh σ = K|L, nKL stands for the normalve
tor to σ, oriented from K to L. The outward normal ve
tor to a fa
e σ of K is denoted by nK,σ. For
K ∈ M and σ ∈ E , we denote by |K| the measure of K and by |σ| the (d − 1)-dimensional measure ofthe fa
e σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E the subset of the fa
es of E whi
h are perpendi
ular tothe ith unit ve
tor of the 
anoni
al basis of Rd.For both MAC and RT dis
retizations, the degrees of freedom for the pressure, the density and thevariables y and z are asso
iated to the 
ells of the mesh M : the degrees of freedom are therefore

{
pK , ρK , yK , zK , K ∈ M

}
.Let us then turn to the degrees of freedom for the velo
ity.- RT dis
retization. The velo
ity is dis
retized using the so-
alled Ranna
her�Turek (RT) ele-ment [65℄. The approximation for the velo
ity is thus non-
onforming (the dis
rete fun
tions aredis
ontinuous through a fa
e, but the jump of their integral is imposed to be zero) ; the degreesof freedom for the velo
ities are lo
ated at the 
enter of the fa
es of the mesh, and we 
hoose theversion of the element where they represent the average of the velo
ity through a fa
e. The set ofdegrees of freedom reads :

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.We denote by ϕ
(i)
σ the ve
tor shape fun
tion asso
iated to uσ,i, whi
h, by de�nition, reads ϕ

(i)
σ =

ϕσ e(i), where ϕσ is the RT s
alar shape fun
tion and e(i) is the ith ve
tor of the 
anoni
al basisof Rd, and we de�ne uσ by uσ =
∑d

i=1 uσ,i e
(i). With these de�nitions, we have the identity :

u(x) =
∑

σ∈E

d∑

i=1

uσ,i ϕ(i)
σ (x) =

∑

σ∈E

uσ ϕσ(x), for a.e. x ∈ Ω.- MAC dis
retization. The degrees of freedom for the ith 
omponent of the velo
ity, de�ned atthe 
entres of the fa
e σ ∈ E(i), are denoted by :
{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.Let us now turn to the treatment of Diri
hlet boundary 
onditions. Let ED ⊂ Eext be the set of fa
eslo
ated on the Diri
hlet boundary, and let uD be the pres
ribed value of the velo
ity on these fa
es. Forthe RT dis
retization, as usual in the �nite element framework, these Diri
hlet boundary 
onditions arebuilt-in in the de�nition of the dis
rete spa
e :

∀σ ∈ ED, for 1 ≤ i ≤ d, uσ,i =
1

|σ|

∫

σ

uD,i,where uD,i stands for the ith 
omponent of uD. For the MAC s
heme, the normal 
omponents of thevelo
ity at the Diri
hlet boundary are also pres
ribed :for 1 ≤ i ≤ d, ∀σ ∈ ED ∩ E(i), uσ,i =
1

|σ|

∫

σ

uD,i,while Diri
hlet 
onditions for tangential 
omponents will be used, as usual for �nite volumes, in thede�nition of the di�usion term.
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orre
tion staggered s
hemes for barotropi
 monophasi
 and two-phase �owsI.2.3 Dis
rete equationsWe now des
ribe the spa
e dis
retization of ea
h equation of the time semi-dis
rete algorithm. We 
hooseto present the equations of the proje
tion step in their original form, i.e. before the derivation of theellipti
 problem for the pressure, whi
h is thoroughly des
ribed in [26℄. Indeed, this latter step is purelyalgebrai
, in the sense that it transforms a nonlinear algebrai
 system into another nonlinear algebrai
system whi
h is stri
tly equivalent, and thus has no impa
t on the properties of the s
heme (besides, of
ourse, the e�
ien
y issue).We begin with the dis
retization of the mass balan
e equations (I.11b) and (I.11
) of the proje
tion step.For both the MAC and RT dis
retizations, let us denote by un+1
σ · nK,σ the outward normal velo
ity tothe fa
e σ of K, whi
h is 
omputed, for the RT element, by taking the inner produ
t of the velo
ity atthe fa
e with the outward normal ve
tor (so exa
tly as said by the notation) and whi
h is given, for theMAC s
heme, by the value of the 
omponent of the velo
ity at the 
enter of the fa
e (up to a 
hange ofsign). Dis
rete equations are obtained by an upwind �nite volume dis
retization and read :

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

|σ| un+1
σ · nK,σ ρn+1

σ = 0,

|K|
δt

(zn+1
K − znK) +

∑

σ∈E(K)

|σ| un+1
σ · nK,σ zn+1

σ = 0,
(I.13)where ρn+1

σ (resp. zn+1
σ ) is the upwind approximation of ρn+1 (resp. zn+1) at the fa
e σ, the de�nition ofwhi
h we now re
all for the sake of 
ompleteness. For an internal fa
e σ = K|L, ρn+1

σ (resp. zn+1
σ ) standsfor ρn+1

K (resp. zn+1
K ) if un+1

σ ·nK,σ ≥ 0 and for ρn+1
L (resp. zn+1

L ) otherwise ; for an external fa
e σ ∈ E(K),
ρn+1
σ (resp. zn+1

σ ) is equal to ρn+1
K (resp. zn+1

K ) if the �ow is dire
ted outward Ω (i.e. un+1
σ ·nK,σ ≥ 0) orgiven by the boundary 
onditions otherwise. This approximation ensures that ρn+1 > 0 if ρn > 0 and ifthe density is pres
ribed to a positive value at in�ow boundaries. In addition, if we set yn+1
K = zn+1

K /ρn+1
Kand ynK = znK/ρ

n
K , we may re
ast the se
ond equation of (I.13) as :

|K|
δt

(ρn+1
K yn+1

K − ρnKy
n
K) +

∑

σ∈E(K)

|σ| un+1
σ · nK,σ ρn+1

σ yn+1
σ = 0, (I.14)where we re
ognize in yn+1

σ the upwind approximation of yn+1 at the fa
e σ. This relation thus yieldsthat yn+1 satis�es a dis
rete maximum prin
iple by standard arguments [50℄.In the 
ase of the MAC dis
retization, the velo
ity predi
tion equation is approximated by a �nitevolume te
hnique over a dual mesh. For the RT dis
retization, the time derivative and 
onve
tion termsare approximated by a similar �nite volume te
hnique, while the �nite element formulation is used forthe other terms. For ea
h 
omponent of the velo
ity, a dual mesh of the 
omputational domain Ω thushas to be de�ned :- RT dis
retization. For the RT dis
retization, the dual mesh is the same for all the velo
ity
omponents, and dual 
ells are 
hosen as follows. For any K ∈ M and any fa
e σ ∈ E(K), let DK,σbe the 
one with basis σ and with vertex the mass 
enter of K. The volume DK,σ is referred to asthe half-diamond 
ell asso
iated to K and σ. For σ ∈ Eint, σ = K|L, we now de�ne the diamond
ell Dσ asso
iated to σ by Dσ = DK,σ ∪DL,σ ; for an external fa
e σ ∈ Eext ∩E(K), Dσ is just thesame volume as DK,σ.
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Dσ

Dσ′

σ′ = K|MK

L

M

ε = D
σ |D

σ ′

Dσ

K

L

σ = K|L

σ′

ε = Dσ|Dσ′

Fig. I.1 � Notations for 
ontrol volumes and dual 
ells � Left : Finite Elements (the present sket
hillustrates the possibility, implemented in the ISIS software, of mixing simpli
ial (Crouzeix-Raviart) andquadrangular 
ells, even if only re
tangular 
ells are used in this paper) � Right : MAC dis
retization,dual 
ell for the y-
ompnenent of the velo
ity.- MAC dis
retization For the MAC s
heme, the dual mesh depends on the 
omponent of thevelo
ity. For ea
h of them, its de�nition di�ers from the RT one only by the 
hoi
e of the half-diamond 
ell, whi
h, for K ∈ M and σ ∈ E(K), is now the re
tangle of basis σ and of measure
|DK,σ| equal to half the measure of K.We denote by ε = Dσ|Dσ′ the fa
e separating two diamond 
ells Dσ and Dσ′ (see Figure I.1).In both 
ases, for 1 ≤ i ≤ d and σ ∈ E(i), we denote by (divτ(ũn+1))σ,i an approximation of the i-th
omponent of the vis
ous term asso
iated to σ, and we denote by (∇pn)σ,i the i-th 
omponent of thedis
rete pressure gradient at the fa
e σ. With these notations, we are able to write the following generalform of the approximation to the momentum balan
e equation :

|Dσ|
δt

(ρ̄nσ ũn+1
σ,i − ρ̄n−1

σ unσ,i) +
∑

ε∈E(Dσ)

Fnσ,ε ũn+1
ε,i

+|Dσ|(∇pn)σ,i − |Dσ|(divτ(ũn+1))σ,i = (fn+1)σ,i,

(I.15)this equation being written for 1 ≤ i ≤ d, σ ∈ E \ ED in the 
ase of the RT dis
retization, and for
1 ≤ i ≤ d, σ ∈ E(i) \ED for the MAC s
heme. In this relation, ρ̄nσ and ρ̄n−1

σ stand for an approximation ofthe density on the fa
e σ at time tn and tn−1 respe
tively (whi
h must not be 
onfused with the upstreamdensity ρnσ used in the mass balan
e), Fnσ,ε is the dis
rete mass �ux through the dual fa
e ε outward Dσ,and ũn+1
ε,i stands for an approximation of ũn+1

i on ε whi
h may be 
hosen either 
entred or upwind. Inthe 
entered 
ase, for an interior fa
e ε = Dσ|Dσ′ , we thus get ũn+1
ε,i = (ũn+1

σ,i + ũn+1
σ′,i )/2 while, in theupwind 
ase, we have ũn+1

ε,i = ũn+1
σ,i if Fnσ,ε ≥ 0 and ũn+1

ε,i = ũn+1
σ′,i otherwise.The quantity (fn+1)σ,i is a for
ing term, whi
h, for our purpose here, does not vanish only on externalfa
es where Neumann 
onditions are pres
ribed ; if this latter read τ · n − pn = f , we get :

(fn+1)σ,i =
1

δt

∫ (n+1) δt

n δt

∫

σ

f · e(i) dγ.
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 and two-phase �owsThe �nite element dis
retization of the i-th 
omponent of the pressure gradient term reads :
|Dσ|(∇pn)σ,i = −

∑

M∈M

∫

M

pn divϕ(i)
σ dx.Sin
e the pressure is pie
ewise 
onstant, using the de�nition of the RT shape fun
tions, an easy 
ompu-tation yields for an internal fa
e σ = K|L :

|Dσ|(∇pn)σ,i = |σ| (pnL − pnK) nK,σ · e(i),and, for an extermal fa
e σ ∈ E(K) ∩ Eext \ ED :
|Dσ|(∇pn)σ,i = −|σ| pnK nK,σ · e(i).These expressions 
oin
ide whi
h the dis
rete gradient in the MAC dis
retization.The �nite element dis
retization of the vis
ous term (divτ(ũn+1))σ,i, asso
iated to σ and to the 
omponent

i, reads :
|Dσ|(divτ(ũn+1))σ,i = −µ

∑

K∈M

∫

K

∇ũn+1 · ∇ϕ(i)
σ − µ

3

∑

K∈M

∫

K

div ũn+1 div ϕ(i)
σ .The MAC dis
retization of this same vis
ous term is detailed in [2℄.The main motivation to implement a �nite volume approximation for the �rst two terms is to obtaina dis
rete equivalent of the kineti
 energy theorem, whi
h holds in the 
ase of homogeneous Diri
hletboundary 
onditions and reads :

∑

σ∈Eint

[ |Dσ|
δt

(ρ̄nσ ũn+1
σ − ρ̄n−1

σ unσ) +
∑

ε∈E(Dσ)

Fnσ,ε ũn+1
ε

]
· uσ ≥

1

2

∑

σ∈Eint

|Dσ|
δt

[
¯̺nσ |ũn+1

σ |2 − ¯̺n−1
σ |unσ|2

]
.

(I.16)For this result to be valid, the ne
essary 
ondition is that the 
onve
tion operator vanishes for a 
onstantvelo
ity, i.e. that the following dis
rete mass balan
e over the diamond 
ells is satis�ed [1, 20℄ :
∀σ ∈ Eint,

|Dσ|
δt

(ρ̄nσ − ρ̄n−1
σ ) +

∑

ε∈E(Dσ)

Fnσ,ε = 0.This governs the 
hoi
e for the de�nition of the density approximation ρ̄σ and the mass �uxes Fσ,ε. Thedensity ρ̄σ is de�ned by a weighted average : ∀σ ∈ Eint, σ = K|L, |Dσ| ρ̄σ = |DK,σ| ρK + |DL,σ| ρL and
∀σ ∈ Eext \ ED, σ ∈ E(K), ρ̄σ = ρK . The �ux Fσ,ε through the dual fa
e ε of the half diamond 
ell DK,σis 
omputed as the �ux through ε of a 
onstant divergen
e lifting of the mass �uxes through the fa
es ofthe primal 
ell K, i.e. the quantities (|σ|uσ ·nσ ρσ)σ∈E(K) appearing in the dis
rete mass balan
e (I.13).For a detailed 
onstru
tion of this approximation, we refer to [1, 38℄.Equation (I.11a) is dis
retized similarly to the momentum balan
e (I.15), i.e. a �nite volume te
hniqueis used for the unsteady term in the RT dis
retization. Hen
e, for both s
hemes, the dis
retization of(I.11a) reads :

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇pn+1)σ,i − (∇pn)σ,i

]
= 0,this equation being written for 1 ≤ i ≤ d, σ ∈ E \ ED in the 
ase of the RT dis
retization, and for

1 ≤ i ≤ d, σ ∈ E(i) \ ED for the MAC s
heme.
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al experiments : Riemann problems 39I.3 Numeri
al experiments : Riemann problemsIn this se
tion, we assess the behaviour of the s
heme for several 1D Riemann problems (often 
alled also"sho
k tube problems") for the hyperboli
 system (I.1)-(I.3) with µ = 0 in (I.4), for whi
h an analyti
alexpression of the solution is known. We take bene�t of the fa
t that the pressure 
orre
tion s
heme isable to keep y = 1 at any time, if the initial and boundary 
onditions allow, to �rst begin with a singlephase �ow, namely the solution of the so-
alled "Sod sho
k tube" problem. We then turn to two-phase�ows, namely "two-�uid sho
k tube" model problems.The 
omputations presented here are performed with the ISIS 
ode [40℄, built from the software 
om-ponent library PELICANS [63℄, both under development at IRSN and available as open-sour
e softwares.The ISIS 
omputer 
ode is devoted to the solution of 2D or 3D problems (as the s
heme presented inprevious se
tions), so we are lead to de�ne a fake 2D problem, designed to boil down to the addressed 1DRiemann problem. The domain Ω is re
tangular, and the mesh is 
omposed of only one horizontal stripeof 
ells (see Figures I.2� I.4).
b b b b

LK
b

b

b

u

ρ

p

yFig. I.2 � Primal mesh and lo
ation of the unknowns for the Ranna
her-Turek element, for a mesh
onsisting of only one stripe of 
ells, with homogeneous Neumann 
onditions at the bottom and leftboundary, and a Diri
hlet boundary 
ondition at the left side of the 
omputational domain.
Dσσ

εFig. I.3 � Dual �nite volume mesh for the Ranna
her-Turek element, for a mesh 
onsisting of only onestripe of 
ells.In order to de�ne a one-dimensional problem on this two dimensional domain, we impose a symmetry
ondition to the velo
ity at the top and bottom of the domain Ω (i.e. , with u = (u1, u2), we set u2 = 0and ∂x2u1 = 0), whi
h is satis�ed by an horizontal �ow invariant with respe
t to the se
ond 
oordinate.An easy 
omputation shows that, with the 
hosen mesh and boundary 
onditions, we obtain a dis
reteproblem whi
h exa
tly 
oin
ides with a 1D dis
retization for the MAC s
heme ; this is 
learly not the
ase for the RT element, sin
e degrees of freedom for the horizontal velo
ity subsist at three di�erentverti
al lo
ations.
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p

yFig. I.4 � Primal mesh and lo
ation of the unknowns for the MAC dis
retization, for a mesh 
onsistingof only one stripe of 
ells, with homogeneous Neumann 
onditions at the bottom and left boundary, anda Diri
hlet boundary 
ondition at the left side of the 
omputational domain.
σ

ε
DσFig. I.5 � Dual �nite volume mesh for the MAC dis
retization, for a mesh 
onsisting in only one stripeof meshes.All the solutions 
omputed in the following are su
h that the �ow enters the domain on the left andleaves it on the right. So, at the left side of the domain, we impose u = (uL, 0), ρ = ρL and z = zL ; atthe right hand side of the domain, we pres
ribe a Neumann boundary 
ondition, with a surfa
e for
ingterm equal to −pR n, where n is the unit outward normal ve
tor to the boundary ∂Ω.As des
ribed above, for the velo
ity 
onve
tion term in the momentum balan
e equation, the approxi-mation of the velo
ity at the fa
es of the dual mesh (see Figures I.3 and I.5) may be 
hosen 
entred orupwind ; we will refer to the �rst option in the following as the 
entred variant (although upwinding isalways used in the dis
rete mass balan
e equations), and to the se
ond one as the upwind variant.I.3.1 Sod sho
k tube problemIn order to simulate the Sod sho
k tube test, the gas mass fra
tion is set to y ≡ 1 (one-phase problem) ;we 
onsider here the non-vis
ous homogeneous model resulting from Equations (I.1)�(I.3), with µ = 0,with an equation of state where p is proportional to ρ (in fa
t, we take p = ρ), whi
h 
orresponds to theisothermal Euler equations. The (1D) 
ontinuous problem is posed over the interval (−2, 3) and, for the
omputation, we take Ω = (−2, 3) × (0, 0.01). The two initial 
onstant states are given by :

(
ρ

u

)

L

=

(
1

0

)
,

(
ρ

u

)

R

=

(
0.125

0

)
.With this initial 
ondition, the solution 
onsists in a rarefa
tion wave travelling to the left and a sho
ktravelling to the right.We �rst address the results obtained with the RT dis
retization. The �rst out
ome is that the s
heme
onverges to the exa
t solution as soon as some di�usion is introdu
ed in the momentum balan
e equation,
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al experiments : Riemann problems 41either by adding a small arti�
ial vis
osity term to the 
entred approximation or by using the upwinds
heme ; otherwise, i.e. with µ = 0 and the 
entred variant, the usual (for a 
entred dis
retizationof the adve
tion operator) odd-even os
illations a�e
t the 
omputed velo
ity, and 
onvergen
e is lost.More pre
isely, due to the parti
ular stru
ture of the mesh (see Figures I.2 and I.3), we observe in thislatter 
ase that the solution seems to result from the superposition of two di�erent regular fun
tions,one being asso
iated to the degrees of freedom lo
ated at the intermediate elevation and the se
ond onebeing asso
iated to degrees of freedom lo
ated on the top and bottom boundaries ; surprinsingly, thesetwo fun
tions do not 
hange when re�ning the mesh and time step with a 
onstant CFL number. Asan exemple of the numeri
al results obtained in 
onvergent 
ases, the solution at t = 1 obtained with amesh 
onsisting of 2000 
ells, δt = 0.00125 and a residual vis
osity of µ = 0.001 is presented in FigureI.6, together with the exa
t solution. Using v = 1.6 (whi
h 
orresponds approximately to the velo
ity ofthe faster wave, namely the sho
k) as velo
ity range, these numeri
al parameters 
orrespond to a CFL
= v δt/h = 0.8.Sin
e 
ombining a 
entred dis
retization of the momentum balan
e equation with the addition of anarti�
ial vis
osity may seem to be an appealing te
hnique to avoid an ex
essive numeri
al dissipation (forinstan
e, asso
iated to an adjustment of µ as a fun
tion of the regularity of the solution, in the spiritof [30, 31℄), we now investigate the in�uen
e of the value of µ on the a

ura
y of the 
entred s
heme.We observe in Figure I.7 and Figure I.8 that taking a large vis
osity yields ina

urate results, whi
h iseasily explained by the fa
t that the solved problem is too far from the original one. On the other hand,for too low values of the vis
osity, os
illations appear, and the numeri
al error in
reases. In between, theerror remains small, and one 
an remark that the optimal value for µ with respe
t to the L1 norm ofthe error de
reases with the time and spa
e steps, as would be the numeri
al dissipation introdu
ed bythe upwinding te
hnique. Comparing Figures I.7 and I.8, we note that the plateau is wider for CFL=9.6than for CFL=0.8, but the overall shape of the 
urves remains essentially similar for both CFL numbers.We end this study of the RT dis
retization by reporting the a

ura
y of the s
hemes as a fun
tion ofthe time and spa
e step, with two 
onstant CFL numbers. We study the 
entred s
heme with µ = 0.001and the upwind s
heme with µ = 0 (we shall always set µ = 0 for the upwind s
heme hereafter). Forthe 
entred s
heme, the observed orders of 
onvergen
e (Figure I.9) are about 0.5 at CFL=0.8 and 1at CFL=9.6 respe
tively, for both the velo
ity and the pressure. For the upwind variant, the order of
onvergen
e is 0.75 for any CFL.With the MAC dis
retization, the behaviour is quite di�erent, sin
e the s
heme seems to be 
onvergentin its 
entred as well as in its upwind version, without needing the addition of any arti�
ial vis
osity.The solution at t = 1 obtained with the same parameters as for the RT dis
retization (i.e. 2000 
ells,
δt = 0.00125, so CFL = v δt/h = 0.8, and a residual vis
osity of µ = 0.001) is presented in Figure I.10.The in�uen
e of the addition of an arti�
ial vis
osity to the 
entred variant is shown in Figures I.11 andI.12. Finally, we on
e again assess the a

ura
y of the s
hemes as a fun
tion of the time and spa
e step,with two 
onstant CFL numbers (Figure I.13), all the 
omputations being now performed with µ = 0.Results seem to indi
ate that the order of 
onvergen
e does not depend on the CFL number, neither onthe upwind or 
entred 
hoi
e : in all 
ases, the order of the 
onvergen
e is 
lose to 0.8, for the velo
ityand the pressure.
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Fig. I.6 � Sod sho
k tube problem � Centred RT s
heme � Numeri
al solution of the perturbed vis
ousproblem at t = 1 with µ = 0.001, 2000 
ells, δt = 0.00125 (i.e. CFL=0.8). Velo
ity (left) and pressure(right).
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Fig. I.7 � Sod sho
k tube problem � Centred RT s
heme � L1 norm of the error between numeri
alsolution of the perturbed vis
ous problem and exa
t solution of the invis
id problem at t = 1, for threemeshes, as a fun
tion of the vis
osity µ, with CFL = 0.8. Velo
ity (left) and pressure (right).
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Fig. I.8 � Sod sho
k tube problem � Centred RT s
heme � L1 norm of the error between numeri
alsolution of the perturbed vis
ous problem and exa
t solution of the invis
id problem at t = 1, for threemeshes, as a fun
tion of the vis
osity µ, with CFL= 9.6. Velo
ity (left) and pressure (right).
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Fig. I.9 � Sod sho
k tube problem � Centred and upwind RT s
hemes � L1 norm of the error betweennumeri
al solution of the perturbed vis
ous problem and exa
t solution of the invis
id problem at t = 1,as a fun
tion of the mesh (or time) step, for two �xed CFL numbers. In the 
entred 
ase, the used arti�
ialvis
osity is µ = 0.001, i.e. a value 
lose to the one whi
h yields the more a

urate results. Velo
ity (left)and pressure (right).
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Fig. I.10 � Sod sho
k tube problem � Centred MAC s
heme � Numeri
al solution of the perturbed vis
ousproblem at t = 1 with µ = 0.001, 2000 
ells, δt = 0.00125 (i.e. CFL=0.8). Velo
ity (left) and pressure(right).
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Fig. I.11 � Sod sho
k tube problem � Centred MAC s
heme � L1 norm of the error between numeri
alsolution of the perturbed vis
ous problem and exa
t solution of the invis
id problem at t = 1, for threemeshes, as a fun
tion of the vis
osity µ, with CFL = 0.8. Velo
ity (left) and pressure (right).
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Fig. I.12 � Sod sho
k tube problem � Centred MAC s
heme � L1 norm of the error between numeri
alsolution of the perturbed vis
ous problem and exa
t solution of the invis
id problem at t = 1, for threemeshes, as a fun
tion of the vis
osity µ, with CFL = 9.6. Velo
ity (left) and pressure (right).
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Fig. I.13 � Sod sho
k tube problem � Centred and upwind MAC s
heme � L1 norm of the error betweenthe numeri
al solution and the exa
t solution at t = 1, as a fun
tion of the mesh (or time) step, for two�xed CFL numbers. Velo
ity (left) and pressure (right).
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hemes for barotropi
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 and two-phase �owsI.3.2 Two-�uid sho
k tubeWe present here the numeri
al results for the two-�uid sho
k tube. The 
ontinuous problem is posed over
(−3, 2) and we use a 
omputational re
tangular domain Ω = (−3, 2)× (0, 0.01). The equation of state isgiven by (I.7), with the following phasi
 equation of state for the gas phase :

p = 10 ρg.The 
onstant liquid density is set to ρℓ = 0.8. We perform two tests, where the initial left and right
onstant states are 
hosen in order to yield two di�erent �ow stru
tures : a 
onta
t dis
ontinuity (in both
ases), propagating between two sho
k waves in the �rst 
ase, and two rarefa
tion waves in the se
ondone.I.3.2.a First 
ase : sho
k � 
onta
t dis
ontinuity � sho
kThe two initial 
onstant states are given by :



ρ

u

y




L

=




1

5

0.3


 ,




ρ

u

y




R

=




2

1

0.8


 .With this initial data, the exa
t solution 
onsists in two sho
ks, the �rst one travelling to the left andthe se
ond one to the right, separated by a 
onta
t dis
ontinuity slowly moving to the right.The 
onvergen
e behaviour of the s
hemes is quite similar to that of the one-phase 
ase, namely 
onver-gen
e of the upwind s
heme or of the 
entered s
heme with a residual vis
osity in both 
ases and non-
onvergen
e of the 
entered s
heme with µ = 0 and the RT element. A numeri
al solution given by the
entred s
heme at t = 0.1 with 5000 
ells, δt = 4. 10−5 and µ = 0.002 is plotted in Figure I.14 andFigure I.15 for the RT and MAC dis
retization respe
tively, together with the exa
t solution. Taking

v = 18.16 (the velo
ity of the fastest wave, namely the right sho
k), the CFL number for these numeri
alparameters is CFL=v δt/h = 0.75.We then plot the solution obtained at t = 0.1 for various CFL numbers, with the 
entred s
hemes,
2500 
ells and µ = 0.002. We observe in Figure I.16, that with the RT dis
retization, the solution isqualitatively 
orre
t up to a CFL of the order of 20, and then strongly deteriorates, showing in parti
ularwild velo
ity and pressure os
illations at the 
onta
t dis
ontinuity. On the 
ontrary, we observe morereasonable pro�les for the MAC dis
retization in Figure I.17 : the os
illations only a�e
t the pressurein the vi
inity of the 
onta
t dis
ontinuity for large CFL numbers (≥ 80). Note that, in any 
ase, thestru
ture of the solution seems to remain 
orre
t, i.e. we do not observe the apparition of spurious waves(for instan
e, non-entropi
 sho
ks), as often happens with a s
heme without any numeri
al di�usion. .We then assess the a

ura
y of the s
heme as a fun
tion of the time and spa
e step, with two 
onstantCFL numbers, for the 
entred variants with µ = 0.002 and for the upwind variant. The observed orders of
onvergen
e for the 
entred RT s
heme (Figure I.18) are about 1.5 and 1. at CFL=0.75 and 9 respe
tively,for both velo
ity and pressure ; for ρ and y, the order of 
onvergen
e is 0.7 and 0.5 respe
tively, for bothCFL numbers. For the upwind RT s
heme, the order of 
onvergen
e is 1 for both the velo
ity and thepressure and 0.5 for ρ and y, at any CFL number. Again, for the MAC s
heme (Figure I.19), the order
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onvergen
e does not seem to depend on the CFL number nor on the upwind or 
entred 
hoi
e : in all
ases, the order of 
onvergen
e is 1 for both the velo
ity and the pressure and 0.5 for the density and thegas mass fra
tion. These behaviours are 
onsistent with what is usually observed : the 
onvergen
e orderis about 1/2 for the variables whi
h jump at the 
onta
t dis
ontinuity, while, for the other variables whi
hvary only at sho
ks, the 
ompressive e�e
t of the sho
ks 
ounterbalan
es the di�usion of the s
heme andyields a 
onvergen
e order 
lose to 1.
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Fig. I.14 � Two-phase test : sho
k / 
onta
t dis
ontinuity / sho
k � Centred RT s
heme � Numeri
alsolution at t = 0.1, with 5000 
ells, δt = 4. 10−5 (so CFL= 0.75) and µ = 0.002. Velo
ity (top left),pressure (top right), gas mass fra
tion (bottom left), density (bottom right).



48 Chapitre I. Pressure 
orre
tion staggered s
hemes for barotropi
 monophasi
 and two-phase �ows

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2

u
V exact

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2

p
P exact

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2

y
Y exact

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2

RHO
RHO exact

Fig. I.15 � Two-phase test : sho
k / 
onta
t dis
ontinuity / sho
k � Centred MAC s
heme � Numeri
alsolution at t = 0.1, with 5000 
ells, δt = 4. 10−5 (so CFL= 0.75) and µ = 0.002. Velo
ity (top left),pressure (top right), gas mass fra
tion (bottom left), density (bottom right).
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Fig. I.16 � Two-phase test : sho
k / 
onta
t dis
ontinuity / sho
k � Centred RT s
heme � Numeri
alsolutions at t = 0.1 with 2500 
ells, µ = 0.002, for several CFL numbers. Velo
ity (top left), pressure (topright), gas mass fra
tion (bottom left), density (bottom right).
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Fig. I.17 � Two-phase test : sho
k / 
onta
t dis
ontinuity / sho
k � Centred MAC s
heme � Numeri
alsolutions at t = 0.1 with 2500 
ells, µ = 0.002, for several CFL numbers. Velo
ity (top left), pressure (topright), gas mass fra
tion (bottom left), density (bottom right).
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Fig. I.18 � Two-phase test : sho
k / 
onta
t dis
ontinuity / sho
k � Centred and upwind RT s
hemes� L1 norm of the error at t = 0.1 between the 
omputed solution and the exa
t one, as a fun
tion ofthe mesh (or time) step, for two �xed CFL numbers. In the 
entred 
ase, the used arti�
ial vis
osityis µ = 0.002, i.e. a value 
lose to the one whi
h yields the more a

urate results. Velo
ity (top left),pressure (top right), gas mass fra
tion (bottom left) and density (bottom right).
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Fig. I.19 � Two-phase test : sho
k / 
onta
t dis
ontinuity / sho
k � Centred and upwind MAC s
hemes� L1 norm of the error at t = 0.1 between the 
omputed solution and the exa
t one, as a fun
tion ofthe mesh (or time) step, for two �xed CFL numbers. In the 
entred 
ase, the used arti�
ial vis
osity is
µ = 0.002, i.e. the same value as for the RT dis
retization. Velo
ity (top left), pressure (top right), gasmass fra
tion (bottom left) and density (bottom right).
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al experiments : Riemann problems 53I.3.2.b Se
ond 
ase : rarefa
tion-
onta
t dis
ontinuity-rarefa
tionWe 
on
lude this study by the numeri
al simulation of a two-phase �ow with rarefa
tion waves. The twoinitial 
onstant states are given by :



ρ

u

y




L

=




1

0

0.3


 ,




ρ

u

y




R

=




2

2

0.8


 .The numeri
al solutions at t = 0.1, obtained for 5000 
ells, δt = 0.0001 and µ = 0.002 with the RT andMAC 
entred s
hemes, presented in Figure I.20 (RT) and Figure I.21 respe
tively, are in 
lose agreementwith the exa
t solution.
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Fig. I.20 � Two-phase test : rarefa
tion wave / 
onta
t dis
ontinuity / rarefa
tion wave � Centred RTs
heme � Numeri
al solution at t = 0.1 with 5000 
ells, δt = 0.0001 and µ = 0.002. Velo
ity (top left),pressure (top right), gas mass fra
tion (bottom left), density (bottom right).
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Fig. I.21 � Two-phase test : rarefa
tion wave / 
onta
t dis
ontinuity / rarefa
tion wave � Centred MACs
heme � Numeri
al solution at t = 0.1 with 5000 
ells, δt = 0.0001 and µ = 0.002. Velo
ity (top left),pressure (top right), gas mass fra
tion (bottom left), density (bottom right).
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ase 55I.4 A two-dimensional test 
aseWe now turn to two-dimensional test 
ases. To this purpose, we use a "barotropi
 monophasi
 version",whi
h we then extend to obtain a two-phase �ow problem, of a test whi
h is 
lassi
al for (non-barotropi
and monophasi
) Euler equations [76, 31℄, and is often referred to as "the Ma
h 3 wind tunnel with step".The �ow enters through the left boundary a L-shaped domain, with a forward fa
ing step, with thefollowing geometry :
Ω = (0, 3) × (0, 1) \ (0.6, 3)× (0, 0.2).All the 
onservative variables, i.e. ρ and ρu for the monophasi
 �ow and ρ, ρy and ρu in the two-phase
ase, are pres
ribed at the inlet (i.e. left) se
tion. The equation of state of the �uid is p = ρ and theinlet values are su
h that the Ma
h number is 3, whi
h is obtained here by taking u = (3, 0)t and ρ = 1.On the top and bottom wall, we use homogeneous Neumann boundary 
onditions. The �ow is free atthe out�ow (right) se
tion, whi
h means, sin
e the resulting Ma
h number at this boundary is greaterthan one, that the three eigenvalues of the Ja
obian matrix of the system are positive and therefore noboundary 
ondition should be pres
ribed here ; however, sin
e our dis
retization of the pressure gradientis 
entered and, less importantly, be
ause we use a physi
al-like di�usion term in the momentum balan
eequation, we need an expression for the for
e whi
h exerts at this surfa
e, whi
h we suppose given by :

τ · n − pn = p0 n,where p0 is given the same value than the inlet pressure, i.e. p0 = 1. We dis
uss later the e�e
ts of thisboundary 
ondition. The initial 
ondition is u = (3, 0)t and ρ = p = 1.The mesh is built from a regular 3n×n Cartesian grid of the re
tangle (0, 3)× (0, 1), suppressing meshesat the right bottom part of the domain (i.e. (0.6, 3) × (0., 0.2)) to take the step into a

ount. The
omputations presented in this se
tion are performed with the 
entered MAC s
heme, and we use anarti�
ial vis
osity �xed at µ = 0.01, whi
h is in the range of what would be the numeri
al vis
osityintrodu
ed by an upwinding te
hnique, for the meshes used in this study.The pressure �eld obtained with n = 500 (i.e. from a 1500 × 500 grid) and δt = 2. 10−3 is shown inFigure I.22. As in the non-barotropi
 
ase, we obtain a sho
k up�ow the step, whi
h propagates andre�e
ts on the boundaries. Here, however, the sho
k moves slowly upward, while it is stationary in thenon-barotropi
 
ase (so, 
ontrary to this latter 
ase, the �ow is not steady at t = 4).Besides the fa
t that we use, for numeri
al reasons, a non-physi
al out�ow boundary 
ondition, thetime-splitting of pressure 
orre
tion methods is also known to introdu
e spurious pressure boundary
onditions. It is indeed the 
ase for the present s
heme, even if it is derived by an algebrai
 splitting (i.e.by dis
retizing �rst the equations up to obtain an impli
it fully dis
rete s
heme and then splitting intime, instead of �rst writting a split time semi-dis
rete algorithm with (arti�
ial) boundary 
onditionsexpli
itely stated at ea
h step) : we show in [12℄ that the ellipti
 problem solved at the 
orre
tion step forthe pressure in
rement takes the form of a �nite volume di�usion problem, with homogeneous Neumann
onditions at the boundary where the velo
ity is pres
ribed and homogeneous Diri
hlet 
onditions whenthe velo
ity is free. In the present 
ase, it means in parti
ular that the pressure su�ers from a numeri
alboundary 
ondition at the outlet se
tion whi
h tends to �x it at the initial value. Note, however, that
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Fig. I.22 � Wind tunnel with step, monophasi
 
ase � Centred MAC s
heme � Isolines of the pressure�eld obtained at t=4 with a 1500× 500 mesh and δt = 5. 10−4. Minimal value (blue) : p= 0.8 � Maximalvalue (red) : p= 9.48
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Fig. I.23 � Wind tunnel with step, monophasi
 
ase � Centred MAC s
heme � Pressure obtained at t=4along the line x2 = 0.3, with an 300× 100 mesh and various time steps, and with a 1500× 500 mesh and
δt = 5. 10−4.this boundary 
ondition is only pres
ribed in the "�nite volume way" (i.e. through the expression of the�ux), whi
h may be seen as a penalization pro
ess with a δt/h 
oe�
ient, so this 
ondition is relaxedwhen this latter ratio is small [12℄. We observe in Figure I.22 that this outlet 
ondition indeed generatesa pressure boundary layer. To investigate this phenomenon in more detail, we plot in Figure I.23 thevalue of the pressure along the x2 = 3 line, for various meshes and time steps. We observe that theperturbation of the solution remains lo
alized, and that, as wellknown for in
ompressible �ow problems,the extension of the a�e
ted zone de
reases with the spa
e step. Besides, we also see that the 
omputationis at least qualitatively 
orre
t for rather 
oarse meshes and time steps (using v = |u| + c = 4 with cthe speed of sound at the inlet se
tion, δt = 0.1 (resp. δt = 0.01) 
orresponds with n = 100 to CFL=40(resp. CFL=4)) ; in parti
ular, 
onvergen
e with respe
t to the time step seems to be rea
hed, for thisparti
uliar �ow, for CFL numbers far greater than 1.We now turn to a two-phase 
ase, whi
h is obtained by initializing the gas mass fra
tion by y = 0.1 for
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Fig. I.24 � Wind tunnel with step, non-uniform y 
ase � Centred MAC s
heme � Isolines of the pressure�eld obtained at t=1.6 with a 1500x500 mesh and δt = 5. 10−4. Minimal value (blue) : p= 0.095 �Maximal value (red) : p= 14.
x2 ≤ 0.6 and y = 1 in the rest of the domain. We 
hoose ρg = p and ρℓ = 10. We re
all [32℄ that thespeed of sound is given, in the two-phase 
ase, by :

c2 =
∂p(̺g) ρℓ z

(ρℓ + z − ρ)2
,with z = ρy and, here, ∂p(̺g) = 1. This relation shows that the speed of sound is lower for y = 0.1 thanfor y = 1, and we adjust the inlet velo
ity to keep the value of the Ma
h number at 3 in the two-phasezone. Inlet 
onditions are then given by u = (3c(y = 0.1), 0)t), y = 0.1 for x2 ∈ (0, 0.6) and y = 1 for

x2 ∈ (0.6, 1), and ρ given by the equation of state of the mixture with the lo
al value of y and p = 1.As a �rst step, we only solve the equations with y(x) �xed at its initial value and independent of time(doing so� we 
ompute in fa
t a barotropi
 �ow in a medium with a spa
e-dependent equation of state).As a 
onsequen
e of this 
hange of equation of state, we observe that the sho
k moves upward morerapidly, and intera
tion with the inlet boudary 
onditions o

urs as soon as t ≈ 2 ; 
onsequently, werestri
t the time interval of 
omputation, and stop at t = 1.6. The �nal time pressure, with a mesh builtfrom the 1200×400 grid and δt = 1.25 10−3, is shown in Figure I.24. We observe that part of the pressurewaves re�e
ts at the y transition, the re�e
ted wave propagating in a dire
tion almost parallel to thetransition (i.e. horizontal), thus giving a quite 
ompli
ated stru
ture.Finally, we perform the same 
omputation with the whole set of equations governing the two-phase �ow.The obtained pressure, still at t = 1.6 and with the same grid, is shown in Figure I.25. The �st part of the�ow shows some similarities with the previous 
omputation, but the pressure evolution is quite di�erentdownstream, due to the fa
t that the liquid phase is now transported by the �ow.
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Fig. I.25 � Wind tunnel with step, two-phase 
ase � Centred MAC s
heme � Isolines of the pressure �eldobtained at t=1.6 with a 1500x500 mesh and δt = 5. 10−4. Minimal value (blue) : p= 0.086 � Maximalvalue (red) : p= 13.8.



I.5. Con
lusion 59I.5 Con
lusionIn this paper, we have assessed the 
apability of a s
heme issued from the in
ompressible �ow 
ontext,namely a pressure 
orre
tion s
heme, to 
ompute dis
ontinuous solutions of hyperboli
 systems. Numeri
altests show that, provided that a su�
ient numeri
al dissipation is introdu
ed in the s
heme, it 
onverges tothe (weak and entropi
) solution to the 
ontinuous problem ; in addition, it shows a satisfa
tory behaviourup to large CFL numbers. Sin
e the s
heme boils down to a usual proje
tion s
heme when the density is
onstant, this approa
h yields an algorithm whi
h is robust with respe
t to the �ow Ma
h number, andthe present solver is indeed now routinely used to 
ompute vis
ous two-phase low Ma
h number �ows, asbubble 
olumns for instan
e.The present work may be extended in various ways. First, the observed 
onvergen
e 
an be 
onfortedby theoreti
al arguments ; even if a 
omplete 
onvergen
e proof seems di�
ult at this time, be
ause ofthe la
k of 
ompa
tness of sequen
es of dis
rete solutions due, in parti
ular, to the absen
e of di�usionterms, it is possible to show, for monophasi
 �ows, by passing to the limit in the s
heme, that any limitof a 
onvergent sequen
e is an entropy weak solution to the 
ontinuous problem (see next Chapter of thisdo
ument).Se
ond, several variants of the s
heme may be envisaged. The time dis
retization may be 
hanged toan expli
it one, to 
ompute highly transient �ows where a time-step limitation is not too stringent inpra
ti
e ; su
h a s
heme has been implemented, and �rst numeri
al result are promising. The extension ofthe above mentioned theoreti
al results to su
h a time dis
retization, under stability restri
tions, seemspossible. Third, in its present state, the s
heme appears to be rather di�usive. Several dire
tions existto 
ure this problem. For instan
e, the arti�
ial vis
osity ne
essary for the s
heme to 
onverge 
ould bemonitored by a posteriori indi
ators, following the ideas developed in [30, 31℄. Another route, espe
iallyfor the expli
it variant of the s
heme, is to implement MUSCL te
hniques ; this work is underway.Finally, let us mention that the present s
heme has been extented to usual (i.e. non-batropi
) Euler andNavier-Stokes equations, with a quite similar numeri
al behaviour and theoreti
al basis (see Chapters 3and 4 of this do
ument).





ChapitreII Consistent staggered s
hemesfor 
ompressible �ows �Barotopi
 equations.

I
n this paper, we analyse the stability and 
onsisten
y of a time-impli
its
heme and a pressure 
orre
tion s
heme, based on staggered spa
e dis-
retizations, for the 
ompressible barotropi
 Euler equations. We �rstshow that the solutions to these s
hemes satisfy a dis
rete kineti
 energy and adis
rete elasti
 potential balan
e equations. Integrating these equations on thedomain readily yields dis
rete 
ounterparts of the stability estimates known forthe 
ontinuous problem. Then, in one spa
e dimension, we prove that if thesolutions to these s
hemes 
onverge to some limit, then this limit is an entropyweak solution of the 
ontinous problem.
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II.1 Introdu
tionThe problem addressed in this paper is the system of the so-
alled barotropi
 
ompressible Euler equations,whi
h reads :
∂t ρ+ div(ρu) = 0, (II.1a)
∂t (ρu) + div(ρu ⊗ u) + ∇p = 0, (II.1b)
p = ργ , (II.1
)where t stands for the time, ρ, u and p are the density, velo
ity and pressure in the �ow. The threeabove equations are respe
tively the mass balan
e, the momentum balan
e and the equation of state ofthe �uid ; γ ≥ 1 is a 
oe�
ient spe
i�
 to the �uid 
onsidered. The problem is de�ned over an openbounded 
onne
ted subset Ω of Rd, 1 ≤ d ≤ 3, of boundary ∂Ω, and a �nite time interval (0, T ). Thissystem must be supplemented by initial 
onditions for ρ and u ; the initial 
ondition for ρ is assumed tobe positive. It must also be supplemented by a suitable boundary 
ondition, whi
h we suppose to be :

u · n = 0,at any time and a.e. on ∂Ω, where n stands for the normal ve
tor to the boundary.Let us denote by Ek the kineti
 energy Ek = 1
2 ρ |u|2. Taking the inner produ
t of (II.1b) by u yields,after formal 
ompositions of partial derivatives and using (II.1a) :

∂tEk + div
(
Ek u

)
+ ∇p · u = 0. (II.2)This relation is refered to as the kineti
 energy balan
e.Let us now de�ne the fun
tion P , from (0,+∞) to R, as a primitive of s 7→ ℘(s)/s2, where ℘ is theequation of state (pre
isely speaking, the fun
tion giving the pressure as a fun
tion of the density, so,here, ℘(s) = sγ) ; this quantity is often 
alled the elasti
 potential. Let H be the fun
tion de�ned by

H(s) = sP(s), ∀s ∈ (0,+∞) ; it may easily be 
he
ked that sH′(s)−H(s) = ℘(s) ; therefore, by a formal
omputation detailed in the appendix, multiplying (II.1a) by H′(ρ) yields :
∂t
(
H(ρ)

)
+ div

(
H(ρ)u

)
+ p div(u) = 0. (II.3)Let us denote by S the quantity S = Ek + H(ρ). Summing (II.2) and (II.3), we get :

∂tS + div
(
(S + p)u

)
= 0. (II.4)This shows that S is an entropy of the system, and an entropy solution to (II.1) is thus required to satisfy,

∀ϕ ∈ C∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0 :

∫ T

0

∫

Ω

[
−S∂tϕ− (S + p)u · ∇ϕ

]
dxδt−

∫

Ω

S(x, 0) ϕ(x, 0) dx ≤ 0. (II.5)Then, formally, if we suppose that the normal velo
ity is pres
ribed to zero at the boundary, integrating(II.4) yields :
d

dt

∫

Ω

[1
2
ρ |u|2 + H(ρ)

]
dx = 0. (II.6)
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ompressible �ows � Barotopi
 equations.Sin
e the fun
tion H is bounded by below and in
reasing, Inequality (II.6) provides an estimate of thesolution.We study two s
hemes for the numeri
al solution of System (II.1) whi
h di�er by the time dis
retization :the �rst one is impli
it, and the se
ond one is a non-iterative pressure-
orre
tion s
heme introdu
ed in[20℄. This latter algorithm (and, by an easy extension, also the �rst one) was shown in [20℄ to have at leastone solution, to provide solutions satisfying ρ > 0 (and therefore also p > 0) and to be un
onditionallystable, in the sense that its (their) solution(s) satis�es a dis
rete analogue of Inequality (II.6). The resultspresented in this paper 
omplement this work in several dire
tions. For the impli
it s
heme, these are :- A dis
rete kineti
 energy balan
e, whi
h is a dis
rete analogue of (II.2) is obtained on dual 
ells,while a dis
rete potential elasti
 balan
e, whi
h is a dis
rete analogue of (II.3) is obtained onprimal 
ells.These equations are �rst used to obtain the stability of the s
heme by a simple integration in spa
e(i.e. summation over the primal and dual 
ontrol volumes).- Se
ond, in one spa
e dimension and for the hyperboli
 
ase, the limit of any 
onvergent sequen
eof solutions to the s
heme is shown to satisfy the Rankine-Hugoniot 
onditions, and thus to exhibit"
orre
t" sho
ks.- Finally, passing to the limit on the dis
rete kineti
 energy and elasti
 potential balan
es, su
h alimit is also shown to satisfy the entropy inequality (II.5).For the pressure 
orre
tion s
heme, the results are essentially the same : the s
heme is un
onditionallystable, and the passage to the limit in the s
heme shows that, in 
ase of 
onvergen
e, the predi
ted andend-of-step velo
ities ne
essarily tend to the same fun
tion, and that the limit is a weak solution to theproblem, satisfying the entropy inequality.II.2 Meshes and unknownsLet M be a de
omposition of the domain Ω, supposed to be regular in the usual sense of the �nite elementliterature (eg. [9℄). The 
ells may be :- for a general domain Ω, either 
onvex quadrilaterals (d = 2) or hexahedra (d = 3) or simpli
es,both type of 
ells being possibly 
ombined in a same mesh,- for a domain the boundaries of whi
h are hyperplanes normal to a 
oordinate axis, re
tangles(d = 2) or re
tangular parallelepipeds (d = 3) (the fa
es of whi
h, of 
ourse, are then also ne
essarilynormal to a 
oordinate axis).By E and E(K) we denote the set of all (d−1)-fa
es σ of the mesh and of the element K ∈ M respe
tively.The set of edges in
luded in the boundary of Ω is denoted by Eext and the set of internal ones (i.e. E \Eext)is denoted by Eint ; a fa
e σ ∈ Eint separating the 
ells K and L is denoted by σ = K|L. The outwardnormal ve
tor to a fa
e σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the measureof K and by |σ| the (d− 1)-measure of the fa
e σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E and E(i)
ext ⊂ Eextthe subset of the fa
es of E and Eext respe
tively whi
h are perpendi
ular to the ith unit ve
tor of the
anoni
al basis of Rd.



II.2. Meshes and unknowns 65The spa
e dis
retization is staggered, using either the Marker-And Cell (MAC) s
heme [37, 36℄, or non-
onforming low-order �nite element approximations, namely the Ranna
her and Turek element (RT)[65℄ for quadrilateral or hexahedri
 meshes, or the lowest degree Crouzeix-Raviart (CR) element [11℄ forsimpli
ial meshes.For all these spa
e dis
retizations, the degrees of freedom (d.o.f.) for the pressure and the density areasso
iated to the 
ells of the mesh M, and are denoted by :
{
pK , ρK , K ∈ M

}
.Let us then turn to the d.o.fs for the velo
ity.- Ranna
her-Turek orCrouzeix-Raviart dis
retizations � The d.o.fs for the velo
ities are lo
atedat the 
enter of the fa
es of the mesh, and we 
hoose the version of the element where they representthe average of the velo
ity through a fa
e. The set of d.o.fs reads :

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.- MAC dis
retization � The d.o.fs for the ith 
omponent of the velo
ity, de�ned at the 
entres ofthe fa
e σ ∈ E(i), so the whole set of velo
ity d.o.fs reads :
{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.For the approximation of the time derivative and 
onve
tion terms in the momentum balan
e equation,for the MAC dis
retization but also for the RT and CR dis
retizations, we need a dual mesh whi
h wenow de�ne :- Ranna
her-Turek or Crouzeix-Raviart dis
retizations � For the RT or CR dis
retization, thedual mesh is the same for all the velo
ity 
omponents. When K ∈ M is a simplex, a re
tangleor a 
uboid, for σ ∈ E(K), we de�ne DK,σ as the 
one with basis σ and with vertex the mass
enter of K (see Figure II.1). We thus obtain a partition of K in m sub-volumes, where m isthe numbers of fa
es of the mesh, ea
h sub-volume having the same measure |DK,σ| = |K|/m.We extend this de�nition to general quadrangles and hexahedra, by supposing that we have builta partition still of equal-volume sub-
ells, and with the same 
onne
tivities ; note that this is of
ourse always possible, but that su
h a volume DK,σ may be no longer a 
one, sin
e, if K is farfrom a pallelogram, it may not be possible to build a 
one having σ as basis, the opposite vertexlying in K and a volume equal to |K|/m. The volume DK,σ is referred to as the half-diamond 
ellasso
iated to K and σ.For σ ∈ Eint, σ = K|L, we now de�ne the diamond 
ell Dσ asso
iated to σ by Dσ = DK,σ ∪DL,σ ;for an external fa
e σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.- MAC dis
retization � For the MAC s
heme, the dual mesh depends on the 
omponent of thevelo
ity. For ea
h 
omponent, the MAC dual mesh only di�ers from the RT or CR dual mesh bythe 
hoi
e of the half-diamond 
ell, whi
h, for K ∈ M and σ ∈ E(K), is now the re
tangle orre
tangular parallellepiped of basis σ and of measure |DK,σ| = |K|/2.We denote by |Dσ| the measure of the dual 
ell |Dσ|, and by ε = Dσ|Dσ′ the fa
e separating two diamond
ells Dσ and Dσ′ .



66 Chapitre II. Consistent staggered s
hemes for 
ompressible �ows � Barotopi
 equations.
Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=
K
|L

ε = D
σ |D

σ ′

Fig. II.1 � Primal and dual meshes for the Ranna
her-Turek and Crouzeix-Raviart elements.Finally, we need to deal with the impermeability (i.e. u · n = 0) boundary 
ondition. Sin
e the d.o.fsfor the velo
ity lie on the boundary (and not inside the 
ells), these 
onditions are taken into a

ount inthe de�nition of the dis
rete spa
es. To avoid te
hni
alities in the expression of the s
hemes, we supposethroughout this paper that the boundary is a.e. normal to a 
oordinate axis, even in the 
ase of the RTor CR dis
retizations, whi
h allows to simple set to zero the 
orresponding velo
ity d.o.f. :for 0 ≤ n ≤ N − 1, ∀σ ∈ E(i)
ext, un+1

σ,i = 0. (II.7)Extending this setting to general domains just implies to rede�ne, through linear 
ombinations, the d.o.fsat the external fa
es, to make the normal velo
ity appear as a new d.o.f..
II.3 An impli
it s
hemeII.3.1 The s
hemeLet us 
onsider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), andlet δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the 
onstant time step. We 
onsider an impli
it-in-time
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it s
heme 67numeri
al s
heme, whi
h reads in its fully dis
rete form :
∀K ∈ M,

|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (II.8a)For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) \ E(i)
ext in the MAC 
ase,

∀σ ∈ E \ E(i)
ext otherwise,

|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) +

∑

ε∈Ē(Dσ)

Fn+1
σ,ε un+1

ε,i − |Dσ| (∆T u)n+1
σ,i + |Dσ| (∇p)n+1

σ,i = 0, (II.8b)
∀K ∈ M, pn+1

K = ℘(ρn+1
K ) = (ρn+1

K )γ , (II.8
)where the terms introdu
ed for ea
h dis
rete equation are de�ned herafter.Equation (II.8a) is obtained by dis
retization of the mass balan
e over the primal mesh, and Fn+1
K,σ standsfor the mass �ux a
ross σ outwardK, whi
h, be
ause of the impermeability 
ondition, vanishes on externalfa
es and is given on internal ones by :

∀σ ∈ Eint, σ = K|L, Fn+1
K,σ = |σ| ρ̃n+1

σ un+1
σ · nK,σ.In this relation, the notation un+1

σ ·nK,σ stands for the approximation of the normal velo
ity to the fa
e
σ outward K. For the MAC dis
retization, this quantity is given (up, possibly, to a 
hange of sign) bythe velo
ity d.o.f. lo
ated at the fa
e ; for the RT and CR dis
retizations, it is 
omputed by taking theinner produ
t of the (ve
tor valued) velo
ity on σ, un+1

σ , and the outward normal ve
tor nK,σ (i.e. doingexa
tly what the notation says). The density at the fa
e σ = K|L, ρ̃n+1
σ , is approximated by the upwindte
hnique :

ρ̃n+1
σ =

∣∣∣∣∣∣

ρn+1
K if un+1

σ · nK,σ ≥ 0,

ρn+1
L otherwise.We now turn to the dis
rete momentum balan
e (II.8b). For the dis
retization of the time derivative, wemust provide a de�nition for the values ρn+1

σ and ρnσ, whi
h approximate the density on the edge σ attime tn+1 and tn respe
tively. They are given by the following weighted average :
∀σ ∈ Eint, σ = K|L, |Dσ| ρnσ = |DK,σ| ρnK + |DL,σ| ρnL. (II.9)We now turn to the 
onve
tion term. The �rst task is to de�ne the the dis
rete mass �ux through thedual edge ε outward Dσ, denoted by Fn+1

σ,ε ; the guideline for its 
onstru
tion is that a �nite volumedis
retization of the mass balan
e equation over the diamond 
ells of the form :
∀σ ∈ E , |Dσ|

ρn+1
σ − ρnσ
δt

+
∑

ε∈E(Dσ)

Fn+1
σ,ε = 0, (II.10)must hold in order to be able to derive a dis
rete kineti
 energy balan
e (see Se
tion II.3.1 below). For adual edge ε in
luded in the primal 
ell K, this �ux is 
omputed as a linear 
ombination (with 
onstant
oe�
ients, i.e. independent of the edge and the 
ell) of the mass �uxes through the fa
es of K, i.e.the quantities (Fn+1

K,σ )σ∈E(K) appearing in the dis
rete mass balan
e (II.8a). We do not give here this
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oe�
ients, and refer to [1, 38, 25℄ for a detailed 
onstru
tion of this approximation. Let us note,however, that the �ux a
ross the dual fa
es whi
h are lo
ated on the boundary, and whi
h exa
tly mat
ha primal fa
e, is the same as for this latter, namely zero. So we need to provide an approximation for
un+1
ε,i only at internal dual fa
es, whi
h is 
hosen to be 
entered :

un+1
ε,i = (un+1

σ,i + un+1
σ′,i )/2.The quantity (∆T u)n+1

σ,i stands for a possible stabilizing di�usion term, whi
h reads :
|Dσ| (∆T u)n+1

σ,i =
∑

ε∈Ē(Dσ), ε=Dσ |Dσ′

ν hd−2
ε (un+1

σ − un+1
σ′ ),where hε is a 
hara
teristi
 dimension of the fa
e ε, and ν stands for a non-negative 
oe�
ient, possiblydepending on a power of hε. Note that this term is usually (i.e. for general meshes) not 
onsistent witha Lapla
e operator. Choosing :

ν hd−2
ε =

1

2
|Fn+1
σ,ε |, (II.11)whi
h implies a dependen
y of ν as hε, yields the usual upwind s
heme. We prefer here to asso
iatethe di�usive e�e
ts of the s
heme to a separate term for two reasons : �rst, we will suppose in the
onsisten
y analysis (Se
tion II.3.3) a parti
ular behaviour of the 
oe�
ient ν (pre
isely speaking, that

ν/h2
ε is bounded away from zero) whi
h is not satis�ed by the expression (II.11) ; se
ond, this formalismmay prepare for a stabilization strategy whi
h 
ould be less di�usive than the upwind 
hoi
e, for instan
e
hoosing ν on the basis of an a posteriori analysis of the lo
al regularity of the solution [30, 31℄.The last term (∇pn+1)σ,i stands for the i-th 
omponent of the dis
rete pressure gradient at the fa
e σ,and this operator is built as the transpose of the natural divergen
e operator de�ned by |K| div(u)K =

∑
σ∈E(K) |σ| uσ · nK,σ. Consequently, be
ause of the impermeability boundary 
onditions, the dis
retegradient vanishes at the external fa
es. It reads for the internal ones :for σ ∈ Eint, σ = K|L, (∇pn+1)σ,i =

|σ|
|Dσ|

(pn+1
L − pn+1

K ) nK,σ · e(i).Finally, the initial approximations for ρ and u are given by the average of the initial 
onditions ρ0 and
u0 on the primal and dual 
ells respe
tively :

∀K ∈ M, ρ0
K =

1

|K|

∫

K

ρ0(x) dx,For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) \ E(i)
ext in the MAC 
ase,

∀σ ∈ E \ E(i)
ext otherwise, u0

σ,i =
1

|Dσ|

∫

Dσ

(u0(x))i dx.

(II.12)
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heme 69II.3.2 EstimatesII.3.2.a The dis
rete kineti
 energy balan
e equationLet us multiply equation (II.8b) by the 
orresponding velo
ity unknown un+1
σ,i , whi
h yields T conv

σ,i +T∆
σ,i+

T∇
σ,i = 0, with :

T conv
σ,i =

[ |Dσ|
δt

(
ρn+1
σ un+1

σ,i − ρnσu
n
σ,i

)
+

∑

ε=Dσ |Dσ′

1

2
Fn+1
σ,ε (un+1

σ,i + un+1
σ′,i )

]
un+1
σ,i ,

T∆
σ,i =

[ ∑

ε=Dσ |Dσ′

ν hd−2
ε (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i ,

T∇
σ,i = |Dσ| (∇pn+1)σ,i un+1

σ,i .The study of the properties linked to the �nite volume dis
retization for the 
onve
tion operator isperformed in the Appendix. From the identity (A.5), we get :
T conv
σ,i =

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+
|Dσ|
2 δt

ρnσ
(
un+1
σ,i − unσ,i

)2
.Let us de�ne Rn+1

σ,i by the sum of T∆
σ,i and of the last term of T conv

σ,i :
Rn+1
σ,i =

1

2

|Dσ|
δt

ρnσ
(
un+1
σ,i − unσ,i

)2
+
[ ∑

ε=Dσ |Dσ′

ν hd−2
ε (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i . (II.13)With this notation, we thus obtain the following relation :

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+ |Dσ| (∇pn+1)σ,i un+1
σ,i = −Rn+1

σ,i . (II.14)This equation may be seen as a dis
rete kineti
 energy balan
e, with a remainder term at the right-handside.II.3.2.b The dis
rete elasti
 potential balan
e equationLet P be the elasti
 potential, de�ned by P ′

(z) = ℘(z)/z2, and H be the fun
tion de�ned over (0,+∞)by H(z) = z P(z). Let us multiply the dis
rete mass balan
e (II.8a) by H′(ρn+1
K ). By Lemma A.0.1, usingthe fa
t that zH′(z) −H(z) = ℘(z), we get :

|K|
δt

[
ρn+1
K P(ρn+1

K ) − ρnKP(ρnK)
]

+
∑

σ∈E(K)

ρn+1
σ P(ρn+1

σ ) un+1
σ · nK,σ

+ pn+1
K

∑

σ∈E(K)

un+1
σ · nK,σ = −Rn+1

K , (II.15)with :
Rn+1
K =

1

2

|K|
δt

H′′(ρn+1
K ) (ρn+1

K − ρnK)2 +
1

2

∑

σ=K|L

(un+1
σ · nK,σ)− H′′(ρn+1

σ ) (ρn+1
L − ρn+1

K )2, (II.16)
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 equations.where ρn+1
K ∈ [min(ρn+1

K , ρnK),max(ρn+1
K , ρnK)], ρn+1

σ ∈ [min(ρn+1
σ , ρn+1

K ),max(ρn+1
σ , ρn+1

K )] for all σ ∈
E(K), and, for a ∈ R, a− ≥ 0 is de�ned by a− = −min(a, 0). Note that, sin
e the fun
tion H is 
onvex,
RK is non-negative.II.3.2.
 Stability estimatesProposition II.3.1Let γ ≥ 1, and let P be the elasti
 potential, de�ned by P ′

(z) = ℘(z)/z2 = zγ−2, i.e. P(z) = zγ−1/(γ−1)if γ > 1 and P(z) = log(z) if γ = 1. Let H be the fun
tion de�ned by H(s) = sP(s). We suppose thatthe initial density is positive.Then there exists a solution (un) 0≤n≤N and (ρn) 0≤n≤N to the s
heme, the density satis�es ρ > 0 and,for 1 ≤ n ≤ N , the following inequality holds :
∑

K∈M

|K| H(ρnK) +
1

2

∑

σ∈Eint

|Dσ| ρnσ |unσ|2 + Rn ≤ C, (II.17)where C ∈ R+ only depends on the initial 
onditions, and Rn is non-negative remainder whi
h gatherssome 
ontrol of the spa
e and time translates of the unknowns :
Rn =

1

2

n∑

k=1

∑

σ∈Eint

|Dσ| ρkσ |ukσ − uk−1
σ |2 +

n∑

k=1

δt
∑

ε∈Ē, ε=Dσ |Dσ′

ν hd−2
σ |ukσ − ukσ′ |2

+
γ

2

n∑

k=1

δt
∑

σ∈Eint, σ=K|L

|σ| (ρnσ,γ)γ−2 |unσ| |ρnK − ρnL|2,with ρkσ,γ equal to either ρkK or ρkL and su
h that (ρkσ,γ)
γ−2 = min

(
(ρkK)γ−2, (ρkL)γ−2

).Remark 4Note that Proposition II.3.1 yields an estimate on the unknowns also for γ = 1, even if the fun
tion H isnot positive, sin
e H satis�es H(s) ≥ −1/e, ∀s ∈ (0,+∞). In fa
t, we may rephrase the inequality (II.17)by 
hanging the expression of H to H(s) = max(s log(s), 0) and adding |Ω|/e to the 
onstant C at theright-hand side.Proof The positivity of the density is a 
onsequen
e of the properties of the upwind s
heme [27, Lemma2.1℄. Summing (II.14) over the edges and (II.15) over the 
ells, and �nally summing over the time stepsyields, using the fa
t that the �uxes in these two equations 
an
el by 
onservativity :
∑

K∈M

|K| ρnK P(ρnK) +
1

2

∑

σ∈Eint

|Dσ| ρnσ |unσ|2 + Rn ≤ C,with C given by :
C =

1

2

∑

σ∈Eint

|Dσ| ρ0
σ |u0

σ|2 +
∑

K∈M

|K| ρ0
K P (ρ0

K).Finally, the existen
e of a solution may be inferred by the Brouwer �xed point theorem, by an easyadaptation of the proof of [17, Proposition 5.2℄. The essential idea of this proof is that the 
onservativityof the mass balan
e dis
retization, together with the fa
t that the density is positive, yields an estimatefor ρ in the L1-norm, and so, by a norm equivalen
e argument, of the pressure in any norm ; the dis
retemomentum balan
e equation then provides a 
ontrol on the velo
ity. Therefore, 
omputing
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(i) ρ from the mass balan
e for �xed u,

(ii) p from ρ by the equation of state,
(iii) and �nally u from the momentum balan
e equation with �xed ρ and p,yields an iteration in a bounded 
onvex subset of a �nite dimensional spa
e. �II.3.3 Passing to the limit in the s
hemeThe obje
tive of this se
tion is to show, in the one dimensional 
ase, that, if a sequen
e of solutions is
ontrolled in suitable norms and 
onverges to a limit, this latter ne
essarily satis�es a (part of the) weakformulation of the 
ontinuous problem.Definition II.3.2 (Regular sequen
e of dis
retizations, impli
it 
ase)We de�ne a regular sequen
e of dis
retizations (M(m), δt(m))m∈N as a sequen
e of meshes and time stepssatisfying :

(i) the time step δt(m) and the size h(m) of the meshM(m), de�ned by h(m) = sup
K∈M(m)

diam(K),tend to zero as m→ ∞,
(ii) there exists θ > 0 su
h that :

θ ≤ diam(K)diam(L)
≤ 1

θ
, ∀m ∈ N and K, L ∈ M(m) sharing an interfa
e. (II.18)Let su
h a regular sequen
e of dis
retizations be given, and ρ(m), p(m) and u(m) be the solution given bythe s
heme (II.8) with the mesh M(m) and the time step δt(m), or, more pre
isely speaking, a 1D versionof the s
heme whi
h may be obtained by taking the MAC variant, only one horizontal stripe of meshes,supposing that the verti
al 
omponent of the velo
ity (the d.o.f. of whi
h are lo
ated on the top andbottom boundaries) vanishes, and that the measure of the fa
es is equal to 1. To the dis
rete unknowns,we asso
iate pie
ewise 
onstant fun
tions on time intervals and on primal or dual meshes, so the density

ρ(m), the pressure p(m) and the velo
ity u(m) are de�ned almost everywhere on Ω × (0, T ) by :
ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))nK XK X(n,n+1), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK X(n,n+1),

u(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
X(n,n+1),where XK , XDσ

and X(n,n+1) stand for the 
hara
teristi
 fun
tion of K, Dσ and the interval (tn, tn+1)respe
tively.A weak solution to the 
ontinuous problem satis�es, for any ϕ ∈ C∞
c

(
Ω × (0, T )

) :
−
∫ T

0

∫

Ω

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)ϕ(x, 0) dx = 0, (II.19a)
−
∫ T

0

∫

Ω

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)u(x, 0)ϕ(x, 0) dx = 0, (II.19b)
p = ργ . (II.19
)
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hemes for 
ompressible �ows � Barotopi
 equations.Note that these relations are not su�
ient to de�ne a weak solution to the problem, sin
e they do notimply anything about the boundary 
onditions. However, they allow to derive the Rankine-Hugoniot
onditions ; so, if we show that they are satis�ed by the limit of a sequen
e of solutions to the dis
reteproblem, this implies, loosely speaking, that the s
heme 
omputes the right sho
k velo
ities, whi
h is theresult we are sear
hing for. It is stated in the following theorem.Theorem II.3.3Let Ω be an open bounded interval of R. We suppose that the initial data satis�esH(ρ0) ∈ L1(Ω) (i.e. that
ρ0 log(ρ0) ∈ L1(Ω) for γ = 1 and that ρ0 ∈ Lγ(Ω) for γ > 1) and that ρ0 u

2
0 ∈ L1(Ω). Let (M(m), δt(m))m∈Nbe a regular sequen
e of dis
retizations in the sense of De�nition II.3.2, and (ρ(m), p(m), u(m))m∈N be the
orresponding sequen
e of solutions. We suppose that this sequen
e 
onverges in Lp(Ω × (0, T ))3, for

1 ≤ p < ∞, to (ρ̄, p̄, ū) ∈ L∞(Ω × (0, T ))3. We suppose in addition that both sequen
es (ρ(m))m∈Nand (1/ρ(m))m∈N are uniformly bounded in L∞(Ω × (0, T )) and that the sequen
e of numeri
al di�usion
oe�
ients (ν(m))m∈N satis�es :
lim

m→+∞
ν(m) = 0, lim

m→+∞

(h(m))2

ν(m)
= 0.Then the limit (ρ̄, p̄, ū) satis�es the system (II.19).Remark 5 (Sharper bounds and 
onvergen
e assumptions)The 
onvergen
e properties and bounds assumed for the solution have been 
hosen so as to mat
h whatmay be observed in pra
ti
e. However, examining the proof of this theorem, we observe that we really needis that ρ(m)u(m), ρ(m)(u(m))2, p(m)u(m) 
onverge in the distribution sense to ρ̄ū, ρ̄ū2 and p̄ū respe
tively,that (ρ(m))γ 
onverge a.e. to ρ̄γ , and that the sequen
e (u(m))m∈N be bounded in L3

(
Ω × (0, T )

). Therequired se
ond assumption for (ν(m))m∈N is in fa
t :
lim

m→+∞

(h(m))2

ν(m)
‖ρ(m)‖

L∞

(
Ω×(0,T )

) = 0,and may be veri�ed, for instan
e supposing a relation between δt(m) and h(m) and invoking inverseinequalities, with milder estimates of (ρ(m))m∈N. Finally, the bound of (1/ρ(m))m∈N in L∞
(
Ω × (0, T )

)(whi
h, loosely speaking, means that the appearan
e of void is ex
luded) is needed to obtain the weak-BVestimate :
lim

m→+∞
h(m)

N∑

n=0

∑

σ∈Eint, σ=K|L

|unσ| (ρnK − ρnL)2 = 0 (II.20)from the "weighted weak-BV estimate" (II.17) :
N∑

n=0

∑

σ∈Eint, σ=K|L

(ρnσ,γ)
γ−2 |unσ| (ρnK − ρnL)2 = 0where we re
all that ρnσ,γ is equal to either ρnK or ρnL. This assumption is thus useless for γ ≤ 2. For γ > 2,in the 
ase of a non-vanishing vis
osity, Equation (II.20) may perhaps be derived by using the densityitself as test fun
tion in the dis
rete mass balan
e equation, and invoking a 
ontrol of the divergen
e ofthe velo
ity (from the di�usion term), see [17, Proposition 5.5℄ for su
h a 
omputation in the steady 
ase.
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it s
heme 73Proof With the assumed 
onvergen
e for the sequen
e of solutions, the limit satis�es the equation ofstate. The proof of this theorem is thus obtained by passing to the limit in the s
heme, �rst for the massbalan
e equation and then for the momentum balan
e equation. Thanks to the assumption on the initial
ondition, the stability estimate of Proposition II.3.1 is uniform with respe
t to m, and thus providesuniform bounds for some spa
e translates of the solution, whi
h are used all along the proof.Mass balan
e equation � Let ϕ ∈ C∞
c (Ω× [0, T )). Let m ∈ N, M(m) and δt(m) be given. Dropping forshort the supers
ript (m), we de�ne ϕM, an interpolate of ϕ on the primal mesh, by :

ϕM =
N−1∑

n=0

∑

K∈M

ϕnK XK X(tn,tn+1), (II.21)where, for 1 ≤ n ≤ N , K ∈ M and σ ∈ E , we set ϕnK = ϕ(xK , t
n), with xK the mass 
enter of K. Wealso de�ne the time dis
rete derivative of this dis
rete fun
tion by :

ðtϕM =
N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕnK

δt
XK X(tn,tn+1), (II.22)and its spa
e dis
rete derivative :

ðxϕM =

N−1∑

n=0

∑

σ∈E, σ=K<L

ϕnL − ϕnK
dσ

XDσ
X(tn,tn+1), (II.23)where the notation σ = K < L means that σ = K|L with the orientation xK < xL. Thanks to theregularity of ϕ, the pie
ewise 
onstant fun
tions ϕM, ðtϕM and ðxϕM 
onverge in Lr

(
Ω × (0, T )

), for
r ≥ 1 (in
luding r = +∞), to ϕ, ∂tϕ and ∂xϕ respe
tively. Sin
e the support of ϕ is 
ompa
t in Ω× [0, T ),for m large enough, the interpolate of ϕ vanishes at the boundary 
ells and at the �nal time ; hereafter,we systemati
ally assume that we are in this 
ase.Let us multiply the �rst equation of the s
heme by δt ϕnK , and sum the result on n ∈ {0, ..., N − 1} and
K ∈ M, to obtain T (m)

1 + T
(m)
2 = 0 with :

T
(m)
1 =

N∑

n=0

∑

K∈M

|K| (ρn+1
K − ρnK) ϕnK , T

(m)
2 =

N∑

n=0

δt
∑

K∈M

[ ∑

σ∈E(K)

Fn+1
K,σ

]
ϕnK .Reordering the sums in T (m)

1 yields :
T

(m)
1 = −

N∑

n=1

δt
∑

K∈M

|K| ρn+1
K

ϕn+1
K − ϕnK

δt
−
∑

K∈M

|K| (ρ0)K (ϕ0)K ,so :
T

(m)
1 = −

∫ T

0

∫

Ω

ρ(m)
ðt ϕM dxδt−

∫

Ω

(ρ0)(m)ϕ0.Sin
e, by assumption, the sequen
e of dis
rete solutions and of interpolates 
onverge in Lr
(
Ω × (0, T )

)for r ≥ 1, and by de�nition of the dis
rete initial 
onditions, we get :
lim

m−→+∞
T

(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ∂tϕdxδt−
∫

Ω

ρ̄(x, 0) ϕ(x, 0) dx.
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hemes for 
ompressible �ows � Barotopi
 equations.Using the expression of the mass �ux Fn+1
K,σ and reordering the sums in T (m)

2 , we get :
T

(m)
2 = −

N∑

n=0

δt
∑

σ=K<L

|Dσ| ρ̃n+1
σ un+1

σ

ϕnL − ϕnK
dσ

,where dσ stands in this relation for |xK − xL| and we re
all that ρ̃n+1
σ is the upwind approximation of

ρn+1 at the fa
e σ. Using |Dσ| = (|K| + |L|)/2, we thus have T (m)
2 = T (m)

2 + R(m)
2 with :

T (m)
2 = −

N∑

n=0

δt
∑

σ=K<L

[ |K|
2

ρn+1
K +

|L|
2

ρn+1
L

]
un+1
σ

ϕnL − ϕnK
dσ

,

R(m)
2 = −

N∑

n=0

δt
∑

σ=K<L

[
δσ

|K|
2

(ρn+1
L − ρn+1

K ) + (1 − δσ)
|L|
2

(ρn+1
K − ρn+1

L )
]
un+1
σ

ϕnL − ϕnK
dσ

,and δσ is equal to 0 or 1 depending on the sign of un+1
σ . We get :

T (m)
2 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðxϕM dxδt, and lim

m−→+∞
T (m)

2 = −
∫ T

0

∫

Ω

ρ̄ ū ∂xϕdxδt.The remainder term R(m)
2 is bounded as follows :

|R(m)
2 | ≤ Cϕ

N∑

n=0

δt
∑

σ∈Eint, σ=K|L

|Dσ| |ρn+1
K − ρn+1

L | |un+1
σ |

≤ Cϕ h
1/2

N∑

n=0

δt
[ ∑

σ∈Eint, σ=K|L

|un+1
σ | |ρn+1

K − ρn+1
L |2

]1/2 [ ∑

σ∈Eint, σ=K|L

|Dσ| |un+1
σ |

]1/2
.Therefore, thanks to the stability estimates, this term tends to zero when m tends to +∞.Momentum balan
e equation � Let ϕE be an interpolate of ϕ on the dual mesh, de�ned by :

ϕE =

N−1∑

n=0

∑

σ∈E

ϕnσ XDσ
X(tn,tn+1), (II.24)where, for 1 ≤ n ≤ N , K ∈ M and σ ∈ E , we set ϕnσ = ϕ(xσ , t

n), with xσ the abs
issa of the fa
e σ. Wealso de�ne the time and spa
e dis
rete derivatives of this dis
rete fun
tion by :
ðtϕE =

N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕnσ
δt

XDσ
X(tn,tn+1),

ðxϕE =

N−1∑

n=0

∑

K∈M, K=<σ,σ′>

ϕnσ′ − ϕnσ
hK

XK X(tn,tn+1),

(II.25)where the notation K =< σ, σ′ > means that K = (xσ, xσ′ ), with xσ < xσ′ and, for σ = K|L, dσ =

(hK + hL)/2. The pie
ewise 
onstant fun
tions ϕE , ðtϕE and ðxϕE 
onverge in Lr
(
Ω× (0, T )

), for r ≥ 1(in
luding r = +∞), to ϕ, ∂tϕ and ∂xϕ respe
tively.
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it s
heme 75Let us multiply Equation (II.8b) of the s
heme by δt ϕnσ, and sum the result over n ∈ {0, ..., N − 1} and
σ ∈ Eint. We obtain T (m)

1 + T
(m)
2 + T

(m)
3 + T

(m)
4 = 0 with :

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ|
(
ρn+1
σ un+1

σ − ρnσu
n
σ

)
ϕnσ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

ε∈E(Dσ)

Fn+1
σ,ε un+1

ε

]
ϕnσ ,

T
(m)
3 =

N−1∑

n=0

δt
∑

σ∈Eint, σ=K<L

(pn+1
L − pn+1

K ) ϕnσ,

T
(m)
4 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

K=(σ,σ′)

ν

hK
(un+1
σ − un+1

σ′ )
]
ϕnσ.Thanks to the de�nition of the quantity ρσ, reordering the sums, we get for T (m)

1 :
T

(m)
1 = −

N∑

n=0

δt
∑

σ∈Eint, σ=K|L

[ |K|
2
ρn+1
K +

|L|
2
ρn+1
L

]
un+1
σ

ϕn+1
σ − ϕnσ
δt

−
∑

σ∈Eint, σ=K|L

[ |K|
2
ρ0
K +

|L|
2
ρ0
L

]
u0
σ ϕ

0
σ.Therefore :

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðt ϕM dxδt−

∫

Ω

(ρ0)(m) (u0)(m) ϕ0,and :
lim

m−→+∞
T

(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ū ∂tϕdxδt −
∫

Ω

ρ̄(x, 0) ū(x, 0) ϕ(x, 0) dx.Let us now turn to T (m)
2 . In one dimension, the mass �uxes at the dual edges are given by, for 0 ≤ n ≤

N − 1, K ∈ M, with K =< σ, σ′ > and ε = Dσ|Dσ′ :
Fn+1
σ,ε =

1

2

(
−Fn+1

K,σ + Fn+1
K,σ′

)
=

1

2

(
ρ̃n+1
σ un+1

σ + ρ̃n+1
σ′ un+1

σ′

)
.Reordering the sums, we thus get, sin
e the dis
retization of the 
onve
tion term is 
entered :

T
(m)
2 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

(ρ̃n+1
σ un+1

σ + ρ̃n+1
σ′ un+1

σ′ ) (un+1
σ + un+1

σ′ ) (ϕnσ′ − ϕnσ),whi
h we write T (m)
2 = T (m)

2 + R(m)
2 with :

T (m)
2 = −1

2

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

ρn+1
K

[
(un+1
σ )2 + (un+1

σ′ )2
]

(ϕnσ′ − ϕnσ).This term reads :
T (m)

2 = −
∫ T

0

∫

Ω

ρ(m) (u(m))2 ðxϕE dxδt, so lim
m−→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕdxδt.
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hemes for 
ompressible �ows � Barotopi
 equations.The remainder term R(m)
2 reads :

R(m)
2 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

[
(ρ̃n+1
σ un+1

σ + ρ̃n+1
σ′ un+1

σ′ )(un+1
σ + un+1

σ′ )

− 2ρn+1
K

(
(un+1
σ )2 + (un+1

σ′ )2
)]

(ϕnσ′ − ϕnσ).Expanding the quantity 2 ρn+1
K ((un+1

σ )2 +(un+1
σ′ )2) thanks to the identity 2(a2 + b2) = (a+ b)2 +(a− b)2,we get R(m)

2 = R(m)
2,1 + R(m)

2,2 :
R(m)

2,1 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

[(
(ρ̃n+1
σ − ρn+1

K ) un+1
σ + (ρ̃n+1

σ′ − ρn+1
K ) un+1

σ′

)

(un+1
σ + un+1

σ′ )
]

(ϕnσ′ − ϕnσ),

R(m)
2,2 =

1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

ρn+1
K (un+1

σ − un+1
σ′ )2 (ϕnσ′ − ϕnσ).First we study R(m)

2,1 . Thanks to the de�nition of the upwind approximation, reordering the sum by fa
es,we get :
R(m)

2,1 =
ε

4

N−1∑

n=0

δt
∑

σ∈Eint, σ=L→K,K=(σ,σ′)

(ρn+1
L − ρn+1

K ) un+1
σ (un+1

σ + un+1
σ′ ) (ϕnσ − ϕnσ′),where the notation σ = L → K means that the fa
e σ separates K and L and the �ow goes from Lto K, K = (σ, σ′) means that σ and σ′ are the fa
es of K and ε = ±1. Sin
e |ϕnσ − ϕnσ′ | ≤ Cϕ |K| ≤

Cϕ (|Dσ| + |Dσ′ |), we get :
|R(m)

2,1 | ≤ Cϕ
4

N−1∑

n=0

δt
∑

σ∈Eint, σ=L|K,K=(σ,σ′)

(
|Dσ| + |Dσ′ |

)
|ρn+1
L − ρn+1

K | |un+1
σ | |un+1

σ + un+1
σ′ |.Therefore, by the Cau
hy-S
hwarz inequality, we get :

|R(m)
2,1 | ≤ Cϕ

4
h1/2

N−1∑

n=0

δt
[ ∑

σ∈Eint, σ=L|K,K=(σ,σ′)

|un+1
σ | (ρn+1

L − ρn+1
K )2

]1/2

[ ∑

σ∈Eint, σ=L|K,K=(σ,σ′)

(
|Dσ| + |Dσ′ |

)
|un+1
σ |

(
un+1
σ + un+1

σ′

)2]1/2
.Sin
e the ratio of the size of two neighbouring meshes is bounded by regularity assumption on the mesh,we get from the estimates on the solution :

|R(m)
2,1 | ≤ Cϕ

4
h1/2 ‖u(m)‖3/2

L3(Ω×(0,T )),and so R(m)
2,1 tends to zero when m tends to +∞. For R(m)

2,2 , we have, thanks to the estimate (II.17) :
|R(m)

2,2 | ≤ Cϕ h
2
N−1∑

n=0

δt
∑

K∈M

|K| ρn+1
K

(un+1
σ − un+1

σ′

hK

)2 ≤ C
h2

ν(m)
‖ρ(m)‖L∞(Ω×(0,T )),where C does not depend on m, and, therefore, this term also tends to zero when m tends to +∞.
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it s
heme 77We turn to the term T
(m)
3 :

T
(m)
3 = −

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

|K| pn+1
K

ϕnσ′ − ϕnσ
hK

= −
∫ T

0

∫

Ω

p(m)
ðxϕE dxδt,so :

lim
m−→+∞

T
(m)
3 = −

∫ T

0

∫

Ω

p̄ ū ∂xϕdxδt.Let us �nally study T (m)
4 . Reordering the sums, we get :
T

(m)
4 =

N−1∑

n=0

δt
∑

K∈M,K=(σ,σ′)

ν(m)

hK
(un+1
σ − un+1

σ′ ) (ϕnσ − ϕσ′ ).The Cau
hy-S
hwarz inequality yields :
|T (m)

4 | ≤
[N−1∑

n=0

δt
∑

K∈M,K=(σ,σ′)

ν(m)

hK
(un+1
σ − un+1

σ′ )2
]1/2

[N−1∑

n=0

δt
∑

K∈M,K=(σ,σ′)

ν(m)

hK
(ϕnσ − ϕnσ′)2

]1/2
,and thus, in view of the estimate (II.17), this term tends to zero as soon as ν(m) tends to zero.Con
lusion � Gathering the limits of all the terms of the mass and momentum balan
e equation
on
ludes the proof. �We now turn to the entropy 
ondition.Theorem II.3.4Let Ω be an open bounded interval of R. We suppose that the initial data satis�esH(ρ0) ∈ L1(Ω) (i.e. that

ρ0 log(ρ0) ∈ L1(Ω) for γ = 1 and that ρ0 ∈ Lγ(Ω) for γ > 1) and that ρ0 u
2
0 ∈ L1(Ω). Let (M(m), δt(m))m∈Nbe a regular sequen
e of dis
retizations in the sense of De�nition II.3.2, and (ρ(m), p(m), u(m))m∈N be the
orresponding sequen
e of solutions. We suppose that this sequen
e 
onverges in Lp(Ω × (0, T ))3, for

1 ≤ p < ∞, to (ρ̄, p̄, ū) ∈ L∞(Ω × (0, T ))3. We suppose in addition that both sequen
es (ρ(m))m∈N and
(1/ρ(m))m∈N are bounded in L∞(Ω × (0, T )) and that the sequen
e of numeri
al di�usion 
oe�
ients
(ν(m))m∈N satis�es :

lim
m→+∞

ν(m) = 0, lim
m→+∞

(h(m))2

ν(m)
= 0.Then the limit (ρ̄, p̄, ū) satis�es the entropy 
ondition (II.5).Proof Let ϕ ∈ C∞

c

(
Ω × [0, T )

), ϕ ≥ 0. With the same notations for the interpolate of ϕ as in thepre
eding proof, we multiply the kineti
 balan
e equation (II.14) by ϕnσ, and the elasti
 potential balan
e(II.15) by ϕnK , sum over the edges and 
ells respe
tively and over the time steps, to get :
∑

E∈Eint

T n+1
σ ϕnσ +

∑

K∈M

T n+1
K ϕnK = −

∑

E∈Eint

Rn+1
σ ϕnσ −

∑

K∈M

Rn+1
K ϕnK , (II.26)
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hemes for 
ompressible �ows � Barotopi
 equations.where :
T n+1
σ =

1

2

|Dσ|
δt

[
ρnσ(u

n+1
σ )2 − ρn−1

σ (unσ)
2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε u
n+1
σ un+1

σ′ + |Dσ| (∇p)n+1
σ un+1

σ ,

T n+1
K =

|K|
δt

[
ρn+1
K P(ρn+1

K ) − ρnKP(ρnK)
]

+
∑

σ∈E(K)

ρn+1
σ P(ρn+1

σ ) un+1
σ nK,σ

+pn+1
K

∑

σ∈E(K)

un+1
σ nK,σ,and the quantities Rn+1

σ and Rn+1
K are given by (the one-dimensional version of) Equation (II.13) and(II.16) respe
tively.For the passage to the limit in this equation, we essentially refer to the study performed in ChapterIV. Indeed, the entropy inequality for the barotropi
 model is the same as the total energy balan
e fornon-barotropi
 �ows (up to the 
hange from an inequality to an equality) ; the passage to the limit inthis latter equation, with the same dis
retization as here, is detailed in Chapter IV of this do
ument.The treatment of the terms at the left-hand side of (II.26) is identi
al, and we thus omit this proof here.Sin
e we only seek here an inequality, the non-negative part of the remainder terms, i.e. the �rst part in

Rn+1
σ and the whole term Rn+1

K , poses no problem, and we only have to study the se
ond part of Rn+1
σ ,whi
h reads :

(Rdiff)n+1
σ =

[ ∑

K∈M,K=(σ,σ′)

ν

hK
(un+1
σ − un+1

σ′ )
]
un+1
σ .For 0 ≤ n ≤ N − 1 and K ∈ M, K = (σ, σ′), let us de�ne the quantity Sn+1

K by :
Sn+1
K =

ν

hK
(un+1
σ − un+1

σ′ )2.We have SK ≥ 0, and we prove in Chapter IV that the di�eren
e between the dis
rete fun
tions asso
iatedto ((Rdiff)n+1
σ

)
σ∈Eint, 0≤n≤N−1

and (Sn+1
K )K∈M, 0≤n≤N−1 tends to zero in the distribution sense, i.e. :

N−1∑

n=0

δt
[ ∑

σ∈Eint

ϕnσ (Rdiff)n+1
σ −

∑

K∈M

ϕnK Sn+1
K

]
≤ C h,where C only depends on ϕ and on bounds on the solution either assumed or given by (II.17). This
on
ludes the proof. �II.4 Pressure 
orre
tion s
hemeII.4.1 The s
hemeWe derive in this se
tion a pressure 
orre
tion numeri
al s
heme from the impli
it s
heme (II.8). The �rststep, is a renormalization of the pressure the interest of whi
h is 
lari�ed only by the analysis (stability ofthe s
heme and satisfa
tion of the entropy 
ondition). The next step, as usual, is to 
ompute a tentativevelo
ity by solving the momentum balan
e equation with the known (here, the renormalized) pressure.Then, the velo
ity is 
orre
ted and the other variables are advan
ed in time. For stability reasons, or, inother words, to be able to derive a kineti
 energy balan
e, we need that the mass balan
e over the dual
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ells (II.10) to hold ; sin
e the mass balan
e is not yet solved when performing the predi
tion step, thisleads us to perform a time shift of the density at this step.The algorithm reads :Renormalization step � Solve for p̃n+1 :
∀K ∈ M,

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(
p̃n+1
K − p̃n+1

L

)
=

∑

σ=K|L

1

(ρnσ ρ
n−1
σ )1/2

|σ|2
|Dσ|

(
pnK − pnL

)
. (II.27a)Predi
tion step � Solve for ũn+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) \ E(i)
ext in the MAC 
ase,

∀σ ∈ E \ E(i)
ext otherwise,

|Dσ|
δt

(ρnσũ
n+1
σ,i − ρn−1

σ unσ,i) +
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i − |Dσ| (∆T ũ)n+1

σ,i + |Dσ| (∇p̃)n+1
σ,i = 0. (II.27b)Corre
tion step � Solve for ρn+1, pn+1 and un+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) \ E(i)
ext in the MAC 
ase,

∀σ ∈ E \ E(i)
ext otherwise,

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇p)n+1

σ,i − (∇p̃)n+1
σ,i

]
= 0, (II.27
)

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (II.27d)

∀K ∈ M, pn+1
K = (ρn+1

K )γ . (II.27e)The initialization of the s
heme is performed as follows. First, ρ−1 and u0 are given by the average ofthe initial 
onditions ρ0 and u0 on the primal and dual 
ells respe
tively :
∀K ∈ M, ρ−1

K =
1

|K|

∫

K

ρ0(x) dx,For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) \ E(i)
ext in the MAC 
ase,

∀σ ∈ E \ E(i)
ext otherwise, u0

σ,i =
1

|Dσ|

∫

Dσ

(u0(x))i dx.

(II.28)The initial pressure, p0, is obtained from ρ−1 through the equation of state. Finally, we 
ompute ρ0 bysolving the mass balan
e equation (II.27d). This pro
edure allows to make the �rst predi
tion step with
(ρ−1
σ )σ∈E , (ρ0

σ)σ∈E and the dual mass �uxes satisfying the mass balan
e.
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ompressible �ows � Barotopi
 equations.II.4.1.a The dis
rete kineti
 energy balan
e equationTo derive a dis
rete kineti
 energy balan
e equation, we multiply the velo
ity predi
tion equation by the
orresponding d.o.f. of the predi
ted velo
ity, i.e. Equation (II.27b) by ũn+1
σ,i , to obtain :

|Dσ|
δt

(
ρnσũ

n+1
σ,i − ρn−1

σ unσ,i
)

ũn+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũn+1

σ,i

− |Dσ|(∆T ũ)n+1
σ,i ũn+1

σ,i + |Dσ| (∇p̃)n+1
σ,i ũn+1

σ,i = 0. (II.29)We then write the velo
ity 
orre
tion equation as :
[ |Dσ|
δt

ρnσ

]1/2
un+1
σ,i +

[ |Dσ| δt
ρnσ

]1/2
(∇p)n+1

σ,i =
[ |Dσ|
δt

ρnσ

]1/2
ũn+1
σ,i +

[ |Dσ| δt
ρnσ

]1/2
(∇p̃)n+1

σ,i ,and square this relation, sum with (II.29) and get, applying Lemma A.0.2 (again on the dual mesh) tothe �rst two terms of (II.29) :
1

2

|Dσ|
δt

[
ρnσ(un+1

σ,i )2 − ρn−1
σ (unσ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũn+1
σ,i ũn+1

σ′,i

+ |Dσ| (∇p)n+1
σ,i un+1

σ,i = −Rn+1
σ,i − Pn+1

σ,i , (II.30)where Rn+1
σ,i and Pn+1

σ,i read, using the de�nition of (∆T ũ)n+1
σ,i :

Rn+1
σ,i =

1

2

|Dσ|
δt

ρn−1
σ

(
ũn+1
σ,i − unσ,i

)2
+
[ ∑

ε=Dσ |Dσ′

ν hd−2
ε (ũn+1

σ,i − ũn+1
σ′,i )

]
ũn+1
σ,i ,

Pn+1
σ,i =

|Dσ| δt
ρnσ

[(
(∇p)n+1

σ,i

)2 −
(
(∇p̃)n+1

σ,i

)2]
.

(II.31)II.4.2 Stability estimatesProposition II.4.1Let γ ≥ 1, and let P be the elasti
 potential, satisfying P ′

(s) = ℘(s)/s2 = zγ−2, so P(s) = sγ−1/(γ − 1)if γ > 1 and P(s) = log(s) if γ = 1. Let H be the fun
tion de�ned by H(s) = sP(s). We suppose thatthe initial density is positive.Then there exists a solution (un) 0≤n≤N and (ρn) 0≤n≤N to the s
heme, the density satis�es ρ > 0 and,for 1 ≤ n ≤ N , the following inequality holds :
∑

K∈M

|K| H(ρnK) +
1

2

∑

σ∈E

|Dσ| ρn−1
σ |unσ |2 + Rn ≤ C, (II.32)where C only depends on the initial 
onditions and on the density �eld ρ0 
omputed at the initialisationof the algorithm. The remainder term R is non-negative, and gathers some estimates of the spa
e andtime translates of the unknowns :

Rn =
1

2

n∑

k=1

∑

σ∈E

|Dσ| ρk−2
σ |ũkσ − uk−1

σ |2 +

n∑

k=1

δt
∑

ε∈Ē, ε=Dσ |Dσ′

ν hd−2
σ |ũkσ − ũkσ′ |2

+
γ

2

n∑

k=1

δt
∑

σ∈Eint, σ=K|L

|σ| (ρkσ,γ)γ−2 |ukσ| |ρkK − ρkL|2 + δt2
|Dσ|
ρn−1
σ

|(∇p)nσ,i|2,with ρkσ,γ equal to either ρkK or ρkL and su
h that (ρkσ,γ)
γ−2 = min

(
(ρkK)γ−2, (ρkL)γ−2

).
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orre
tion s
heme 81Proof Essential arguments of the proof of this proposition are given in [20℄, and we only brie�y re
allhere how to obtain this estimate, for the sake of 
ompleteness. As in the impli
it 
ase, we sum the kineti
energy balan
e equation (II.30) over the fa
es, and the elasti
 potential balan
e (II.15) (whi
h is thesame, and obtained by the same 
omputation, as in the impli
it 
ase) over the 
ells, and �nally sum thetwo obtained relations. We obtain a "lo
al in time" version of Equation (II.32), whi
h reads :
T n+1 − T n +Rn+1 + Pn+1 = 0, (II.33)where :

T n+1 =
∑

K∈M

|K| H(ρn+1
K ) +

1

2

∑

σ∈E

|Dσ| ρnσ |un+1
σ |2.and :

Rn+1 =
∑

σ∈E, 1≤i≤d

Rn+1
σ,i , Pn+1 =

∑

σ∈Eint, 1≤i≤d

Pn+1
σ,i ,with Rn+1

σ,i and Pn+1
σ,i given by Equation (II.31) (the latter sum being restri
ted to the internal fa
es sin
ethe pressure dis
rete gradient vanishes at external ones). The term Pn+1 thus reads :

Pn+1 =
∑

σ∈Eint

|Dσ| δt2
ρnσ

[
|(∇p)n+1

σ |2 − |(∇p̃)n+1
σ |2

]Before summing over the time steps, we need to transform Pn+1 to get a di�eren
e between a sameexpression written at two 
onse
utive time levels, whi
h is possible thanks to the renormalization step.Indeed, multiplying (II.27a) by p̃n+1
K and summing over the 
ells yields, after a dis
rete integration byparts and use of the identity 2(a− b) a = a2 + (a− b)2 − b2 :

∑

σ∈Eint

|Dσ| δt2
ρnσ

|(∇p̃)n+1
σ |2 ≤

∑

σ∈Eint

|Dσ| δt2
ρn−1
σ

|(∇p)nσ |2.Summing this relation with (II.33) and summing over the time steps yields the estimate (II.32) with :
C =

∑

K∈M

|K| H(ρ0
K) +

1

2

∑

σ∈Eint

|Dσ| ρ−1
σ |u0

σ|2 +
∑

σ∈Eint

|Dσ| δt2
ρ−1
σ

|(∇p)0σ|2.

�Remark 6 (Regularity assumptions for the initial 
onditions)For a given mesh, the quantity denoted above by C is bounded as soon as ρ0 is positive and belongs to
L1(Ω) and u0 belongs to L1(Ω)d respe
tively. When dealing with a sequen
e of dis
retizations to pass tothe limit in the s
heme, we will have to suppose that C is 
ontrolled independently of the mesh and timestep, whi
h ne
essitates (i) that the initial kineti
 energy and (ii) that H(ρ0

K) are bounded in L1(Ω), and
(iii) than the last term involving the dis
rete pressure gradient does not blow-up.Assumption (ii) (and, of 
ourse, (i)) may be obtained by supposing that both u0 and ρ0 belongs to
L∞(Ω) and L∞(Ω)d respe
tively and that δt/h is bounded (possibly by a number far greater than 1) ;indeed, ρ0 is then obtained in this 
ase by a single time step of a (dis
rete) transport equation with avelo
ity �eld the divergen
e of whi
h is 
ontrolled by 1/h, so ρ0 is 
ontrolled in L∞(Ω).Assumption (iii) may be inferred from the fa
t that the initial pressure (i.e. the pressure obtained fromthe initial density through the equation of state) is bounded in L∞(Ω) ∩ BV(Ω), 1/ρ0 is bounded in
L∞(Ω), and that δt2 de
reases at least as fast as the spa
e step. This is the assumption we make for thepassage to the limit in the s
heme.
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hemes for 
ompressible �ows � Barotopi
 equations.II.4.3 Passing to the limit in the s
hemeAs for the impli
it s
heme, we show in this se
tion, in the one dimensional 
ase, that, if a sequen
e ofsolutions is 
ontrolled in suitable norms and 
onverges to a limit, this latter ne
essarily satis�es a (partof the) weak formulation of the 
ontinuous problem. With the same adaptation to one dimension of thes
heme as in the impli
it 
ase, we get the following result.Definition II.4.2 (Regular sequen
e of dis
retizations, pressure 
orre
tion 
ase)We de�ne a regular sequen
e of dis
retizations (M(m), δt(m))m∈N as a sequen
e of meshes and time stepssatisfying :
(i) both the time step δt(m) and the size h(m) of the mesh M(m) tend to zero as m→ ∞,

(ii) there exists C > 0 su
h that :
∀m ∈ N,

δt(m)h(m)
≤ C,where h(m) = minK∈M(m) hK .

(ii) there exists θ > 0 su
h that :
θ ≤ diam(K)diam(L)

≤ 1

θ
, ∀m ∈ N and K, L ∈ M(m) sharing an interfa
e. (II.34)Theorem II.4.3Let Ω be an open bounded interval of R. We suppose that the ρ0, 1/ρ0 and u0 are bounded in L∞(Ω)and that the initial pressure (i.e. the pressure obtained from the initial density ρ0 through the equationof state) is bounded in BV(Ω).Let (M(m), δt(m))m∈N be a regular sequen
e of dis
retizations in the sense of De�nition II.4.2, and

(ρ(m), p(m), u(m), ũ(m))m∈N be the 
orresponding sequen
e of solutions. We suppose that this sequen
e
onverges in Lp(Ω × (0, T ))4, for 1 ≤ p < ∞, to (ρ̄, p̄, ū, ¯̃u) ∈ L∞(Ω × (0, T ))4. We suppose in additionthat both sequen
es (ρ(m))m∈N and (1/ρ(m))m∈N are uniformly bounded in L∞(Ω × (0, T )) and that thesequen
e of numeri
al di�usion 
oe�
ients (ν(m))m∈N satis�es :
lim

m→+∞
ν(m) = 0, lim

m→+∞

(h(m))2

ν(m)
= 0.Then ū = ¯̃u and the triplet (ρ̄, p̄, ū) satis�es the system (II.19).Remark 7 (On the "non appearan
e of void assumption")The assumption that (1/ρ(m))m∈N is bounded in L∞(Ω×(0, T )) is used twi
e in the proof of this theorem.First, to obtain ū = ¯̃u. Here, the hypothesis may be 
ir
umvented by repla
ing this 
on
lusion by ρ̄ū = ρ̄¯̃u(or, in other words, ū = ¯̃u everywhere ρ̄ 6= 0), whi
h is easily obtained from Inequality (II.35) below. These
ond time is, as for the impli
it 
ase, to obtain an "unweighted" estimate of the density spa
e translatesfor γ ≥ 2, and we do not repeat here the above dis
ussion on this issue.
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tion s
heme 83Proof Let m ∈ N be given. Dropping for short the supers
ript (m), the estimate of Proposition II.4.1yields :
n∑

k=1

δt
∑

σ∈Eint

|Dσ| ρk−1
σ (ũkσ − uk−1

σ )2 ≤ C δt, (II.35)where, by the assumption on the initial data, the real number C is independant of m. We thus get :
‖ũ(m) − u(m)(., .− δt)‖2

L2 ≤ C δt(m) ‖ 1

ρ(m)
‖
L∞

.Letting m tend to +∞ in this equation yields ū = ¯̃u.The passage to the limit in the mass balan
e equation is the same as in the impli
it 
ase, and we onlyneed to address here the momentum balan
e equation. Let ϕ ∈ C∞
c (Ω × [0, T )), and let us de�ne theinterpolate ϕE and its dis
rete derivatives as in the impli
it 
ase. Summing the velo
ity predi
tion and
orre
tion equations, multiplying the result by δt ϕnσ and then summing over the edges and time steps,we get T (m)

1 + T
(m)
2 + T

(m)
3 + T

(m)
4 = 0, with :

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ|
[
ρnσu

n+1
σ − ρn−1

σ unσ
]
ϕnσ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

ε∈E(Dσ)

Fnσ,εũ
n+1
ε

]
ϕnσ

T
(m)
3 =

N−1∑

n=0

δt
∑

σ∈Eint, σ=K<L

(pn+1
L − pn+1

K ) ϕnσ,

T
(m)
4 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

K=(σ,σ′)

ν

hK
(ũn+1
σ − ũn+1

σ′ )
]
ϕnσ.The passage to the limit in T

(m)
1 is the same as for the impli
it s
heme, just noting that the sequen
e

(
ρ(m)(·, · − δt)

)
m∈N


onverges to ρ̄ as (ρ(m))m∈N.Let us now turn to T (m)
2 . By a 
omputation similar to the impli
it 
ase, we get :

T
(m)
2 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

(ρ̃nσu
n
σ + ρ̃nσ′ unσ′) (ũn+1

σ + ũn+1
σ′ ) (ϕnσ′ − ϕnσ),whi
h we write T (m)

2 = T (m)
2 + R(m)

2 with :
T (m)

2 = −1

2

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

ρnK

[
unσ ũ

n+1
σ + unσ′ ũn+1

σ′

]
(ϕnσ′ − ϕnσ).This term reads :

T (m)
2 = −

∫ T

0

∫

Ω

ρ(m)(·, · − δt) u(m)(·, · − δt) ũ(m)
ðxϕE dxδt,so :

lim
m−→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕdxδt.
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 equations.The remainder term R(m)
2 reads :

R(m)
2 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

[
(ρ̃nσu

n
σ + ρ̃nσ′unσ′)(ũn+1

σ + ũn+1
σ′ )

− 2ρnK (unσ ũ
n+1
σ + unσ′ ũn+1

σ′ )
]

(ϕnσ′ − ϕnσ).Expanding the quantity 2ρnK (unσ ũ
n+1
σ + unσ′ ũ

n+1
σ′ ) thanks to the identity 2(ab + cd) = (a + c)(b + d) −

(a− c)(b − d), we get R(m)
2 = R(m)

2,1 + R(m)
2,2 :

R(m)
2,1 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

[(
(ρ̃nσ − ρnK) unσ + (ρ̃nσ′ − ρnK) unσ′

)

(ũn+1
σ + ũn+1

σ′ )
]

(ϕnσ′ − ϕnσ),

R(m)
2,2 =

1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

ρnK (unσ − unσ′) (ũn+1
σ − ũn+1

σ′ ) (ϕnσ′ − ϕnσ).First we study R(m)
2,1 . Thanks to the de�nition of the upwind approximation, reordering the sum by fa
es,we get :

R(m)
2,1 =

ε

4

N−1∑

n=0

δt
∑

σ∈Eint, σ=L→K,K=(σ,σ′)

(ρnL − ρnK) unσ (ũn+1
σ + ũn+1

σ′ ) (ϕnσ − ϕnσ′ ),where the notation σ = L → K means that the fa
e σ separates K and L and the �ow goes from Lto K, K = (σ, σ′) means that σ and σ′ are the fa
es of K and ε = ±1. Sin
e |ϕnσ − ϕnσ′ | ≤ Cϕ |K| ≤
Cϕ (|Dσ| + |Dσ′ |), we get :

|R(m)
2,1 | ≤ Cϕ

4

N−1∑

n=0

δt
∑

σ∈Eint, σ=L|K,K=(σ,σ′)

(
|Dσ| + |Dσ′ |

)
|ρnL − ρnK | |unσ| |ũn+1

σ + ũn+1
σ′ |.Therefore, by the Cau
hy-S
hwarz inequality, we get :

|R(m)
2,1 | ≤ Cϕ

4
(h(m))1/2

[N−1∑

n=0

δt
∑

σ∈Eint, σ=L|K,K=(σ,σ′)

|unσ| (ρnL − ρnK)2
]1/2

[N−1∑

n=0

δt
∑

σ∈Eint, σ=L|K,K=(σ,σ′)

(
|Dσ| + |Dσ′ |

)
|unσ|

(
ũn+1
σ + ũn+1

σ′

)2]1/2
.Sin
e the ratio of the size of two neighbouring meshes is bounded by regularity assumption on the mesh,we get from the estimate (II.32) on the solution :

|R(m)
2,1 | ≤ C (h(m))1/2

[
‖u(m)‖L2 + ‖u(m)‖2

L4

]
,where C does not depend on m, and so R(m)

2,1 tends to zero when m tends to +∞. For R(m)
2,2 , we have, bythe Cau
hy-S
hwarz inequality :

|R(m)
2,2 | ≤ Cϕ

N−1∑

n=0

δt
∑

K∈M

|K| ρn+1
K |unσ + unσ′ | (ũn+1

σ − ũn+1
σ′ )

≤ Cϕ
h(m)

(ν(m))1/2
‖ρ(m)‖L∞ ‖u(m)‖L2

[N−1∑

n=0

δt
∑

K∈M

ν(m)

hK
(ũn+1
σ − ũn+1

σ′ )2
]1/2

,
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tion s
heme 85and thus, thanks to the estimate (II.32) :
|R(m)

2,2 | ≤ C
h(m)

(ν(m))1/2
‖ρ(m)‖L∞ ‖u(m)‖L2 ,where C does not depend on m. Therefore, this term also tends to zero when m tends to +∞.Finally, terms T (m)

3 and T (m)
4 are dealt with as in the impli
it 
ase. �We now turn to the satisfa
tion of the entropy 
ondition. Let us introdu
e the following dis
rete L1(0, T ; BV(Ω))norm, de�ned for any fun
tion q pie
ewise 
onstant on primal 
ells by :

‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ∈Eint, σ=K|L

|qnL − qnK |. (II.36)We are now in position to state the following result.Theorem II.4.4Let Ω be an open bounded interval of R. We suppose that the ρ0, 1/ρ0 and u0 are bounded in L∞(Ω)and that the initial pressure (i.e. the pressure obtained from the initial density ρ0 through the equationof state) is bounded in BV(Ω).Let (M(m), δt(m))m∈N be a regular sequen
e of dis
retizations in the sense of De�nition II.4.2. Let
(ρ(m), p(m), u(m))m∈N be the 
orresponding sequen
e of solutions. We suppose that this sequen
e 
onvergesin Lp(Ω × (0, T ))4, for 1 ≤ p < ∞, to (ρ̄, p̄, ū, ū) ∈ L∞(Ω × (0, T ))4. We suppose in addition that bothsequen
es (ρ(m))m∈N and (1/ρ(m))m∈N are uniformly bounded in L∞(Ω × (0, T )), and that (p(m))m∈N isuniformly bounded in the dis
rete L1(0, T ; BV(Ω)) norm de�ned by (II.36).Finally, we assume that the sequen
e of numeri
al di�usion 
oe�
ients (ν(m))m∈N satis�es :

lim
m→+∞

ν(m) = 0, lim
m→+∞

(h(m))2

ν(m)
= 0.Then the limit (ρ̄, p̄, ū) satis�es the entropy 
ondition (II.5).Proof Let ϕ ∈ C∞

c

(
Ω×[0, T )

), ϕ ≥ 0. With the same notations for the interpolate of ϕ as in the pre
edingproofs, we multiply the kineti
 balan
e equation (II.30) by ϕnσ , and the elasti
 potential balan
e (II.15)by ϕnK , sum over the edges and 
ells respe
tively and over the time steps, to get :
∑

E∈Eint

T n+1
σ ϕnσ +

∑

K∈M

T n+1
K ϕnK = −

∑

E∈Eint

Rn+1
σ ϕnσ −

∑

K∈M

Rn+1
K ϕnK

−
∑

E∈Eint

Pn+1
σ ϕnσ, (II.37)where :

T n+1
σ =

1

2

|Dσ|
δt

[
ρnσ(u

n+1
σ )2 − ρn−1

σ (unσ)
2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũ
n+1
σ ũn+1

σ′ + |Dσ| (∇p)n+1
σ un+1

σ ,

T n+1
K =

|K|
δt

[
ρn+1
K P(ρn+1

K ) − ρnKP(ρnK)
]

+
∑

σ∈E(K)

ρn+1
σ P(ρn+1

σ ) un+1
σ nK,σ

+pn+1
K

∑

σ∈E(K)

un+1
σ nK,σ,
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 equations.and the quantities Rn+1
σ and Pn+1

σ are given by (the one-dimensional version of) Equation (II.31).As in the impli
it 
ase, we refer to Chapter IV for the passage to the limit in the terms at the leftt-handside of (II.37). The term asso
iated to Rn+1
σ is dealt with as in the impli
it 
ase, and Rn+1

K is non-negative.Hen
e, the essential additional di�
ulty lies in the 
ontrol of the additional remainder term involvingthe pressure gradients, i.e. the last term of (II.37). We �rst give the main steps of this bound in thesemi-dis
rete setting. In this formalism, this remainder term reads in the kineti
 energy balan
e :
Pn+1 =

δt

ρn
[
|∇pn+1|2 − |∇p̃n+1|2

]
,So multiplying Pn+1, as above, by an interpolate of ϕ(·, tn), denoted by ϕn, and integrating with respe
tto spa
e and time, we get :

Pkin =

N−1∑

n=0

δt

∫

Ω

Pn+1 ϕn dx =

N−1∑

n=0

δt

∫

Ω

δt

ρn

[
|∇pn+1|2 − |∇p̃n+1|2

]
ϕn dx.On the other hand, the pressure renormalization step reads, at step n+ 1 :

div
( 1

ρn
∇p̃n+1

)
= div

( 1

(ρn−1ρn)1/2
∇p̃n

)
.Multiplying by 2δt p̃n+1ϕn and integrating over spa
e and time, we get :

2δt

N−1∑

n=0

δt

∫

Ω

[ 1

(ρn)1/2
∇p̃n+1 − 1

(ρn−1)1/2
∇p̃n

]
· 1

(ρn)1/2
∇(p̃n+1ϕn) = 0.Developping the last gradient term and using the identity 2 (a− b, a) = (a, a)+ (a− b, a− b)− (b, b), validfor any inner produ
t (·, ·), we get Pren + Rren ≤ 0 with :

Pren =

N−1∑

n=0

δt

∫

Ω

[ δt
ρn

|∇p̃n+1|2 − δt

ρn−1
|∇p̃n|2

]
ϕn dx,

Rren = 2

N−1∑

n=0

δt

∫

Ω

[ δt
ρn

∇p̃n+1 − δt

(ρn−1ρn)1/2
∇p̃n

]
· ∇ϕn p̃n+1.The term Rren is bounded as follows :

|Rren| ≤ Cϕ ‖1

ρ
‖
L∞

‖p‖L∞ ‖∇p‖L1 δt,and thus tends to zero as δt (with, at the dis
rete level, the L1 norm of the pressure repla
ed by its BVnorm). On the other hand, we get :
Pkin + Pren = δt

N−1∑

n=0

δt

∫

Ω

[ 1

ρn
|∇pn+1|2 − 1

ρn−1
|∇pn|2

]
ϕn dx.By a dis
rete integration by parts with respe
t with the time, we get :

Pkin + Pren = δt2
∫

Ω

1

ρ−1
|∇p0|2 ϕ0 dx − δt

N−1∑

n=0

δt

∫

Ω

1

ρn
|∇pn+1|2(ϕn+1 − ϕn) dx.Thanks to the regularity of ϕ, we have :

Pkin + Pren ≤ Cϕ ‖1

ρ
‖
L∞

δt2
[∫

Ω

|∇p0|2 dx +

N−1∑

n=0

δt

∫

Ω

|∇pn+1|2 dx
]
,
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orre
tion s
heme 87and, in the fully dis
rete setting, we will 
on
lude that this term tend to zero by invoking the inverseinequality ‖∇p‖L∞ ≤ C ‖p‖L∞/h, with C only depending on the regularity of the mesh, whi
h yields :
Pkin + Pren ≤ Cϕ ‖1

ρ
‖
L∞

‖p‖L∞

[
‖p0‖BV(Ω) + ‖p‖T ,x,BV

] δt2h .So, �nally, we have Pkin ≥ Pkin +Pren +Rren and we have proved that, when the time step tends to zero,the sum at the right-hand side of this relation tends to zero, whi
h is the result we are seeking.Let us now undertake this program in the dis
rete setting. We multiply the pressure renormalizationrelation (II.27a) by p̃n+1
K ϕnK , whi
h yields :

∀K ∈ M, p̃n+1
K ϕnK

∑

σ∈E(K), σ=K|L

1

hσ

[ 1

ρnσ
(p̃n+1
K − p̃n+1

L ) − 1

(ρn−1
σ ρnσ)

1/2
(pnK − pnL)

]
= 0.Summing over the 
ells and reordering the sums, we get :

∑

σ∈Eint, σ=K|L

1

hσ

[ 1

ρnσ
(p̃n+1
K − p̃n+1

L ) − 1

(ρn−1
σ ρnσ)

1/2
(pnK − pnL)

] [
p̃n+1
K ϕnK − p̃n+1

L ϕnL
]

= 0.Let us now split the di�eren
e p̃n+1
K ϕnK−p̃n+1

L ϕnL using the identity 2(ab−cd) = (a−c)(b+d)+(a+c)(b−d).Multiplying by δt, we get Pn+1
ren +Rn+1

ren,1 +Rn+1
ren,2 = 0 with :

Pn+1
ren = δt

∑

σ∈Eint, σ=K|L

1

hσ

[ 1

(ρnσ)
1/2

(p̃n+1
K − p̃n+1

L ) − 1

(ρn−1
σ )1/2

(pnK − pnL)
]

1

(ρnσ)
1/2

[
p̃n+1
K − p̃n+1

L

]
ϕnσ,

Rn+1
ren,1 = δt

∑

σ∈Eint, σ=K|L

1

hσ

[ 1

ρnσ
(p̃n+1
K − p̃n+1

L ) − 1

(ρn−1
σ ρnσ)

1/2
(pnK − pnL)

]
p̃n+1
σ

[
ϕnK − ϕnL

]
,

Rn+1
ren,2 = δt

∑

σ∈Eint, σ=K|L

1

hσ

[ 1

ρnσ
(p̃n+1
K − p̃n+1

L ) − 1

(ρn−1
σ ρnσ)

1/2
(pnK − pnL)

]
p̃n+1
σ

[
ϕ̃nσ − ϕnσ

]
.with, for σ = K|L, ϕ̃nσ = (ϕnK + ϕnL)/2 and p̃n+1

σ = (p̃n+1
K + p̃n+1

L )/2. Thanks to the regularity of ϕ, weobtain :
N−1∑

n=0

δt
[
|Rn+1

ren,1| + |Rn+1
ren,2|

]
≤ Cϕ δt ‖

1

ρ
‖
L∞

‖p‖L∞ ‖p‖T ,x,BV .Using the identity 2 (a− b) a = a2 + (a− b)2 − b2, we get for Pn+1
ren :

Pn+1
ren ≥ δt

∑

σ∈Eint, σ=K|L

1

hσ

[ 1

ρnσ
(p̃n+1
K − p̃n+1

L )2 − 1

ρn−1
σ

(pnK − pnL)2
]
ϕnσ.Let us re
all the expression of Pn+1

σ :
Pn+1
σ =

δt hσ
ρnσ

[(
(∇p)n+1

σ

)2 −
(
(∇p̃)n+1

σ

)2]
=

δt

ρnσ hσ

[
(pn+1
K − pn+1

L )2 − (p̃n+1
K − p̃n+1

L )2
]
.De�ning Pn+1 =

∑
σ∈Eint

Pn+1
σ ϕnσ, summing with Pn+1

ren and integrating with respe
t to the time, weobtain :
N−1∑

n=0

δt
[
Pn+1 + Pn+1

ren

]
≥
N−1∑

n=0

δt2
∑

σ∈Eint, σ=K|L

1

hσ

[ 1

ρnσ
(pn+1
K − pn+1

L )2 − 1

ρn−1
σ

(pnK − pnL)2
]
ϕnσ .
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 equations.By a dis
rete integration by parts, we get :
N−1∑

n=0

δt
[
Pn+1 + Pn+1

ren

]
≥ −δt2

∑

σ∈Eint, σ=K|L

1

ρ−1
σ hσ

(p0
K − p0

L)2 ϕ0
σ

−
N−1∑

n=0

δt2
∑

σ∈Eint, σ=K|L

1

ρnσ hσ
(pn+1
K − pn+1

L )2
[
ϕn+1
σ − ϕnσ

]
.Using the fa
t that, for 0 ≤ n ≤ N and σ = K|L ∈ Eint, (pnK − pnL)2 ≤ ‖p‖L∞ |pnK − pnL|, we get, thanksto the regularity of ϕ :

N−1∑

n=0

δt
[
Pn+1 + Pn+1

ren

]
≥ −Cϕ

δt2h ‖p‖L∞

[
‖p0‖BV (Ω) + ‖p‖T ,x,BV

]
,whi
h is the desired estimate. �



ChapitreIII An un
onditionally stablepressure 
orre
tion s
heme forNavier-Stokes equations

I
n this paper we present a pressure 
orre
tion s
heme whi
h is an exten-sion to the full 
ompressible Navier-Stokes equations of a s
heme whi
hwas re
ently introdu
ed for the 
ompressible barotropi
 Navier-Stokesequations [20℄ and for the drift-�ux model [26℄ . The spa
e dis
retization isstaggered, using either the Marker-And Cell (MAC) sheme or a non
onforminglow-order �nite element approximation ; general quandrangular or triangularmeshes may thus be 
onsidered. The pressure 
orre
tion s
heme is shown topreserve the stability properties of the 
ontinuous problem, irrespe
tively of thespa
e and time steps. To ensure the positivity of the energy, a key ingredientis to 
ouple the mass and energy balan
e in the proje
tion step. The existen
eof a solution to ea
h step of the s
heme is proven.
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III.1 Introdu
tionThe main obje
t of this paper is to study the behaviour of a pressure 
orre
tion s
heme for the full
ompressible Navier-Stokes equations, with a low order �nite element- �nite volume dis
retization orwith the MAC s
heme. In parti
ular, we wish to design a s
heme for whi
h we are able to prove theexisten
e of a solution at ea
h step of the s
heme, and su
h that the approximate density and internalenergy thus obtained are non-negative and the approximate total energy is 
ontroled. Let us 
onsider the
ompressible Navier-Stokes equations, whi
h may be written as :
∂tρ+ div(ρu) = 0, (III.1a)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (III.1b)
∂t(ρE) + div(ρE u) + div(pu) + div(q) = div(τ (u) · u), (III.1
)
E =

1

2
|u|2 + e, (III.1d)

ρ = ℘(p, e). (III.1e)where t stands for the time, ρ, u, p, E and e are the density, velo
ity, pressure, total energy and internalenergy of the �ow, τ (u) stands for the shear stress tensor, whi
h satis�es
τ (u) : u ≥ 0, ∀u ∈ R

d, (III.2)
q stands for the heat di�usion �ux, and the fun
tion ℘ is the equation of state (EOS). The problem issupposed to be posed over Ω × (0, T ), where Ω is an open bounded 
onne
ted subset of Rd, d ≤ 3 and
(0, T ) is a �nite time interval. This system must be supplemented by suitable boundary 
onditions, initial
onditions and 
losure relations. For the sake of simpli
ity, we shall assume that u is pres
ribed to zero onthe whole boundary ∂Ω, and that the system is adiabati
, i.e. ∇q ·n = 0 on ∂Ω. The initial 
onditionsfor ρ, e are assumed to be positive ; �nally, the 
losure relations for τ (u) and for q, are given by :

τ (u) = µ(∇u + ∇
tu) − 2µ

3
divu I, q = −λ∇e, (III.3)where λ and µ are two positive parameters, possibly depending on x. In the sequel, we shall assume λ = 1for the sake of simpli
ity. Let us suppose, again for the sake of simpli
ity, that u is pres
ribed to zero onthe whole boundary ∂Ω, and that the system is adiabati
, i.e. ∇q · n = 0 on ∂Ω.Repla
ing the total energy E by its expression (III.1d) in the total energy equation (III.1
), we obtain :

∂t(ρe) + div(ρeu) + p divu + div(q) +
1

2
∂t(ρ |u|2) +

1

2
div(ρ |u|2 u) + ∇p · u = div(τ (u).u). (III.4)Noting that we have :

1
2∂t(ρ |u|2) + 1

2div(ρ |u|2 u) = |u|2

2 [∂t(ρ) + div(ρu)] + ρu · ∂t(u) + ρ |u|2div(u)

= [ρ∂t(u) + ∂t(ρ)u + div(ρu)u + ρdiv(u)u] · u

= [∂t(ρu) + div(ρu ⊗ u)] · u



92 Chapitre III. An un
onditionally stable pressure 
orre
tion s
heme for Navier-Stokes equationswe get from the total energy equation (III.4) and from the momentum balan
e equation (III.1b) :
∂t(ρe) + div(ρeu) −△e+ p div(u) = τ (u) : ∇u. (III.5)Formally, taking the inner produ
t of (III.1b) with u and integrating over Ω, integrating (III.5) over Ω,and summing both relations yields the stability estimate :

d

dt

∫

Ω

[1
2
ρ |u|2 + ρe

]
dx ≤ 0. (III.6)Sin
e we assume the initial 
ondition for ρ to be positive, the mass balan
e (III.1a) formally implies thatthe density ρ remains positive.We assume that the equation of state (III.1e) is su
h that there exists a fun
tion f : R2 → R su
h that

p = f(ρ, e) with f(·, 0) = 0 and f(0, ·) = 0, whi
h we prolong by 
ontinuity to :
p = f(ρ, e) with f(ρ, e) = 0 ∀ρ ≤ 0 or e ≤ 0. (III.7)Equation (III.5) then implies (thanks to (III.2)) that the internal energy e remains positive (again at leastformally), and so (III.6) yields a 
ontrol on the unknown u. Mimi
king this 
omputation at the dis
retelevel ne
essitates to 
he
k some arguments, among them :

(i) a dis
rete 
ounterpart to the relation :
∫

Ω

[
∂t(ρu) + div(ρu ⊗ u)

]
· u dx =

d

dt

∫

Ω

1

2
ρ |u|2 dx.

(ii) the equality of the integral of the dissipation term at the right-hand side of the dis
rete 
ounterpartof (III.5) and the (dis
rete) L2 inner produ
t between the velo
ity and the di�usion term in thedis
rete momentum balan
e equation (III.13).
(iii) the non-negativity of the right-hand side of (III.5) in order, to preserve the positivity of theinternal energy.The point (i) is extensively dis
ussed in [25℄ (see also [38℄), and will not be treated here.III.2 Meshes and unknownsLet M be a dis
retization mesh of the domain Ω 
onsisting of dis
retization 
ells whi
h are either 
onvexquadrilaterals (d = 2) or hexahedra (d = 3), or simpli
es. If the shape of Ω allows, we whall 
onsiderre
tangular 
ells (d = 2) or re
tangular parallelepipedi
 
ells (d = 3). By E and E(K) we denote theset of all edges σ of the mesh and of the element K ∈ M respe
tively. The set of edges in
luded in theboundary of Ω is denoted by Eext and the set of internal edges (i.e. E \ Eext) is denoted by Eint. Themesh M is supposed to be regular in the usual sense of the �nite selement literature (e.g. [9℄), and, inparti
ular, it satis�es the following properties : .2

Ω̄ =
⋃
K∈M K̄for K, L ∈ M, the interse
tion K̄ ∩ L̄ is either redu
ed to the empty set, or to a vertex if d = 2and a segment if d = 3, or else it is (the 
losure of) a 
ommon (d− 1)-edge of K and L, denoted by

K|L.



III.2. Meshes and unknowns 93For ea
h internal edge of the mesh σ = K|L, nKL stands for the normal ve
tor to σ, oriented from K to
L. The outward normal ve
tor to a fa
e σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denoteby |K| the measure of K and by |σ| the (d− 1)-dimensional measure of the fa
e σ. For any K ∈ M and
σ ∈ E(K), we denote by dK,σ the Eu
lidean distan
e between the 
enter xK of the mesh and the edge
σ. For any σ ∈ E , we de�ne dσ = dK,σ + dL,σ, if σ ∈ Eint and dσ = dK,σ if σ ∈ Eext. For any σ and σ′elements of E , we denote by dσσ′ the Eu
lidean distan
e between σ and σ′ .The spa
e dis
retization is staggered, using either the Marker-And Cell (MAC) s
heme [37, 36℄, or non-
onforming low-order �nite element approximations, namely the Ranna
her and Turek (RT) element [65℄for quadrilateral or hexahedri
 meshes, or the Crouzeix-Raviart (CR) element [11℄ for simpli
ial meshes.For all dis
retizations (MAC, RT and CR), the degrees of freedom for the pressure, the density and theinternal energy are asso
iated to the 
ells of the mesh M. The degrees of freedom are therefore :

{
pK , ρK , eK , K ∈ M

}
.The approximate density, pressure and internal energy therefore belong to the spa
e Lh of pie
ewise
onstant fun
tions :

Lh =
{
qh ∈ L2(Ω) : qh|K = 
onstant, ∀K ∈ M

}
.For 1 ≤ i ≤ d, the degrees of freedom for the ith 
omponent of the velo
ity are asso
iated to a subset of

E , denoted by E(i) ⊂ E , and are denoted by
{
uσ,i, σ ∈ E(i)

}
.The de�nition of the sets E(i) depends on the 
hoi
e of the dis
retization :� MAC dis
retization. In this 
ase the set E(i) is the set of edges that are orthogonal to the i-thbasis ve
tor e(i).� RT and CR dis
retization. In this 
ase the set E(i) is the whole set Eint, and the degrees offreedom uσ,i are the 
omponents of the velo
ities with respe
t to the �nite element shape fun
tions.More pre
isely :+ The referen
e element K̂ for the Ranna
her-Turek rotated bilinear element is the unit

d-
ube (with edges parallel to the 
oordinate axes). The dis
rete fun
tional spa
e on K̂is Q̃1(K̂)d, where Q̃1(K̂) is de�ned as follows :
Q̃1(K̂) = span

{
1, (xi)i=1,...,d, (x2

i − x2
i+1)i=1,...,d−1

}
.+ The referen
e element for the Crouzeix-Raviart is the unit d-simplex and the dis
retefun
tional spa
e is the spa
e P1 of a�ne polynomials.The mapping from the referen
e element to the a
tual one is, for the Ranna
her-Turek element,the standard Q1 mapping and, for the Crouzeix-Raviart element, the standard a�ne mapping. Thedis
rete spa
e Wh is then de�ned as follows :

Wh = {u ∈ (L2(Ω))d : u|K ∈W (K)d, ∀K ∈ M,
∫

σ

u|K dγ =

∫

σ

u|L dγ ∀σ = K|L ∈ Eint and ∫
σ

udγ = 0, ∀σ ∈ Eext }.
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orre
tion s
heme for Navier-Stokes equationswhere W (K) is the spa
e of fun
tions on K generated by the referen
e element and the abovedes
ribed mapping. We de�ne uσ =
∑d
i=1 uσ,i e

(i) where e(i) is the ith ve
tor of the 
anoni
albasis of Rd.In order to write a dis
rete momentum 
onservation, we need to introdu
e a dual mesh. For any K ∈ Mand any fa
e σ ∈ E(K), let DK,σ be the 
one with basis σ and with vertex the mass 
enter of K in boththe RT and CR 
ases and let DK,σ be the re
tangle of basis σ and of measure |DK,σ| equal to half themeasure of K in the MAC 
ase. The volume DK,σ is referred to as the half-diamond 
ell asso
iated to Kand σ. For σ ∈ Eint, σ = K|L, we now de�ne the diamond 
ell Dσ asso
iated to σ by Dσ = DK,σ ∪DL,σ ;for an external edge σ ∈ Eext ∩ E(K), Dσ is set identi
al to DK,σ. We denote by ε = Dσ|Dσ′ the fa
eseparating two diamond 
ells Dσ and Dσ′ (see Figure III.1).
Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=
K
|L

ε = D
σ |D

σ ′

Fig. III.1 � Ranna
her-Turek and Crouzeix-Raviart elements.
III.3 The time-impli
it numeri
al s
hemeIII.3.1 Semi-dis
rete algorithmLet us 
onsider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), whi
h, for the sake ofsimpli
ity, we suppose uniform. Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the 
onstant time step. In
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heme 95a time semi-dis
rete setting, the impli
it-in-time numeri
al s
heme reads.
ρn+1 − ρn

δt
+ div(ρn+1 un+1) = 0 (III.8a)

ρn+1 un+1 − ρn un

δt
+ div(ρn+1 un+1 ⊗ un+1) + ∇pn+1 − divτ(un+1) = 0 (III.8b)

ρn+1 en+1 − ρn en

δt
+ div(ρn+1 en+1 un+1) −△en+1 + pn+1 div(un+1) = τ (un+1) : ∇un+1 (III.8
)

pn+1 = ℘(en+1, ρn+1). (III.8d)
III.3.2 The fully dis
rete algorithm and its �rst propertiesLet us now give the spa
e dis
retization of the various steps of the algorithm (III.8).III.3.2.a Mass balan
eThe mass balan
e equation (III.8a) is always dis
retized by an upwind �nite-volume te
hnique in orderto ensure the positivity of the density ; more pre
isely, the dis
retized mass balan
e reads :

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (III.9)where Fn+1

K,σ stands for the numeri
al mass �ux a
ross σ outward K. On the internal edges, the numeri
al�ux is de�ned by :
∀σ ∈ Eint, σ = K|L, Fn+1

K,σ = |σ| ρ̃n+1
σ un+1

σ · nK,σ, (III.10)where un+1
σ ·nK,σ is the approximation of the normal velo
ity to the fa
e σ outward K, and ρ̃n+1

σ is theupwind density at the edge σ = K|L, that is :
ρ̃n+1
σ =

∣∣∣∣∣∣

ρn+1
K if un+1

σ · nK,σ ≥ 0,

ρn+1
L otherwise . (III.11)Sin
e u is assumed to be equal to 0 on the boundary, we impose :

∀σ ∈ Eext, σ = K|L, Fn+1
K,σ = 0, (III.12)As mentioned previously, with su
h an upwind dis
retization, we get the positivity of the density :Lemma III.3.1 (Positivity of the density)(see e.g. [27, Lemma 2.1℄) Let (un+1

σ )σinEint be a given dis
rete velo
ity �eld, let (ρnK)K∈M be a dis
retedensity �eld for a given n ∈ N. Assume that ρnK ≥ 0 ∀K ∈ M. If a family (ρn+1
K )K∈M satis�es (III.9)�(III.11), then ρn+1

K ≥ 0, ∀K ∈ M.
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onditionally stable pressure 
orre
tion s
heme for Navier-Stokes equationsIII.3.2.b Momentum balan
eBe
ause of the 
hoi
e of a staggered dis
retization, the momentum equation is dis
retized on a dualmesh, the dual 
ells of whi
h are related to the fa
es where the velo
ity unknowns are lo
ated. Onre
tangular grids, it is approximated by the MAC s
heme. Otherwise we use a 
ombined �nite volume ��nite element method with low-degree �nite elements for the di�usive terms, Crouzeix-Raviart elementfor simpli
ial meshes, Ranna
her-Turek element [65℄ for quadrangles and hexahedra, and with a �nitevolume te
hnique on the dual mesh for the time derivative term and 
onve
tion term. The fully dis
retizedmomentum balan
e equations read, for 1 ≤ i ≤ d, ∀σ ∈ E(i) :
|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) +

∑

ε∈Ē(Dσ)

Fn+1
σ,ε un+1

ε,i + |Dσ| (∇pn+1)(i)σ − |Dσ| (divτ(un+1))(i)σ = 0, (III.13)where ρn+1
σ (resp. ρnσ) stands for an approximation of the density on the edge σ at time tn+1 (resp. tn ),

Fn+1
σ,ε is the dis
rete mass �ux through the dual edge ε outward Dσ, un+1

ε,i stands for an approximationof un+1
i on ε, (divτ(un+1))

(i)
σ is an approximation of the i-th 
omponent of the vis
ous term asso
iatedto σ, and (∇pn+1)

(i)
σ is the i-th 
omponent of the dis
rete gradient of the pressure p at the fa
e σ. Letus give some details on these approximations.Dis
rete dual densities and mass �uxes The approximate densities ρn+1

σ and dis
rete mass �uxeson the dual edges are 
hosen su
h the following dis
rete mass balan
e over the dual 
ells is satis�ed :
∀σ ∈ Eint,

|Dσ|
δt

(ρn+1
σ − ρnσ) +

∑

ε∈E(Dσ)

Fn+1
σ,ε = 0, (III.14)This relationship may be obtained from the primal mass balan
e (III.9) by de�ning ρnσ as a weightedaverage with respe
t to the primal unknowns :

∀σ ∈ Eint, σ = K|L, |Dσ| ρnσ = |DK,σ| ρnK + |DL,σ| ρnL, (III.15)
hoosing for the dis
rete �ux Fn+1
σ,ε through the dual fa
e ε of the half dual 
ell Dσ the value of the �uxthrough ε of a 
onstant divergen
e lifting of the mass �uxes (|σ|uσ · nσρσ)σ∈E through the fa
es of theprimal 
ell K ; for a detailed 
onstru
tion of this approximation, we refer to [25, 1℄ in the �nite element
ase in 2D, and to [38℄ in the MAC 
ase. The additional unknowns un+1

ε,i may be 
hosen 
entered orupwind. In the 
entered 
ase, for an internal side ε = Dσ|Dσ′ , we thus get un+1
ε,i = (un+1

σ,i +un+1
σ′,i )/2 while,in the upwind 
ase, we have un+1

ε,i = un+1
σ,i if Fn+1

σ,ε ≥ 0 and un+1
ε,i = un+1

σ′,i otherwise.Be
ause the velo
ity unknowns are lo
ated on the edges, the dual dis
rete balan
e equation (III.14) is
ru
ial in order to obtain the following stability result, whi
h is a dis
rete equivalent of the kineti
 energytheorem :
d∑

i=1

∑

σ∈E
(i)
int

[ |Dσ|
δt

(ρnσ u
n+1
σ,i − ρnσ u

n
σ,i) +

∑

ε∈E(Dσ)

Fn+1
σ,ε un+1

ε,i

]
un+1
σ,i ≥

1

2

d∑

i=1

∑

σ∈E
(i)
int

|Dσ|
δt

[
ρn+1
σ |un+1

σ,i |2 − ρnσ |unσ,i|2
]
.

(III.16)We refer to [27℄ and [38℄ for the proof of this result in the �nite element 
ase and MAC 
ase respe
tively.
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ous term The MAC dis
retization of the dissipation term (
τ (un+1) : ∇un+1

)
K

asso
iated to Kis detailed in the appendix (see formula (III.44), see also [2℄), and the following property is satis�ed :
(
τ (un+1) : ∇un+1

)
K

≥ 0. (III.17)It is 
lear that (III.17) also holds with a low order �nite element dis
retization. Multiplying the approxi-mation of the vis
ous term by the 
orresponding unknown of the velo
ity un+1
σ,i and summing over theedges and the 
omponents, we obtain :

d∑

i=1

∑

σ∈E(i)

|Dσ| (divτ (un+1))(i)σ un+1
σ,i = −

∑

K∈M

|K|
(
τ (un+1) : ∇un+1

)
K
. (III.18)This equality is the analogue of ∫

Ω

divτ (u) · u = −
∫

Ω

τ (u) : ∇u. For the proof of the property (III.17)and the equality (III.18), we refer to [2℄.Pressure gradient term The �nite element dis
retization for the pressure gradient term at the internalfa
e σ = K|L reads :
|Dσ|(∇pn+1)(i)σ = −

∑

K∈M

∫

K

pn+1 divϕ(i)
σ dx, i = 1, . . . , d.where ϕ

(i)
σ = ϕσ e(i) and where ϕσ is the s
alar �nite element basis fun
tion (for the CR �nite element,it is a�ne on ea
h element, equal to 1 at the 
enter of σ and equal to 0 at the 
enter of all other edges).Sin
e the pressure is pie
ewise 
onstant, the transposed of the dis
rete gradient operator takes the formof the �nite volume standard dis
retization of the divergen
e based on the �nite element mesh, whi
h
oin
ides with the MAC dis
retization of the divergen
e ; indeed, the previous relation 
an be rewrittenas follows :
|Dσ|(∇pn+1)(i)σ = −

∑

K∈M

∫

K

pn+1 divϕ(i)
σ dx = |σ| (pn+1

L − pn+1
K ) nK,σ · e(i). (III.19)Multiplying this equality by un+1

σ,i and summing over the edges and the 
omponents, we obtain :
d∑

i=1

∑

σ∈E(i)

|Dσ| (∇pn+1)(i)σ un+1
σ,i

= −
∑

K∈M

pn+1
K

∑

σ∈E(K)

|σ| un+1
σ · nK,σ = −

∑

K∈M

|K|pn+1
K (divun+1)K , (III.20)where we have introdu
ed the dis
rete divergen
e

(divun+1)K =
1

|K|
∑

σ∈E(K)

|σ| un+1
σ · nK,σ.This equality is also valid in the 
ase of the MAC dis
retization ; it is the dis
rete analogue to ∫

Ω

∇p ·u =

−
∫

Ω

p div(u). The �nite element dis
retization for this term reads :
|Dσ|(divτ(un+1))(i)σ = −

∑

K∈M

∫

K

τ(un+1) : ∇ϕ(i)
σ dx.
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orre
tion s
heme for Navier-Stokes equationsIII.3.2.
 Energy balan
eThe internal energy equation (III.5) is dis
retized in a similar way to the momentum equation. Theresulting dis
rete internal energy equation reads :
∀K ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ

+
∑

σ∈E(K)
σ=K|L

|σ|e
n+1
K − en+1

L

dσ
+ |K|pn+1

K (div(un+1))K = |K|
(
τ (un+1) : ∇un+1

)
K
, (III.21)where en+1

σ is the internal energy at the edge σ = K|L, 
omputed with the upwind te
hnique :
en+1
σ =

∣∣∣∣∣∣

en+1
K , if un+1

σ · nK,σ ≥ 0,

en+1
L , otherwise. (III.22)Again, this upwind 
hoi
e allows to to ensure the positivity of the internal energy, as we shall provethanks to the following lemma, whi
h states the stability of an appropriate dis
retization of a 
onve
tionoperator ; it gives, in parti
ular, the 
onservation of the kineti
 energy (III.16) whi
h we mentioned earlier(see also [20℄).Lemma III.3.2[27, Lemma 2.2℄ Let (ρK)K∈M and (ρ∗K)K∈M be two families of real numbers satisfying the following setof equations :

∀K ∈ M,
|K|
δt

(ρK − ρ∗K) +
∑

σ=K|L

FK,σ = 0where FK,σ is a quantity asso
iated to the edge σ and to the 
ontrol volume K. We suppose that, for anyinternal σ = K|L, FK,σ = −FL,σ. Let (zK)K∈M and (z∗K)K∈M be two families of real numbers. Thenthe following stability property holds :
−
∑

K∈M

y−K

[ |K|
δt

(ρKzK − ρ∗Kz
∗
K) +

∑

σ=K|L

(F+
K,σzK − F−

K,σzL)
]
≥

1

2

∑

K∈M

|K|
δt

[
ρK(z−K)2 − ρ∗K((z∗K)−)2

]
.Let us now state the positivity result. Note that this result together with the positivity of the density(Lemma (III.3.1)) and the stability inequality (III.16) are a priori result sin
e we have not yet shown theexisten
e of a solution to the s
heme (III.9)�(III.19), (III.21)�(III.22). In fa
t, these a priori estimatesare used to prove the existen
e of a solution in Se
tion III.3.2.e below.Lemma III.3.3 (Positivity of the internal energy)Under assumption (III.7) and (III.2), let n ∈ N, let (ρnK ,u

n
K , e

n
K)K∈M ∈ RcardM × (RcardE)d × RcardM)and assume that enK ≥ 0 ∀K ∈ M ; let (ρn+1

K ,un+1
K , en+1

K )K∈M satisfy (III.9)�(III.19), (III.21)�(III.22),then en+1
K ≥ 0 ∀K ∈ M.
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heme 99Proof For n ∈ N we assume that enK ≥ 0 for all K ∈ M. Multiplying the dis
rete internal energyequation (III.21) by (−(en+1
K )−), using the fa
t that en+1

σ is given by the upwind 
hoi
e (III.22) andsumming over the mesh, we obtain :
−
∑

K∈M

(en+1
K )−


 |K|
δt
ρn+1
K en+1

K − ρnKe
n
K +

∑

σ=K|L

((Fn+1
K,σ )+en+1

K − (Fn+1
K,σ )−en+1

L )




︸ ︷︷ ︸
E1

−
∑

K∈M

∑

σ∈E(K)

|σ|e
n+1
K − en+1

L

dσ
(en+1
K )−

︸ ︷︷ ︸
E2

−
∑

K∈M

|K|pn+1
K (divun+1)K(en+1

K )−

︸ ︷︷ ︸
E3

= −
∑

K∈M

|K|
(
τ (un+1) : ∇un+1

)
K

(en+1
K )−

︸ ︷︷ ︸
E4

.By virtue of Lemma III.3.2, the �rst term E1 
an be estimated as follows :
E1 ≥ 1

2

∑

K∈M

|K|
δt

[
ρn+1
K ((en+1

K )−)2 − ρnK((enK)−)2
]

=
1

2

∑

K∈M

|K|
δt
ρn+1
K ((en+1

K )−)2.Thanks to (III.7), we have E3 = 0 and thanks to (III.17), we have E4 ≤ 0. Reordering the sum in theterm E2, we obtain :
E2 = −

∑

σ=K|L

|σ|
dσ

[en+1
K − en+1

L ][(en+1
K )− − (en+1

L )−].Sin
e the fun
tion x 7→ x− is non-in
reasing, we obtain that E2 ≥ 0 ; Gathering all the terms, we obtain :
0 ≤ 1

2

∑

K∈M

|K|
δt
ρn+1
K ((en+1

K )−)2 ≤ 0whi
h shows that (en+1
K )− = 0, for all K ∈ M ; this 
on
ludes the proof. �III.3.2.d Dis
rete EOSFinally, the equation of state (III.1e) is easily dis
retized by

ρnK = ℘(pnK , e
n
K), ∀K ∈ M, ∀n ∈ N. (III.23)III.3.2.e Existen
e of a solution to the fully dis
rete s
hemeWe re
all the following theorem, whi
h is a 
onsequen
e of the topologi
al degree theory, see e.g. [13℄, andwhi
h is a very powerful tool for the proof of existen
e of non linear systems arising from the dis
retizationof non linear partial di�erential equations (see [16℄ for other examples of its use).Theorem III.3.4 (Appli
ation of the topologi
al degree, finite dimensional 
ase)Let V be a �nite dimensional ve
tor spa
e on R, ‖.‖ a norm on V , let f be a 
ontinuous fun
tion from Vto V and let R > 0. Let us assume that there exists a 
ontinuous fun
tion F : V × [0, 1] → V satisfying :

(i) F (., 1) = f ,
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(ii) ∀α ∈ [0, 1], if v ∈ V is su
h that F (v, α) = 0 then v ∈ BR = {v ∈ V ; ‖v‖ < R},
(iii) the topologi
al degree of F (., 0) with respe
t to 0 and BR is equal to d0 6= 0.Then the topologi
al degree of F (., 1) with respe
t to 0 and to BR is also equal to d0 6= 0 ; 
onsequently,there exists at least a solution v ∈ BR su
h that f(v) = 0.Theorem III.3.5 (Existen
e of a solution to the impli
it s
heme)Under assumption (III.7) and (III.2), assume that ρ0

K > 0 and e0K > 0, for all K ∈ M. There exists asolution (ρnK ,u
n
K , e

n
K)K∈M, n≤N to the impli
it s
heme (III.9)�(III.19), (III.21)�(III.22) whi
h satis�es

ρnK > 0, enK > 0 for all K ∈ M and n ≤ N , and su
h that the following inequality holds for all n ≤ N :
∑

K∈M

|K| ρnKenK +
1

2

∑

σ∈Eint

|Dσ| ρnσ |unσ|2 ≤
∑

K∈M

|K| ρ0
Ke

0
K +

1

2

∑

σ∈Eint

|Dσ| ρ0
σ |u0

σ|2. (III.24)ProofLet us �rst show that under the assumptions of the theorem, if the family (ρnK ,u
n
K , e

n
K)K∈M, n≤N satis�es(III.9)�(III.19), (III.21)�(III.22), then the inequality (III.24) holds. Multiplying the dis
rete momentumbalan
e equation (III.13) by the 
orresponding unknown of the velo
ity un+1

σ,i and summing over theedges and the 
omponents i, by virtue of the stability of the dis
rete adve
tion operator (III.16) and theequality (III.20) and (III.18) we obtain :
1

2

∑

σ∈Eint

|Dσ|
δt

[
ρn+1
σ |un+1

σ |2 − ρnσ |unσ |2
]
−
∑

K∈M

|K|pn+1
K (div(un+1))K

+
∑

K∈M

|K|
(
τ (un+1) : ∇un+1

)
K

≤ 0. (III.25)Noting that, by 
onservativity, FK,σ = −FL,σ for σ = K|L, and that
∑

K∈M

∑

σ∈E(K)
σ=K|L

|σ|e
n+1
K − en+1

L

dσ
= 0,and summing (III.25) with the sum of the dis
rete internal energy equation (III.21) overK ∈ M, we get :

∑

K∈M

|K|
[
ρn+1
K en+1

K − ρnK enK
]
+

1

2

∑

σ∈Eint

|Dσ|
[
ρn+1
σ |un+1

σ |2 − ̺nσ |unσ|2
]
≤ 0,whi
h 
on
ludes the proof of (III.24).Let us now show the existen
e of a solution to the sheme (III.9)�(III.19), (III.21)�(III.23). For α ∈ [0, 1]and a �xed n ∈ N, we 
onsider the following dis
rete set of equations, for K ∈ M and EinEint. For

α = 0, it is an invertible linear system, and for α = 1, it is the fully dis
rete s
heme (III.9)�(III.19),(III.21)�(III.23).
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|K|
δt

(ρn+1
K − ρnK) + α

∑

σ∈E(K)

Fn+1
K,σ = 0,

|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) + α




∑

ε∈Ē(Dσ)

Fn+1
σ,ε un+1

ε,i .+ |Dσ| (∇pn+1)(i)σ − |Dσ| (divτ(un+1))(i)σ


 = 0,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) + α



∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ +

∑

σ∈E(K)
σ=K|L

|σ|e
n+1
K − en+1

L

dσ
+ |K|pn+1

K (div(un+1))K




= α|K|
(
τ (un+1) : ∇un+1

)
K
, ∀K ∈ M,

ρn+1
K = ℘(pn+1

K , en+1
K ).By the same analysis that we performed for the study of the s
heme (III.9)�(III.19), (III.21)�(III.23), anyfamily (ρn+1

K )K∈M and (en+1
K )K∈M satisfying the above s
heme is su
h that ρn+1

K and en+1
K are positivefor all K. Moreover, the 
onservativity of the mass balan
e dis
retization yields that

∑

K∈M

|K|ρn+1
K =

∑

K∈M

|K|ρnKwhi
h yields an L∞ bound on the family (ρn+1
K )K∈M ; �nally, the above stability result (III.16) also holds ;we thus have an uniform 
ontrol over the families of real numbers (ρK)K∈M, (ρKeK)K∈M and ve
tors

(ρσuσ)σ∈Eint
. For α = 0, the system is linear and invertible with respe
t to these unknowns. We 
on
ludethanks to a topologi
al degree argument. �III.4 Pressure 
orre
tion s
hemeIII.4.1 Semi-dis
rete algorithmA pressure 
orre
tion numeri
al s
heme is obtained by 
omplementing the s
heme presented in the pre
e-ding se
tion by an in
remental proje
tion method. Writing this algorithm in a semi-dis
rete time setting,this yields the following three steps :1 - solve for p̃n+1

div

(
1

ρn
∇p̃n+1

)
= div

(
1

√
ρn
√
ρn−1

∇pn

) (III.26)2 - Solve for ũn+1 :
ρn ũn+1 − ρn−1 un

δt
+ div(ρn un ⊗ ũn+1) + ∇p̃n+1 − divτ(ũn+1) = 0 (III.27)
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onditionally stable pressure 
orre
tion s
heme for Navier-Stokes equations3 - Solve for pn+1, un+1, ρn+1 and en+1 :
ρn

un+1 − ũn+1

δt
+ ∇(pn+1 − p̃n+1) = 0 (III.28a)

ρn+1 − ρn

δt
+ div(ρn+1 un+1) = 0 (III.28b)

ρn+1 en+1 − ρn en

δt
+ div(ρn+1 en+1 un+1) −△en+1 + pn+1 div(un+1) = τ (ũn+1) : ∇ũn+1 (III.28
)

pn+1 = ℘(en+1, ρn+1). (III.28d)The �rst step is a renormalization of the pressure whi
h is used in the stability analysis.The se
ond step is a 
lassi
al semi-impli
it solution of the momentum blan
e equation to obtain a pre-di
ted velo
ity.Finally the last step is an original nonlinear pressure 
orre
tion step, whi
h 
ouples the mass balan
eequation (III.28b) with the internal energy balan
e equation (III.28
). This 
oupling is important toensure the positivity of the energy : indeed, in the proof of Lemma aIII.3.3, we used the fa
t that thepressure vanishes in the term pn+1 div(un+1) when en+1 is negative.III.4.2 Dis
rete algorithmThe spa
e dis
retization is again staggered, using either the Marker�And�Cell (MAC) s
heme, or non-
onforming low-order �nite element approximations.The �nite element dis
retization for the pressure predi
tion step at the internal fa
e σ = K|L reads :
∑

K∈M

∫

K

1

ρn
∇p̃n+1 · ∇ϕ(i)

σ dx =
∑

K∈M

∫

K

1
√
ρn
√
ρn−1

∇pn · ∇ϕ(i)
σ dxwhi
h 
oin
ides with the MAC dis
retization and may be rewritten as follows :

∀K ∈ M,
∑

σ=K|L

|σ|2
|Dσ|

1

ρnσ
(p̃n+1
K − p̃n+1

L ) =
∑

σ=K|L

|σ|2
|Dσ|

1√
ρnσ ρ

n−1
σ

(pnK − pnL) (III.29)The dis
retization of proje
tion equation (III.28a) is 
onsistent with that of the momentum balan
e(III.27) , i.e. we use a mass lumping te
hnique for the unsteady term in both 
ases and a standard �niteelement formulation for the gradient of the pressure in
rement in the �nite element 
ase :
∀σ ∈ Eint, for 1 ≤ i ≤ d,

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) −
∑

K∈M

∫

K

(pn+1 − p̃n+1) ∇ · ϕ(i)
σ dx = 0,whi
h 
an be rewritten as follows :

∀σ ∈ Eint, σ = K|L, |Dσ|
δt

ρnσ (un+1
σ − ũn+1

σ )+ |σ|
[
(pn+1
L − p̃n+1

L ) − (pn+1
K − p̃n+1

K )
]
nKL = 0 (III.30)We may then write the general form of the fully dis
rete to the pressure 
orre
tion s
heme :
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orre
tion s
heme 1031 - Renormalization step : ∀K ∈ M, ,
∑

σ=K|L

|σ|2
|Dσ|

1

ρnσ
(p̃n+1
K − p̃n+1

L ) =
∑

σ=K|L

|σ|2
|Dσ|

1√
ρnσ ρ

n−1
σ

(pnK − pnL) (III.31)2 - Velo
ity predi
tion step : for 1 ≤ i ≤ d, and for any σ ∈ E(i)
int,

|Dσ|
δt

(ρnσũ
n+1
σ,i − ρn−1

σ unσ,i) +
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i + |Dσ| (∇p̃n+1)(i)σ − |Dσ| (divτ(ũn+1))(i)σ = 0, (III.32)where Fnσ,ε is the dual edge mass �ux.3 - Proje
tion step :

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |σ|
[
(pn+1
L − p̃n+1

L ) − (pn+1
K − p̃n+1

K )
]
nKL = 0,for 1 ≤ i ≤ d and σ = K|L ∈ E(i)

int ,
(III.33a)

|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, ∀K ∈ M, (III.33b)

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ −

∑

σ∈E(K),

σ=K|L

|σ|e
n+1
L − en+1

K

dσ

+|K|pn+1
K (div(un+1))K = |K|

(
τ (ũn+1) : ∇ũn+1

)
K
, ∀K ∈ M,

(III.33
)
pn+1
K = ℘(en+1

K , ρn+1
K ), ∀K ∈ M, (III.33d)where Fn+1

K,σ is the primal edge mass �ux.III.4.3 Properties of the s
hemeTheorem III.4.1There exists a solution to the s
heme (III.31)�(III.33d), whi
h satis�es ρnK > 0, enK > 0 for all K ∈ Mand n ∈ N, and su
h that the following inequality holds :
∑

K∈M

|K| ρnKenK +
1

2

∑

σ∈Eint

|Dσ| ρn−1
σ |unσ|2 +

δt2

2
|pn|2ρn−1, M ≤

∑

K∈M

|K| ρ0
Ke

0
K +

1

2

∑

σ∈Eint

|Dσ| ρ−1
σ |u0

σ|2 +
δt2

2
|p0|2ρ−1, M,

(III.34)where
|q|2ρ, M =

∑

σ=K|L

1

ρσ

|σ|2
|Dσ|

(pL − pK)2.ProofThe positivity of the density ρn+1
K and the internal energy en+1

K and the existen
e of a solution areobtained by repeating arguments similar to those invoked in the impli
it-in-time s
heme. There remainsto prove that (III.34) holds.
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onditionally stable pressure 
orre
tion s
heme for Navier-Stokes equationsMultiplying the dis
rete momentum balan
e equation (III.32) by the 
orresponding unknown of thevelo
ity ũn+1
σ,i and summing and the 
omponents i and their asso
iated edges, by virtue of the stabilityof the dis
rete adve
tion operator (III.16) and the equalities (III.20) and (III.18) we obtain :

1

2

∑

σ∈Eint

|Dσ|
δt

[
ρnσ |ũn+1

σ |2 − ρn−1
σ |unσ|2

]
−
∑

K∈M

|K|p̃n+1
K (div(ũn+1))K

+
∑

K∈M

|K|
(
τ (ũn+1) : ∇ũn+1

)
K

≤ 0.Summing the dis
rete internal energy equation (III.33
) over the 
ells K ∈ M and with the previousrelation, we obtain :
∑

K∈M

|K|
δt

[
ρn+1
K en+1

K − ρnK enK
]
+

1

2

∑

σ∈Eint

|Dσ|
δt

[
ρnσ |ũn+1

σ |2 − ρn−1
σ |unσ|2

]

+
∑

K∈M

|K|pn+1
K (div(un+1))K −

∑

K∈M

|K|p̃n+1
K (div(ũn+1))K ≤ 0

(III.35)Reordering the �rst relation of the proje
tion step (III.33a) and multiplying by (ρnσ)
−1/2 we obtain, for

1 ≤ i ≤ d and σ = K|L ∈ E(i)
int :

|Dσ|
δt

√
ρnσ u

n+1
σ,i + |σ| 1√

ρnσ
(pn+1
L − pn+1

K )nKL =
|Dσ|
δt

√
ρnσ ũ

n+1
σ,i + |σ| 1√

ρnσ
(p̃n+1
L − p̃n+1

K )nKLSquaring the previous relation and multiplying by δt/2|Dσ| and summing over the edges and the 
om-ponent i, we obtain :
1

2

∑

σ∈Eint

|Dσ|
δt

[
ρnσ |un+1

σ |2 − ρnσ |ũn+1
σ |2

]
−
∑

K∈M

|K|pn+1
K (div(un+1))K

+
∑

K∈M

|K|p̃n+1
K (div(ũn+1))K +

δt

2

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(pn+1
L − pn+1

K )2

− δt

2

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(p̃n+1
L − p̃n+1

K )2 = 0Summing this last relation with (III.35) and multiplying by δt, we get :
∑

K∈M

|K|
[
ρn+1
K en+1

K − ρnK enK
]
+

1

2

∑

σ∈Eint

|Dσ|
[
ρnσ |un+1

σ |2 − ρn−1
σ |unσ |2

]

+
δt2

2

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(pn+1
L − pn+1

K )2

︸ ︷︷ ︸
|pn+1|2

ρn, M

−δt
2

2

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(p̃n+1
L − p̃n+1

K )2

︸ ︷︷ ︸
|p̃n+1|2

ρn, M

= 0Thanks to the renormalization step (III.31), we have :
|p̃n+1|2ρn, M ≤ |pn|2ρn−1, Mwhi
h 
on
ludes the proof. �



III.5. Appendix : the MAC dis
retization of the dissipation term 105III.5 Appendix : the MAC dis
retization of the dissipation termIII.5.1 The two-dimensional 
aseLet us �rst propose a dis
retization for the di�usion term −div(τ(u)) in the momentum equation (III.1b)..We begin with the x-
omponent of the velo
ity, for whi
h we write a balan
e equation on Kx
i− 1

2 ,j
=

(xi−1, xi) × (yj− 1
2
, yj+ 1

2
) (see Figures III.2 and III.3 for the notations).

: Kx
i− 1

2 ,j

xi− 3
2

xi− 1
2

xi+ 1
2

xi−1 xi
yj− 3

2

yj− 1
2

yj

yj+ 1
2

yj+ 3
2

ux
i− 1

2 ,j
ux
i− 3

2 ,j
ux
i+ 1

2 ,j

ux
i− 1

2 ,j−1

ux
i− 1

2 ,j+1 : σxi,j: σx
i− 1

2 ,j+
1
2

hx
i− 1

2

hxi

hyj

hy
j+ 1

2

Fig. III.2 � Dual 
ell for the x-
omponent of the velo
ityIntegrating the x 
omponent of the momentum balan
e equation over Kx
i− 1

2 ,j
, we get for the di�usionterm :

T̄ dif
i− 1

2 ,j
= −

[∫

Kx

i− 1
2

,j

div
[
τ (u)] dx

]
· e(x) = −

[∫

∂Kx

i− 1
2

,j

τ (u) ndγ
]
· e(x), (III.36)where e(x) stands for the �rst ve
tor of the 
anoni
al basis of R

2. We denote by σxi,j the right fa
e of
Kx
i− 1

2 ,j
, i.e. σxi,j = {xi} × (yj− 1

2
, yj+ 1

2
). Splitting the boundary integral in (III.36), the part of T̄ dif

i− 1
2 ,jasso
iated to σxi,j , also referred to as the vis
ous �ux through σxi,j , reads :

−
[∫

σx
i,j

τ (u) ndγ
]
· e(x) = −2

∫

σx
i,j

µ ∂xu
x dγ +

2

3

∫

σx
i,j

µ (∂xu
x + ∂yu

y) dγ,and the usual �nite di�eren
e te
hnique yields the following approximation for this term :
− 4

3

∫

σx
i,j

µ ∂xu
x dγ +

2

3

∫

σx
i,j

µ ∂yu
y dγ

≈ −4

3
µi,j

hyj
hxi

(uxi+ 1
2 ,j

− uxi− 1
2 ,j

) +
2

3
µi,j

hyj
hyj

(uy
i,j+ 1

2

− u
y

i,j− 1
2

), (III.37)where µi,j is an approximation of the vis
osity at the fa
e σxi,j . Similarly, let σx
i− 1

2 ,j+
1
2

= (xi−1, xi)×{yj+ 1
2
}
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onditionally stable pressure 
orre
tion s
heme for Navier-Stokes equationsbe the top edge of the 
ell. Then :
−
[∫

σx

i− 1
2

,j+ 1
2

τ (u) ndγ
]
· e(x) = −

∫

σx

i− 1
2

,j+ 1
2

µ (∂yu
x + ∂xu

y) dγ

≈ −µi− 1
2 ,j+

1
2

[hx
i− 1

2

hy
j+ 1

2

(uxi− 1
2 ,j+1 − uxi− 1

2 ,j
) +

hx
i− 1

2

hx
i− 1

2

(uy
i,j+ 1

2

− u
y

i−1,j+ 1
2

)
]
,where µi− 1

2 ,j+
1
2
stands for an approximation of the vis
osity at the edge σx

i− 1
2 ,j+

1
2

.Let us now multiply ea
h dis
rete equation for ux by the 
orresponding degree of freedom of a velo
ity�eld v (i.e. the balan
e over Kx
i− 1

2 ,j
by vx

i− 1
2 ,j

) and sum over i and j. The vis
ous �ux at the fa
e σxi,jappears twi
e in the sum, on
e multiplied by vx
i− 1

2 ,j
and the se
ond one by −vx

i+ 1
2 ,j

, and the 
orrespondingterm reads :
T dis
i,j (u,v) = µi,j

[
−4

3

hyj
hxi

(uxi+ 1
2 ,j

− uxi− 1
2 ,j

) +
2

3

hyj
hyj

(uy
i,j+ 1

2

− u
y

i,j− 1
2

)
]

(vxi− 1
2 ,j

− vxi+ 1
2 ,j

)

= µi,j h
y
jh
x
i

[4
3

ux
i+ 1

2 ,j
− ux

i− 1
2 ,j

hxi
− 2

3

u
y

i,j+ 1
2

− u
y

i,j− 1
2

hyj

] vx
i+ 1

2 ,j
− vx

i− 1
2 ,j

hxi
. (III.38)Similarly, the term asso
iated to σx

i− 1
2 ,j+

1
2

appears multiplied by vx
i− 1

2 ,j
and by −vx

i− 1
2 ,j+1

, and we get :
T dis
i− 1

2 ,j+
1
2
(u,v) = µi− 1

2 ,j+
1
2
hxi− 1

2
hy
j+ 1

2

[ux
i− 1

2 ,j+1
− ux

i− 1
2 ,j

hy
j+ 1

2

+
u
y

i,j+ 1
2

− u
y

i−1,j+ 1
2

hx
i− 1

2

] vx
i− 1

2 ,j+1
− vx

i− 1
2 ,j

hy
j+ 1

2

. (III.39)Let us now de�ne the dis
rete gradient of the velo
ity as follows :� The derivatives involved in the divergen
e, ∂Mx ux and ∂My uy, are de�ned over the primal 
ells by :
∂Mx ux(x) =

ux
i+ 1

2 ,j
− ux

i− 1
2 ,j

hxi
, ∂My uy(x) =

u
y

i,j+ 1
2

− u
y

i,j− 1
2

hyj
, ∀x ∈ Ki,j . (III.40)� For the other derivatives, we introdu
e another mesh whi
h is vertex-
entred, and we denote byKxythe generi
 
ell of this new mesh, with Kxy

i+ 1
2 ,j+

1
2

= (xi, xi+1) × (yj , yj+1). Then, ∀x ∈ Kxy

i+ 1
2 ,j+

1
2

:
∂My ux(x) =

ux
i+ 1

2 ,j+1
− ux

i+ 1
2 ,j

hy
j+ 1

2

, ∂Mx uy(x) =
u
y

i+1,j+ 1
2

− u
y

i,j+ 1
2

hx
i+ 1

2

. (III.41)With this de�nition, we get :
T dis
i,j (u,v) = µi,j

∫

Ki,j

[4
3
∂Mx ux − 2

3
∂My uy

]
∂Mx vx dx,and :

T dis
i− 1

2 ,j+
1
2
(u,v) = µi− 1

2 ,j+
1
2

∫

Kxy

i− 1
2

,j+ 1
2

(∂My ux + ∂Mx uy) ∂My vx dx.Let us now perform the same operations for the y-
omponent of the velo
ity. Doing so, we are lead tointrodu
e an approximation of the vis
osity at the edge σy
i− 1

2 ,j+
1
2

= {xi− 1
2
}×(yj , yj+1) (see Figure III.3).
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2

xi− 1
2

xi+ 1
2

xi+ 3
2

yj− 1
2

yj+ 1
2

yj+ 3
2

u
y

i,j+ 1
2

u
y

i−1,j+ 1
2

u
y

i+1,j+ 1
2

u
y

i,j− 1
2

u
y

i,j+ 3
2

: σx
i− 1

2 ,j+
1
2

: σy
i− 1

2 ,j+
1
2

Fig. III.3 � Dual 
ell for the y-
omponent of the velo
ityLet us suppose that we take the same approximation as on σx
i− 1

2 ,j+
1
2

. Then, the same argument yieldsthat multiplying ea
h dis
rete equation for ux and for uy by the 
orresponding degree of freedom of avelo
ity �eld v, we obtain a dissipation term whi
h reads :
T dis(u,v) =

∫

Ω

τM(u) : ∇
Mv dx, (III.42)where ∇

M is the dis
rete gradient de�ned by (III.40)-(III.41) and τM the dis
rete tensor :
τM(u) =




2µ∂Mx ux µxy (∂My ux + ∂Mx uy)

µxy (∂My ux + ∂Mx uy) 2µ∂My uy


− 2

3
µ (∂Mx ux + ∂My uy) I, (III.43)where µ is the vis
osity de�ned on the primal mesh by µ(x) = µi,j , ∀x ∈ Ki,j and µxy is the vis
osityde�ned on the vertex-
entred mesh, by µ(x) = µi+ 1

2 ,j+
1
2
, ∀x ∈ Kxy

i+ 1
2 ,j+

1
2

.Now the form (III.42) suggests a natural to dis
retize the vis
ous dissipation term in the internal energybalan
e in order for the 
onsisten
y property (ii) to hold. Indeed, if we simply set on ea
h primal 
ell
Ki,j :

(τ (u) : ∇u)i,j =
1

|Ki,j|

∫

Ki,j

τM(u) : ∇
Mudx, (III.44)then, thanks to (III.42), the property (ii) whi
h reads :

T dis(u,u) =
∑

i,j

|Ki,j | (τ (u) : ∇u)i,j .holds. Furthermore, we get from De�nition (III.43) that τM(u)(x) is a symmetri
al tensor, for any i, jand x ∈ Ki,j , and therefore an elementary algebrai
 argument yields :
(τ (u) : ∇u)i,j =

1

|Ki,j |

∫

Ki,j

τM(u) : ∇
Mu dx

=
1

2 |Ki,j|

∫

Ki,j

τM(u) :
[
∇

Mu + (∇Mu)t
]
dx ≥ 0.
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: Kxy

i+ 1
2 ,j+

1
2 ,k

xi+ 1
2

yj+ 1
2

zk− 1
2

zk+ 1
2

Fig. III.4 � The xy-staggered 
ell Kxy

i+ 1
2 ,j+

1
2 ,k

, used in the de�nition of ∂My ux, ∂Mx uy, and τM(u)x,y =

τM(u)y,x.Remark 8 (Approximation of the vis
osity)Note that, for the symmetry of τM(u) to hold, the 
hoi
e of the same vis
osity at the edges σx
i− 1

2 ,j+
1
2

and
σy
i− 1

2 ,j+
1
2

is 
ru
ial even though other 
hoi
es may appear natural. Assuming for instan
e the vis
osityto be a fun
tion of an additional variable de�ned on the primal mesh, the following 
onstru
tion seemsreasonable :1. de�ne a 
onstant value for µ on ea
h primal 
ell,2. asso
iate a value of µ to the primal edges, by taking the average between the value at the adja
ent
ells,3. �nally, split the integral of the shear stress over σx
i− 1

2 ,j+
1
2

in two parts, one for the part in
ludedin the (top) boundary of Ki−1,j and the se
ond one in the boundary of Ki,j.Then the vis
osities on σx
i− 1

2 ,j+
1
2

and σy
i− 1

2 ,j+
1
2


oin
ide only for uniform meshes, and, in the general 
ase,the symmetry of τM(u) is lost.III.5.2 Extension to the three-dimensional 
aseExtending the 
omputations of the pre
eding se
tion to three spa
e dimensions yields the following
onstru
tion.� First, de�ne three new meshes, whi
h are "edge-
entred" : Kxy

i+ 1
2 ,j+

1
2 ,k

= (xi, xi+1) × (yi, yj+1) ×
(zk− 1

2
, zk+ 1

2
) is staggered from the primal mesh Ki,j,k in the x and y dire
tion (see Figure III.4),

Kxz
i+ 1

2 ,j,k+
1
2

in the x and z dire
tion, and Kyz

i,j+ 1
2 ,k+

1
2

in the y and z dire
tion.� The partial derivatives of the velo
ity 
omponents are then de�ned as pie
ewise 
onstant fun
tions,the value of whi
h is obtained by natural �nite di�eren
es :- for ∂Mx ux, ∂My uy and ∂Mz uz, on the primal mesh,- for ∂My ux and ∂Mx uy on the 
ells (Kxy

i+ 1
2 ,j+

1
2 ,k

),
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ells (Kxz
i+ 1

2 ,j,k+
1
2

),- for ∂My uz and ∂Mz uy on the 
ells (Kyz

i,j+ 1
2 ,k+

1
2

).� Then, de�ne four families of values for the vis
osity �eld, µ, µxy, µxz and µyz, asso
iated to theprimal and the three edge-
entred meshes respe
tively.� The shear stress tensor is obtained by the extension of (III.43) to d = 3.� And, �nally, the dissipation term is given by (III.44).





ChapitreIV Consistent staggered s
hemesfor 
ompressible �ows � Eulerequations.

I
n this paper, we propose an impli
it s
heme and a pressure 
orre
tions
heme for the Euler equations, based on spa
e dis
retizations of stag-gered type : MAC s
heme or low-order (Ranna
her-Turek or Crouzeix-Raviart) �nite elements. Both s
hemes rely on the dis
retization of the internalenergy balan
e equation, whi
h o�ers two main advantages : �rst, we avoid thespa
e dis
retization of the total energy, the expression of whi
h involves 
ell-
entered and fa
e-
entered variables ; se
ond, we obtain algorithms whi
h boildown to usual s
hemes in the in
ompressible limit. To obtain 
orre
t weak solu-tions (in parti
ular, with sho
ks satisfying the Rankine-Hugoniot 
onditions),we need to introdu
e a sour
e term in the internal energy balan
e, whi
h webuild as follows. We �rst derive a dis
rete kineti
 energy balan
e. This relationinvolves sour
e terms, whi
h are then, in some way, 
ompensated in the internalenergy balan
e. Sin
e the kineti
 and internal energy equation are asso
iatedto the primal and dual mesh respe
tively, they 
annot be summed to obtaina total energy balan
e. However, we theoreti
ally prove, in the 1D 
ase, that,if the s
heme 
onverges, the limit indeed satis�es a weak form of this latterequation. Finally, we present numeri
al results whi
h 
onfort this theory.
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IV.1 Introdu
tionLet us 
onsider the 
ompressible Navier-Stokes equations, whi
h reads :
∂tρ+ div(ρu) = 0, (IV.1a)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (IV.1b)
∂t(ρE) + div(ρE u) + div(pu) = div(τ (u) · u), (IV.1
)
p = (γ − 1) ρ e, E =

1

2
|u|2 + e, (IV.1d)where t stands for the time, ρ, u, p, E and e are the density, velo
ity, pressure, total energy and internalenergy in the �ow, τ (u) stands for the shear stress tensor, and γ > 1 is a 
oe�
ient spe
i�
 to the
onsidered �uid. The problem is supposed to be posed over Ω × (0, T ), where Ω is a open bounded
onne
ted subset of Rd, d ≤ 3 and (0, T ) is a �nite time interval. This system must be 
omplemented bysuitable boundary 
onditions, and initial 
onditions for ρ, e and u, whi
h are positive for ρ and e. The
losure relation for τ (u) is assumed to be :

τ (u) = µ (∇u + ∇
tu) − 2µ

3
divu I, (IV.2)where µ stand for a (possibly depending on x) non-negative parameter.We suppose, for the sake of simpli
ity, that u is pres
ribed to zero on the whole boundary ∂Ω.Let us suppose that the solution is regular. Taking the inner produ
t of the momentum balan
e equation(IV.1b) by u and using the mass balan
e equation, we obtain the so-
alled the kineti
 energy balan
eequation :

1

2
∂t(ρ |u|2) +

1

2
div(ρ |u|2u) + ∇p · u = div(τ (u)) · u. (IV.3)Subtra
ting this relation from the total energy balan
e, we obtain the internal energy balan
e equation :

∂t(ρe) + div(ρeu) + p div(u) = τ (u) : ∇u. (IV.4)Sin
e,
(i) from Equation (IV.2) (and from thermodynami
al arguments), τ (u) : ∇u ≥ 0,

(ii) thanks to the mass balan
e equation, the �rst two terms in the left-hand side of (IV.4) may bere
ast as a transport operator : ∂t(ρe) + div(ρeu) = ρ [∂te+ u · ∇e],
(iii) and, �nally, be
ause, from the equation of state, the pressure vanishes when e = 0,this equation implies that e remains non-negative at all times.The aim of this paper is to build a numeri
al s
heme for the Euler equations (i.e. System (IV.1) with
µ = 0) based on staggered spa
e dis
retizations, the motivation for this 
hoi
e being that we would liketo obtain a s
heme taht is stable and a

urate at all Ma
h numbers, and, in parti
ular, boils down to ausual s
heme for in
ompressible �ows (or, more generally, for the asymptoti
 model of vanishing Ma
hnumber �ows [54℄) when the Ma
h number tends to zero. In in
ompressible models, the natural energybalan
e equation is the internal energy equation (IV.4). In addition, dis
retizing (IV.4) instead of thetotal energy balan
e (IV.1
) presents two advantages :
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hemes for 
ompressible �ows � Euler equations.- �rst, it avoids the spa
e dis
retization of the total energy, whi
h is rather unatural for staggereds
hemes sin
e the degrees of freedom for the velo
ity and the s
alar variables are not 
olo
ated,- se
ond, a suitable dis
retization of (IV.4) may yield, "by 
onstru
tion" of the s
heme, the positivityof the internal energy.However, for solutions with sho
ks, Equation (IV.4) is not equivalent to (IV.1
) ; more pre
isely speaking,one 
an show that, at the lo
ations of sho
ks, positive measures should repla
e τ (u) : ∇u (whi
hformally vanishes sin
e µ = 0) at the right-hand side of Equation (IV.4). Dis
retizing (IV.4) insteadof (IV.1
) may thus yield a s
heme whi
h does not 
ompute the 
orre
t weak dis
ontinuous solutions,the manifestation of this non-
onsisten
y being that the numeri
al solutions present sho
ks whi
h arenot 
onsistent with the Rankine-Hugoniot 
onditions asso
iated to (IV.1
). The essential result of thispaper is to provide solutions to 
ir
umvent this problem. To this purpose, we 
losely mimi
k the formal
omputation performed above :- Starting from the dis
rete momentum balan
e equation, with an ad ho
 dis
retization of the 
onve
-tion operator, we derive a dis
rete kineti
 energy balan
e ; residual terms are present in this relation,whi
h do no tend to zero with spa
e and time step (they are the dis
rete manifestations of the theabove mentionned measures).- These residual terms are then 
ompensated by sour
e terms in the internal energy balan
e.We provide a theoreti
al justi�
ation of this pro
ess by showing that, in the 1D 
ase, if the s
heme isstable enough and 
onverges to a limit (in a sense to be de�ned), this limit satis�es a weak form of(IV.1
) whi
h implies the 
orre
t Rankine-Hugoniot 
onditions. Then, we perform numeri
al tests whi
hsubstantiate this analysis. Two di�erent time dis
retizations are proposed : �rst, a fully impli
it s
heme (asolution to whi
h may be rather di�
ult to obtain in pra
ti
e) and, se
ond, a pressure 
orre
tion s
heme(the algorithm whi
h is indeed used in the tests presented here, and in the industrial open-sour
e 
odeISIS [40℄, developed at IRSN on the basis of the software 
omponents library PELICANS [63℄). Let usmention also that fully expli
it versions may be built, and are now under study [59℄.This paper is organized as follows. We begin by des
ribing the spa
e dis
retizations (Se
tion IV.2). Wethen study the impli
it s
heme (Se
tion IV.3) : we �rst give the general form of the algorithm (Se
tionIV.3.1), then derive the kineti
 energy balan
e and dedu
e the sour
e terms to be in
luded in the internalenergy balan
e (Se
tion IV.3.2), and, �nally, we pass to the limit in the s
heme to prove (in 1D) the
onsisten
y of the s
heme (Se
tion IV.3.3). Se
tion IV.4 follows the same lines for the pressure 
orre
tions
heme. Finally, we present some numeri
al tests in Se
tion IV.5.IV.2 Meshes and unknownsLet M be a de
omposition of the domain Ω, supposed to be regular in the usual sense of the �nite elementliterature (eg. [9℄). The 
ells may be :- for a general domain Ω, either 
onvex quadrilaterals (d = 2) or hexahedra (d = 3) or simpli
es,both type of dis
retizations being possibly 
ombined in a same mesh,- for a domain the boundaries of whi
h are hyperplanes normal to a 
oordinate axis, re
tangles(d = 2) or re
tangular parallelepipeds (d = 3) (the fa
es of whi
h, of 
ourse, are then also ne
essarily
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it s
heme 115normal to a 
oordinate axis).By E and E(K) we denote the set of all (d−1)-fa
es σ of the mesh and of the element K ∈ M respe
tively.The set of edges in
luded in the boundary of Ω is denoted by Eext and the set of internal ones (i.e. E \Eext)is denoted by Eint ; a fa
e σ ∈ Eint separating the 
ells K and L is denoted by σ = K|L. The outwardnormal ve
tor to a fa
e σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the measureof K and by |σ| the (d− 1)-measure of the fa
e σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E the subset of thefa
es of E whi
h are perpendi
ular to the ith unit ve
tor of the 
anoni
al basis of Rd.The spa
e dis
retization is staggered, using either the Marker-And Cell (MAC) s
heme [37, 36℄, or non-
onforming low-order �nite element approximations, namely the Ranna
her and Turek element (RT) [65℄for quadrilateral or hexahedri
 meshes, or the Crouzeix-Raviart (CR) element [11℄ for simpli
ial meshes.For all these spa
e dis
retizations, the degrees of freedom for the pressure, the density and the internalenergy are asso
iated to the 
ells of the mesh M, and are denoted by :
{
pK , ρK , eK , K ∈ M

}
.Let us then turn to the degrees of freedom for the velo
ity.- Ranna
her-Turek or Crouzeix-Raviart dis
retizations � The degrees of freedom for the velo-
ities are lo
ated at the 
enter of the fa
es of the mesh, and we 
hoose the version of the elementwhere they represent the average of the velo
ity through a fa
e. The set of degrees of freedomreads :

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.- MAC dis
retization � The degrees of freedom for the ith 
omponent of the velo
ity, de�ned at the
entres of the fa
e σ ∈ E(i), are denoted by :
{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.

IV.3 An impli
it s
hemeIV.3.1 The s
hemeLet us 
onsider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), andlet δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the 
onstant time step. We 
onsider an impli
it-in-time
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hemes for 
ompressible �ows � Euler equations.numeri
al s
heme, whi
h reads in its fully dis
rete form :
∀K ∈ M,

|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (IV.5a)For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) in the MAC 
ase,
∀σ ∈ E otherwise,

|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) +

∑

ε∈Ē(Dσ)

Fn+1
σ,ε un+1

ε,i + |Dσ| (∇pn+1)σ,i = 0, (IV.5b)
∀K ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ + |K| pn+1

K (div
(
un+1)

)
K

= Sn+1
K , (IV.5
)

∀K ∈ M, pn+1
K = (γ − 1)ρn+1

K en+1
K . (IV.5d)Equation (IV.5a) is obtained by the dis
retization of the mass balan
e over the primal mesh, and Fn+1

K,σstands for the mass �ux a
ross σ outward K, given by :
∀σ ∈ Eint, σ = K|L, Fn+1

K,σ = |σ| ρ̃n+1
σ un+1

σ · nK,σ.In this relation, the notation un+1
σ · nK,σ stands the approximation of the normal velo
ity to the fa
e

σ outward K. For the MAC dis
retization, this quantity is given (up, possibly, to a 
hange of sign) bythe velo
ity degree of freedom lo
ated at the fa
e ; for the RT and CR dis
retizations, it is 
omputed bytaking the inner produ
t of the (ve
tor valued) velo
ity on σ, un+1
σ , and the outward normal ve
tor nK,σ(i.e. doing exa
tly what the notation says). The density at the fa
e σ = K|L, ρ̃n+1

σ , is approximated bythe upwind te
hnique :
ρ̃n+1
σ =

∣∣∣∣∣∣

ρn+1
K if un+1

σ · nK,σ ≥ 0,

ρn+1
L otherwise.We now turn to the dis
rete momentum balan
e (IV.5b). For the MAC dis
retization, but also for theRT and CR dis
retization, the time derivative and 
onve
tion terms are approximated in (IV.5b) by a�nite volume te
hnique over a dual mesh, whi
h we now de�ne :- Ranna
her-Turek or Crouzeix-Raviart dis
retizations � For the RT or CR dis
retization, thedual mesh is the same for all the velo
ity 
omponents. When K ∈ M is a simplex, a re
tangles ora 
uboid, for σ ∈ E(K), we de�ne DK,σ as the 
one with basis σ and with vertex the mass 
enterof K. We thus obtain a partition of K in m sub-volumes, where m is the number of fa
es of themesh, ea
h sub-volume having the same measure |DK,σ| = |K|/m. We extend this de�nition togeneral quadrangles and hexahedra, with a partition still of equal-volume sub-
ells, and with thesame 
onne
tivities ; note that this is of 
ourse always possible, but that su
h a volume DK,σ maybe no longer a 
one : indeed, if K is far from a pallelogram, it may not be possible to built a 
onehaving σ as basis, the opposite vertex lying in K and a volume equal to |K|/m. The volume DK,σis refered to as the half-diamond 
ell asso
iated to K and σ.
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Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=
K
|L

ε = D
σ |D

σ ′

Fig. IV.1 � Primal and dual meshes for the Ranna
her-Turek and Crouzeix-Raviart elements.For σ ∈ Eint, σ = K|L, we now de�ne the diamond 
ell Dσ asso
iated to σ by Dσ = DK,σ ∪DL,σ ;for an external fa
e σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.- MAC dis
retization � For the MAC s
heme, the dual mesh depends on the 
omponent of thevelo
ity. For ea
h of them, its de�nition di�ers from the RT or CR dual mesh only by the 
hoi
eof the half-diamond 
ell, whi
h, for K ∈ M and σ ∈ E(K), is now the re
tangle of basis σ and ofmeasure |DK,σ| equal to half the measure of K.We denote by |Dσ| the measure of the dual 
ell |Dσ|, and by ε = Dσ|Dσ′ the fa
e separating two diamond
ells Dσ and Dσ′ (see Figure IV.1).To make the dis
retization of the time derivative term 
omplete, we must provide a de�nition for the
ρn+1
σ and ρnσ, whi
h approximate the density on the edge σ at time tn+1 and tn respe
tively. They aregiven by the following weighted average :

∀σ ∈ Eint, σ = K|L, |Dσ| ρnσ = |DK,σ| ρnK + |DL,σ| ρnL. (IV.6)We now turn to the 
onve
tion term. The �rst task is to de�ne the dis
rete mass �ux through the dualedge ε outwardDσ, denoted by Fn+1
σ,ε , the guideline for its 
onstru
tion being that we need a �nite volumedis
retization of the mass balan
e equation over the diamond 
ells to hold :

∀σ ∈ E , |Dσ|
ρn+1
σ − ρnσ
δt

+
∑

ε∈E(Dσ)

Fn+1
σ,ε = 0, (IV.7)in order to be be able to derive a dis
rete kineti
 energy balan
e (see Se
tion IV.3.2 below). For a dual edge

ε in
luded in the primal 
ell K, this �ux is 
omputed as a linear 
ombination (with 
onstant 
oe�
ients,i.e. independent of the edge and the 
ell) of the mass �uxes through the fa
es of K, i.e. the quantities
(Fn+1
K,σ )σ∈E(K) appearing in the dis
rete mass balan
e (IV.5a). We do not give here this set of 
oe�
ients,and refer to [1, 38, 25℄ for a detailed 
onstru
tion of this approximation.
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hemes for 
ompressible �ows � Euler equations.The quantity un+1
ε,i stands for an approximation of un+1

i on ε wi
h may be 
hosen 
entered or upwind,so, for ε = Dσ|Dσ′ , reads :Centered 
ase : un+1
ε,i = (un+1

σ,i + un+1
σ′,i )/2. Upwind 
ase : un+1

ε,i =

∣∣∣∣∣∣

un+1
σ,i if Fn+1

σ,ε ≥ 0,

un+1
σ′,i otherwise.The last term (∇pn+1)σ,i stands for the i-th 
omponent of the dis
rete pressure gradient at the fa
e σ,whi
h reads : for σ ∈ Eint, σ = K|L, (∇pn+1)σ,i =

|σ|
|Dσ|

(pn+1
L − pn+1

K ) nK,σ · e(i).Finally, Equation (IV.5
) is a approximation of the internal balan
e over the primal mesh K. To ensurethe positivity of the 
onve
tion operator [50℄, we use an upwinding te
hnique for this term :
en+1
σ =

∣∣∣∣∣∣

en+1
K if Fn+1

K,σ ≥ 0,

en+1
L otherwise.The divergen
e of the velo
ity, (div

(
un+1)

)
K
, is dis
retized ar follows :

(div
(
un+1)

)
K

=
1

|K|
∑

σ∈E(K)

|σ| un+1
σ · nK,σ.Note that this de�nition implies that the dis
rete gradient and divergen
e operators are dual with respe
tto the L2 inner produ
t :

∑

K∈M

|K| pK (div
(
u)
)
K

+
∑

E,i

|Dσ| uσ,i (∇pn+1)σ,i = 0,where the notation ∑E,i means that the summation is performed for 1 ≤ i ≤ d and, for a given index
i, on σ ∈ E(i) for the MAC s
heme and on σ ∈ E for the RT or CR dis
retization. The right-hand side,
Sn+1
K , is derived using 
onsisten
y arguments in the next se
tion.IV.3.2 The dis
rete kineti
 energy balan
e equation and the 
orre
tive sour
etermsLet δup be a 
oe�
ient de�ned by δup = 1 if an upwind dis
retization is used for the 
onve
tion term inthe momentum balan
e equation and δup = 0 in the 
entered 
ase. With this notation, the momentumbalan
e equation reads :
|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) +

∑

ε=Dσ |Dσ′

1

2
Fn+1
σ,ε (un+1

σ,i + un+1
σ′,i )

+ δup
∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i ) + |Dσ| (∇pn+1)σ,i = 0. (IV.8)
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rete kineti
 energy balan
e equation. To this purpose, we multiply equation(IV.8) by the 
orresponding velo
ity unknown un+1
σ,i , whi
h yields T conv

σ,i + T up
σ,i + T∇

σ,i = 0, with :
T conv
σ,i =

[ |Dσ|
δt

(
ρn+1
σ un+1

σ,i − ρnσu
n
σ,i

)
+

∑

ε=Dσ |Dσ′

1

2
Fn+1
σ,ε (un+1

σ,i + un+1
σ′,i )

]
un+1
σ,i ,

T up
σ,i = δup

[ ∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i ,

T∇
σ,i = |Dσ| (∇pn+1)σ,i u

n+1
σ,i .Lemma A.0.2 of the appendix yields :

T conv
σ,i =

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+
|Dσ|
2 δt

ρnσ
(
un+1
σ,i − unσ,i

)2
.Let us de�ne Rn+1

σ,i by the sum of −T up
σ,i and the opposite of the last term of this equation :

Rn+1
σ,i = −1

2

|Dσ|
δt

ρnσ
(
un+1
σ,i − unσ,i

)2 − δup
[ ∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i .With this notation, we thus obtain the following relation :

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+ |Dσ| (∇pn+1)σ,i u
n+1
σ,i = Rn+1

σ,i . (IV.9)We re
ognize at the left-hand side a 
onservative dis
rete kineti
 energy balan
e. The next step is now todeal with the residual term at the right-hand side. To this purpose, our guideline is to re
over a 
onsistentdis
retization of the total energy balan
e. The �rst idea to do this 
ould be just to sum the (dis
rete)kineti
 energy balan
e with the internal energy balan
e : we show in [59℄ that it is indeed possible fora 
olo
ated dis
retization But here, we fa
e the fa
t that the kineti
 energy balan
e is asso
iated to thedual mesh, while the internal energy balan
e is dis
retized on the primal one. The way to 
ir
umvent thisdi�
ulty is to remark that we do not really need a dis
rete total energy balan
e ; in fa
t, we only needto re
over (a weak form of) this equation when the mesh and time steps tend to zero. To this purpose,we 
hoose Sn+1
K in su
h a way to somewhat 
ompensate the terms (Rn+1

σ,i ) :
∀K ∈ M,

Sn+1
K =

1

2

∑

σ∈E(K)

|DK,σ|
δt

ρnK
(
un+1
σ − unσ

)2
+ δup

∑

ε∩K̄ 6=∅,

ε=D′

σ |Dσ′′

αK,ε
|Fn+1
σ,ε |
2

(un+1
σ′ − un+1

σ′′ )2. (IV.10)The 
oe�
ient αK,ε is �xed to 1 if the fa
e ε is in
luded in K, and this is the only situation to 
onsiderfor the RT and CR dis
retization. For the MAC s
heme, some dual edges are in
luded in the primal 
ells,
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hemes for 
ompressible �ows � Euler equations.but some lie on their boundary ; for ε being in the latter 
ase, we denote by Nε the set of 
ells M su
hthat M̄ ∩ ε 6= ∅ (the 
ardinal of this set being always 4), and 
ompute αK,ε by :
αK,ε =

|K|∑
M∈Nε

|M | .For a uniform grid, this formula yields αK,ε = 1/4.The expression of the (Sn+1
K )K∈M is justi�ed by the passage to the limit in the s
heme (for a one-dimensional problem) performed in Se
tion IV.3.3. However, its expression may be anti
ipated, makingthe following remarks. First, we note that :

∑

K∈M

Sn+1
K +

∑

E,i

Rn+1
σ,i = 0. (IV.11)Indeed, the �rst part of SK , thanks to the expression (IV.6) of the density at the fa
e ρσ, results from adispat
hing of the �rst part of the residual over the two adja
ent 
ells :

−1

2

|Dσ|
δt

ρnσ
(
un+1
σ,i − unσ,i

)2
= − 1

2

|DK,σ|
δt

ρnK
(
un+1
σ,i − unσ,i

)2
︸ ︷︷ ︸a�e
ted to K − 1

2

|DL,σ|
δt

ρnL
(
un+1
σ,i − unσ,i

)2
︸ ︷︷ ︸a�e
ted to L .For the se
ond part of the remainder (or of Sn+1

K ), a standard reordering of the sum yields :
∑

E,i

∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i =

∑

Ē,i (ε=Dσ |Dσ′ )

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )2,where the notation∑Ē,i (ε=σ|σ′) means that we perform the sum over the 
omponents 1 ≤ i ≤ d and thefa
es of the dual mesh asso
iated to the 
omponent i, and that the dual 
ells separated by a a generi
dual fa
e ε in the summation are denoted by Dσ and Dσ′ .However, we may wonder why we do not use in Sn+1

K the expression of this term as it is written in theremainder,i.e. , in other words, use the numeri
al di�usion mutiplied by u instead of the dissipation. A�rst answer is that we mimi
k what happens at the 
ontinuous level : the term whi
h appears in thekineti
 energy balan
e is div
(
τ (u)

)
· u and the 
orresponding term in the internal energy balan
e is

τ (u) : ∇u. A more involved argument is that the expression in Sn+1
K provides a positive sour
e term tothe internal energy balan
e, and we may hope that the di�eren
e between both expressions tends to zero(be
ause the numeri
al di�usion tends to zero) in the sense of distributions. To have an intuition of thisfa
t, let us 
onsider the toy ellipti
 problem, posed over Ω :

v − µ∆v = f,where µ is a positive parameter and f ∈ L2(Ω). Assuming homogeneous Diri
hlet boundary 
onditions,we obtain by standard variational arguments ‖v‖L2(Ω) + µ1/2‖∇v‖ ≤ C, with C only depending on Ωand f . We thus get, with ϕ ∈ C∞
c (Ω) :

∫

Ω

[
µ(∆v)v + µ|∇v|2

]
ϕdx = µ

∫

Ω

div(v∇v)ϕdx = −µ
∫

Ω

v∇v · ∇ϕdx,and so, �nally, by the Cau
hy-S
hwarz inequality :
∣∣∣
∫

Ω

[
µ(∆u)u+ µ|∇u|2

]
ϕdx

∣∣∣ ≤ C‖∇ϕ‖L∞(Ω) µ
1/2.
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it s
heme 121A dis
rete analogue of this simple 
omputation is used to pass to the limit in the s
heme in the nextse
tion (with a 
ontrol on the unknown assumed and not proven).Sin
e, in the equation of state, the pressure vanishes for e = 0, and that Sn+1
K is a non-negative 
ontinuousfun
tion of the unknowns ρ, u and p, adapting the proof of Chapter 3 to 
ope with this additional term,we obtain that the s
heme admits at least one solution, whi
h satis�es p ≥ 0, ρ ≥ 0 and e ≥ 0. In addition,Equation (IV.11) shows that the s
heme 
onserves the total energy.IV.3.3 Passing to the limit in the s
hemeThe obje
tive of this se
tion is to show, in the one dimensional 
ase, that, if a sequen
e of solutions is
ontrolled in suitable norms and 
onverges to a limit, this latter ne
essarily satis�es a (part of the) weakformulation of the 
ontinuous problem.We suppose given a sequen
e of meshes and time steps (M(m), δt(m))m∈N, su
h that the time step andthe size h(m) of the mesh M(m), de�ned by :

h(m) = supK∈M(m) hK ,tend to zero as m → ∞, where hK stands for the diameter of K. Note that, sin
e we are dealing with a1D problem, hK = |K|.Let ρ(m), p(m), e(m) and u(m) be the solution given by the s
heme (IV.5) with the mesh M(m) and thetime step δt(m), or, more pre
isely speaking, a 1D version of the s
heme whi
h may be obtained by takingthe MAC variant, only one horizontal stripe of meshes, supposing that the verti
al 
omponent of thevelo
ity (the degree of freedom of whi
h are lo
ated on the top and bottom boundaries) vanishes, andthat the measure of the fa
es is equal to 1. To the dis
rete unknowns, we asso
iate pie
ewise 
onstantfun
tions on time intervals and on primal or dual 
ells, so the density ρ(m), the pressure p(m), the internalenergy e(m) and the velo
ity u(m) are de�ned almost everywhere on Ω × (0, T ) by :
ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

ρnK XK X(n,n+1), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

pnK XK X(n,n+1),

e(m)(x, t) =
N−1∑

n=0

∑

K∈M

enK XK X(n,n+1), u(m)(x, t) =
N−1∑

n=0

∑

σ∈E

unσ XDσ
X(n,n+1),where XK , XDσ

and X(n,n+1) stand for the 
hara
teristi
 fun
tion of K, Dσ and the interval (n, n + 1)respe
tively, and, for short, we have dropped the supers
ript (m) in M(m), E(m), N (m) and in the lo
alvalues of the dis
rete fun
tions.We suppose that the sequen
e (ρ(m), p(m), e(m), u(m)
)
m∈N

is uniformly bounded in L∞
(
(0, T )×Ω

), i.e. :
|(ρ(m))nK | + |(p(m))nK | + |(e(m))nK | ≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (IV.12)and :

|(u(m))nσ| ≤ C, ∀σ ∈ E(m), for 0 ≤ n ≤ N (m), ∀m ∈ N. (IV.13)
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hemes for 
ompressible �ows � Euler equations.We also suppose a uniform 
ontrol on the translates in spa
e and time, whi
h we now state. For dis
retefun
tion q and v de�ned on the primal and dual mesh, respe
tively, we de�ne a dis
rete L1
(
(0, T ); BV(Ω)

)norm by :
‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ∈E, σ=K|L

|qnL − qnK |, ‖v‖T ,x,BV =

N∑

n=0

δt
∑

ε∈Ē, σ=Dσ |D′
σ

|vnσ′ − vnσ |,and a dis
rete L1
(
Ω; BV((0, T ))

) norm by :
‖q‖T ,t,BV =

∑

K∈M

hK

N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

hσ

N−1∑

n=0

|vn+1
σ − vnσ |,where, for σ = K|L, hσ = (hK + hL)/2. We suppose that the sequen
e of solutions satis�es the followinguniform bounds with respe
t to these two norms :

‖ρ(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (IV.14)and :
‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N, (IV.15)Of 
ourse, we are not able to prove the estimates (IV.12)�(IV.14) for the solutions of the s
heme ; however,su
h inequalities are satis�ed by the "interpolation" (for instan
e, by taking the 
ell average) of thesolution to a Riemann problem, and are observed in 
omputations (of 
ourse, as far as possible, i.e. witha limited sequen
e of meshes and time steps).A weak solution to the 
ontinuous problem satis�es, for any ϕ ∈ C∞

c

(
[0, T ) × Ω

) :
−
∫

Ω×(0,T )

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dx−

∫

Ω

ρ(x, 0)ϕ(x, 0) dx = 0, (IV.16a)
−
∫

Ω×(0,T )

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dx −

∫

Ω

ρ(x, 0)u(x, 0)ϕ(x, 0) dx = 0, (IV.16b)
−
∫

Ω×(0,T )

[
ρE ∂tϕ+ (ρE + p)u ∂xϕ

]
dx −

∫

Ω

ρ(x, 0)E(x, 0)ϕ(x, 0) dx = 0, (IV.16
)
p = (γ − 1)ρ e, E =

1

2
u2 + e. (IV.16d)Note that these relations are not su�
ient to de�ne a weak solution to the problem, sin
e they do notimply anything about the boundary 
onditions. However, they allow to derive the Rankine-Hugoniot
onditions ; so, if we show that they are satis�ed by the limit of a sequen
e of solutions to the dis
reteproblem, this implies, loosely speaking, that the s
heme 
omputes the right sho
ks, whi
h is the result weseek. It is stated in the following theorem.Theorem IV.3.1Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequen
e of meshes and timesteps, su
h that h(m) and δt(m) tend to zero as m tends to in�nity. Let (ρ(m), p(m), e(m), u(m)

)
m∈N

bethe 
orresponding sequen
e of solutions. We suppose that this sequen
e satis�es (IV.12)�(IV.14) and
onverges in Lr
(
(0, T )× Ω

)4, for 1 ≤ r <∞, to (ρ̄, p̄, ē, ū) ∈ L∞
(
(0, T )× Ω

)4.Then the limit (ρ̄, p̄, ē, ū) satis�es the system (IV.16).
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it s
heme 123Proof The fa
t that the limit (ρ̄, p̄, ū) satis�es (IV.16a) and (IV.16b) is proven in Chapter 2, usingmilder estimates and 
onvergen
e assumptions. On the other hand, the fa
t that (ρ̄, p̄, ē, ū) satis�es theequation of state is straightforward, in view of the supposed 
onvergen
e. We thus only need to provethat (ρ̄, p̄, ē, ū) satis�es (IV.16
).Let ϕ ∈ C∞
c (Ω × [0, T )). Let m ∈ N, M(m) and δt(m) be given. Dropping for short the supers
ript (m),we de�ne ϕM and ϕE , an interpolate of ϕ on the primal and dual mesh respe
tively, by :

ϕM =
N−1∑

n=0

∑

K∈M

ϕnK XK X(tn,tn+1), ϕE =
N−1∑

n=0

∑

σ∈E

ϕnσ XDσ
X(tn,tn+1), (IV.17)where, for 1 ≤ n ≤ N , K ∈ M and σ ∈ E , we set :

ϕnK = ϕ(xK , t
n) and ϕnσ = ϕ(xσ, t

n),with xK the mass 
enter of K and xσ the abs
issa of the fa
e σ. We also de�ne the time dis
rete derivativeof these dis
rete fun
tions by :
ðtϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕnK

δt
XK X(tn,tn+1),

ðtϕE =

N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕnσ
δt

XDσ
X(tn,tn+1),

(IV.18)and their spa
e dis
rete derivatives :
ðxϕM =

N−1∑

n=0

∑

σ∈E, σ=K<L

ϕnL − ϕnK
dσ

XDσ
X(tn,tn+1),

ðxϕE =

N−1∑

n=0

∑

K∈M, K=<σ,σ′>

ϕnσ′ − ϕnσ
hK

XK X(tn,tn+1),

(IV.19)where the notation σ = K < L means that σ = K|L with the orientation xK < xL, K =< σ, σ′ > meansthat K = (xσ, xσ′ ), with xσ < xσ′ and, for σ = K|L, dσ = (hK + hL)/2. Finally, we de�ne ðϕM,E by :
ðxϕM,E =

N−1∑

n=0

∑

K∈M, K=<σ,σ′>

ϕnK − ϕnσ
hK/2

XDK,σ
X(tn,tn+1),+

ϕnσ′ − ϕnK
hK/2

XDK,σ′
X(tn,tn+1). (IV.20)Thanks to the regularity of ϕ, the pie
ewise 
onstant fun
tions ϕM, ϕE , ðtϕM, ðtϕE , ðxϕM, ðxϕE and

ðxϕM,E 
onverge in Lr
(
Ω × (0, T )

), for r ≥ 1 (in
luding r = +∞), to ϕ, ϕ, ∂tϕ, ∂tϕ, ∂xϕ, ∂xϕ and ∂xϕrespe
tively.On one hand, let us multiply the dis
rete kineti
 energy equation (IV.9) by δt ϕnσ and sum over the edgesand the time steps. On the other hand, let us multiply the dis
rete internal energy equation (IV.5
) by
δt ϕnK , and sum over the primal 
ells and the time steps. Finally, let us sum the two obtained relations.
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hemes for 
ompressible �ows � Euler equations.We get :
T

(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 + T

(m)
5 = R(m), with :

T
(m)
1 =

1

2

N−1∑

n=0

δt
∑

σ∈E

|Dσ|
δt

[
ρn+1
σ (un+1

σ )2 − ρnσ(u
n
σ)

2
]
ϕnσ,

T
(m)
2 =

N−1∑

n=0

δt
∑

K∈M

|K|
δt

[
ρn+1
K en+1

K − ρnKe
n
K

]
ϕnK ,

T
(m)
3 =

1

2

N−1∑

n=0

δt
∑

σ∈E

∑

ε∈Ē(Dσ), ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ′ un+1
σ ϕnσ,

T
(m)
4 =

N−1∑

n=0

δt
∑

K

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ ϕnK ,

T
(m)
5 =

N−1∑

n=0

δt
∑

σ∈E

|Dσ| (∇pn+1)σ u
n+1
σ ϕnσ +

N−1∑

n=0

δt
∑

K∈M

|K| pn+1
K (div(un+1))K ϕnK ,

R(m) =

N−1∑

n=0

δt
∑

σ∈E

Rn+1
σ ϕnσ +

N−1∑

n=0

δt
∑

K∈M

Sn+1
K ϕnK .We �rst study T

(m)
1 . Sin
e the support of ϕ is 
ompa
t in Ω × (0, T ), for spa
e and time steps smallenough (or, equivalently, m large enough), the interpolates of ϕ vanish for n = N , and, at any time, onthe 
ells and fa
es lo
ated in a neighbourhood of the boundaries ; we suppose that it is the 
ase for theelement m of the sequen
e under 
onsideration, for the term T

(m)
1 as well as for the remainder of theproof. Reordering of the sums and then using the de�nition (IV.6) of the density at the edges, we thusget :

T
(m)
1 = −1

2

N−1∑

n=0

δt
∑

σ∈E

|Dσ| ρn+1
σ (un+1

σ )2
ϕn+1
σ − ϕnσ
δt

− 1

2

∑

σ∈E

|Dσ| ρ0
σ (u0

σ)
2 ϕ0

σ

= −1

2

∫ T

0

∫

Ω

ρ(m) (u(m))2 ðtϕE dxδt− 1

2

∫

Ω

ρ(m)(x, 0) (u(m)(x, 0))2 ϕE(x, 0) dx.Sin
e, by assumption, the sequen
e of dis
rete solutions and of interpolates 
onverge in Lr
(
Ω × (0, T )

)for r ≥ 1, and by de�nition of the initial 
onditions, we get :
lim

m−→+∞
T

(m)
1 = −1

2

∫ T

0

∫

Ω

ρ̄ (ū)2∂tϕdxδt− 1

2

∫

Ω

ρ̄(x, 0) (ū(x, 0)2 ϕ(x, 0) dx.By a similar 
omputation, we get for T (m)
2 :

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ∈E

|K| ρn+1
K en+1

K

ϕn+1
K − ϕnK

δt
−
∑

σ∈E

|K| ρ0
K e0K ϕ0

K

= −
∫ T

0

∫

Ω

ρ(m) e(m)
ðtϕM dxδt−

∫

Ω

ρ(m)(x, 0) e(m)(x, 0)ϕM(x, 0) dx,and therefore :
lim

m−→+∞
T

(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ē ∂tϕdxδt−
∫

Ω

ρ̄(x, 0) ē(x, 0)ϕ(x, 0) dx.
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it s
heme 125Let us now turn to T (m)
3 . For K =< σ, σ′ > and ε the dual fa
e in
luded in K, the dual mass �ux reads :

Fn+1
σ,ε =

1

2
(Fn+1
K,σ′ − Fn+1

K,σ ). (IV.21)We thus get, reordering the sums :
T

(m)
3 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

(
Fn+1
K,σ − Fn+1

K,σ′

)
un+1
σ′ un+1

σ

(
ϕnσ − ϕnσ′

)

= −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

(
ρ̃n+1
σ un+1

σ + ρ̃n+1
σ′ un+1

σ′ ) un+1
σ′ un+1

σ

(
ϕnσ − ϕnσ′

)

= −1

2

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

|K| ρn+1
K

(un+1
σ )3 + (un+1

σ′ )3

2

ϕnσ − ϕnσ′

hK
+ R(m)

3 .Let us denote by T (m)
3 the �rst term. We have :

T (m)
3 = −1

2

∫ T

0

∫

Ω

ρ(m) (u(m))3 ðxϕE dxδt, so lim
m−→+∞

T (m)
3 = −1

2

∫ T

0

∫

Ω

ρ̄ ū3 ∂xϕdxδt.The residual term R(m)
3 reads :

R(m)
3 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>[(
ρ̃n+1
σ un+1

σ + ρ̃n+1
σ′ un+1

σ′

)
un+1
σ′ un+1

σ − ρn+1
K

(
(un+1
σ )3 + (un+1

σ′ )3
)]

(ϕnσ − ϕnσ′) (IV.22)Expanding the quantity (un+1
σ )3 + (un+1

σ′ )3 thanks to the identity a3 + b3 = (a + b)(ab + (a − b)2), andthen reordering the sums, we obtain R(m)
3 = R(m)

3,1 + R(m)
3,2 with :

R(m)
3,1 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

[
(ρ̃n+1
σ − ρn+1

K )un+1
σ + (ρ̃n+1

σ′ − ρn+1
K )un+1

σ′

]

un+1
σ un+1

σ′ (ϕnσ − ϕnσ′ )

R(m)
3,2 =

1

4

N∑

n=0

δt
∑

K

|σ| ρn+1
K (un+1

σ + un+1
σ′ ) (un+1

σ − un+1
σ′ )2 (ϕnσ − ϕn

σ′ )In the term R(m)
3,1 , the di�eren
es ρ̃n+1

σ − ρn+1
K and ρ̃n+1

σ′ − ρn+1
K either vanish or 
ompare the density intwo adja
ent 
ells. We thus get :

|R(m)
3,1 | ≤ hCϕ ‖u(m)‖3

L∞ ‖ρ(m)‖T ,x,BV ,and R(m)
3,1 tends to zero when m tends to +∞. By similar arguments :

|R(m)
3,2 | ≤ hCϕ ‖ρ(m)‖L∞ ‖u(m)‖2

L∞ ‖u(m)‖T ,x,BV ,and thus R(m)
3,2 also tends to zero when m tends to +∞.Expressing the mass �uxes as a fun
tion of the unknowns in T

(m)
4 , we get, 
hoosing for σ = K|L theorientation su
h that Fn+1

K,σ ≥ 0, so ρ̃n+1
σ = ρn+1

K and en+1
σ = en+1

K :
T

(m)
4 =

N−1∑

n=0

δt
∑

σ∈E, σ=K→L

|Dσ| ρn+1
K en+1

K un+1
σ nσ

(ϕnK − ϕnL)

|dσ|
,



126 Chapitre IV. Consistent staggered s
hemes for 
ompressible �ows � Euler equations.where the quantity nσ is equal to +1 if xL ≥ xK and to −1 otherwise and the notation σ = K → Lmeans that σ = K|L, with a �ow leaving K and entering L. We de
ompose T (m)
4 = T (m)

4 + R(m)
4 , with :

T (m)
4 = −

N−1∑

n=0

δt
∑

σ∈E, σ=K→L

[
|DK,σ| ρn+1

K en+1
K + |DL,σ| ρn+1

L en+1
L

]
un+1
σ

ϕnL − ϕnK
dσ

nσ,

R(m)
4 =

N−1∑

n=0

δt
∑

σ∈E, σ=K→L

|DL,σ|
[
ρn+1
K en+1

K − ρn+1
L en+1

L

]
un+1
σ

ϕnK − ϕnL
dσ

nσ.We have :
T (m)

4 = −
∫ T

0

∫

Ω

ρ(m) e(m) u(m)
ðxϕM dxδt, so lim

m−→+∞
T (m)

4 = −
∫ T

0

∫

Ω

ρ̄ ē ū ∂xϕdxδt.Expanding the quantity (ρn+1
K en+1

K − ρn+1
L en+1

L ) in the residual term R(m)
4 thanks to the identity 2(ab−

cd) = (a+ c)(b − d) + (b+ d)(a− c), we get :
|R(m)

4 | ≤ Cϕh ‖u(m)‖L∞

[
‖ρ(m)‖L∞ ‖e(m)‖T ,x,BV + ‖e(m)‖L∞ ‖ρ(m)‖T ,x,BV

]
,so that R(m)

4 tends to zero when m tends to +∞.The term T
(m)
5 reads :

T
(m)
5 =

N−1∑

n=0

δt
∑

σ∈E

|Dσ| (∇pn+1)σ u
n+1
σ ϕnσ +

N−1∑

n=0

δt
∑

K∈M

|K| pn+1
K (div(un+1))K ϕnK

=

N−1∑

n=0

δt
[ ∑

σ∈E, σ=K<L

(pn+1
L − pn+1

K ) un+1
σ ϕnσ +

∑

K∈M,K=<σ,σ′>

pn+1
K (un+1

σ′ − un+1
σ ) ϕnK

]

=

N−1∑

n=0

−δt
∑

K∈MK=<σ,σ′>

pn+1
K (un+1

σ′ ϕnσ′ − un+1
σ ϕnσ) + pn+1

K (un+1
σ − un+1

σ′ ) ϕnKWe thus obtain :
T

(m)
5 = −

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

hK
2
pn+1
K un+1

σ

ϕnK − ϕnσ
hK/2

+
hK
2
pn+1
K un+1

σ′

ϕnσ′ − ϕnK
hK/2

= −
∫ T

0

∫

Ω

p(m) u(m)
ðxϕM,E dxδt.and so :

lim
m−→+∞

T
(m)
5 = −

∫ T

0

∫

Ω

p̄ ū ∂xϕdxδt.Finally we study R(m), whi
h we de
ompose in R(m) = R
(m)
c + R

(m)
up , the �rst part gathering the termswhi
h are not linked to a possible upwinding. We have for this residual :

R
(m)
c =

1

2

N−1∑

n=0

[∑

σ∈E

−|Dσ| ρnσ (un+1
σ − unσ)

2 ϕnσ +
∑

K∈M

∑

σ∈E(K)

|DK,σ| ρnK (un+1
σ − unσ)

2 ϕnK

]

=
1

2

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ| ρnK (un+1
σ − unσ)

2 (ϕnK − ϕnσ).
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orre
tion s
heme 127We thus obtain :
R(m)
c ≤ hCϕ ‖ρ(m)‖L∞ ‖u(m)‖L∞ ‖u(m)‖T ,t,BV ,and R(m) tends to zero when m→ ∞. We now turn to the upwind 
ase. The 
orresponding terms read :

R(m)
up =

1

2

N−1∑

n=0

δt
[∑

σ∈E

∑

ε∈Ē(Dσ), ε=Dσ |Dσ′

−|Fn+1
σ,ε | (un+1

σ − un+1
σ′ ) un+1

σ ϕnσ

+
∑

K∈M

∑

ε⊂K, ε=Dσ |Dσ′

|Fn+1
σ,ε | (un+1

σ − un+1
σ′ )2 ϕnK

]As explained at the end of Se
tion IV.3.2, the general idea is now to re
ast this term as a dis
rete versionof the integral over spa
e and time of a quantity of the form −u ∂xu ∂xϕ s
aled by a numeri
al vis
osityvanishing with the spa
e step ; then, the supposed 
ontrols on the solution imply that the term tends tozero. We thus reorder the sums in R(m)
up , whi
h yields :

R(m)
up =

1

2

N−1∑

n=0

δt
∑

K∈M, K=<σ,σ′>

∣∣Fn+1
σ,Dσ |Dσ′

∣∣ (un+1
σ − un+1

σ′ ) (un+1
σ′ ϕnσ′ − un+1

σ ϕnσ)

+
∣∣Fn+1
σ,Dσ |Dσ′

∣∣ (un+1
σ′ − un+1

σ )2ϕnK ,and thus :
R(m)
up =

1

2

N−1∑

n=0

δt
∑

K∈M, K=<σ,σ′>

∣∣Fn+1
σ,Dσ |Dσ′

∣∣ (un+1
σ − un+1

σ′ )
[
un+1
σ (ϕnK − ϕnσ) + un+1

σ′ (ϕnσ′ − ϕnK)
]We thus get, using the de�nition (IV.21) of the mass �uxes at the dual fa
es :

|R(m)
up | ≤ hCϕ ‖ρ(m)‖L∞ ‖u(m)‖2

L∞ ‖u(m)‖T ,x,BV ,whi
h yields the desired 
ontrol.Gathering the expression of the limits of ea
h of the terms T (m)
1 to T (m)

5 and R(m) 
on
ludes the proof.
�IV.4 A pressure 
orre
tion s
hemeIV.4.1 The s
hemeWe derive in this se
tion a pressure 
orre
tion numeri
al s
heme from the impli
it s
heme (IV.5). The�rst step, as usual, is to 
ompute a tentative velo
ity by solving the momentum balan
e equation with thebegining-of-step pressure. Then, the velo
ity is 
orre
ted and the other variables are advan
ed in time,here, whi
h is less standard, by a single 
oupled step ; this is motivated by stability reasons detailed inChapter 3. Still for stability reasons, or, in other words, to be able to derive a kineti
 energy balan
e, weneed that a mass balan
e over the dual 
ells (IV.7) holds ; sin
e the mass balan
e is not yet solved whenperforming the predi
tion step, this leads us to perform a time shift of the density at this step.



128 Chapitre IV. Consistent staggered s
hemes for 
ompressible �ows � Euler equations.The algorithm reads :Predi
tion step � Solve for ũn+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) in the MAC 
ase,
∀σ ∈ E otherwise,

|Dσ|
δt

(ρnσũ
n+1
σ,i − ρn−1

σ unσ,i) +
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i + |Dσ| (∇pn)σ,i = 0, (IV.23a)Corre
tion step � Solve for ρn+1, pn+1, en+1 and un+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) in the MAC 
ase,
∀σ ∈ E otherwise,

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇pn+1)σ,i − (∇pn)σ,i

]
= 0, (IV.23b)

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (IV.23
)

∀K ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ + |K| pn+1

K (div
(
ũn+1)

)
K

= Sn+1
K , (IV.23d)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K . (IV.23e)

IV.4.2 The dis
rete kineti
 energy balan
e equation and the 
orre
tive sour
etermsWe repeat the same pro
ess that we have followed for the impli
it s
heme, to determine the numeri
alterm sour
e SnK . We thus begin with deriving the dis
rete kineti
 energy equation. To this purpose, wesum the momentum balan
e equation (IV.23a) with the velo
ity 
orre
tion equation (IV.23b), whi
hyields :
|Dσ|
δt

(
ρnσu

n+1
σ,i − ρn−1

σ unσ,i
)

+
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i + |Dσ| (∇pn+1)σ,i = 0.Multiplying this equation by the 
orresponding degree of freedom of the predi
ted velo
ity ũn+1

σ,i , weobtain :
|Dσ|
δt

(
ρnσu

n+1
σ,i − ρn−1

σ unσ,i
)
ũn+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũn+1

σ,i + |Dσ| (∇pn+1)σ,i ũ
n+1
σ,i = 0.



IV.4. A pressure 
orre
tion s
heme 129Let us re
ast the �rst two terms of this equation as T (1)
σ,i + T

(2)
σ,i , with :

T
(1)
σ,i =

|Dσ|
δt

(
ρnσũ

n+1
σ,i − ρn−1

σ unσ,i
)
ũn+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũn+1

σ,i ,

T
(2)
σ,i =

|Dσ|
δt

ρnσ
(
un+1
σ,i − ũn+1

σ,i

)
ũn+1
σ,i .The term T

(1)
σ,i has the stru
ture whi
h allows to apply Lemma A.0.2 of the appendix, and we get :
T

(1)
σ,i =

1

2

|Dσ|
δt

[
ρnσ(ũ

n+1
σ,i )2 − ρn−1

σ (unσ,i)
2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũ
n+1
σ,i ũn+1

σ′,i +R
(1)
σ,i ,with :

R
(1)
σ,i =

|Dσ|
2 δt

ρn−1
σ

(
ũn+1
σ,i − unσ,i

)2
+ δup

[ ∑

ε=Dσ |Dσ′

1

2
|Fnσ,ε|

(
ũn+1
σ,i − ũn+1

σ′,i

)]
ũn+1
σ,i .Using the identity 2 (a− b) a = a2 − b2 + (a− b)2, valid for any real numbers a and b, we get for T2 :

T
(2)
σ,i =

1

2

|Dσ|
δt

[
ρnσ(u

n+1
σ,i )2 − ρnσ(ũ

n
σ,i)

2
]

+R
(2)
σ,i ,with :

R
(2)
σ,i = −|Dσ|

2 δt
ρnσ
(
un+1
σ,i − ũn+1

σ,i

)2
.Summing, we get the dis
rete kineti
 energy balan
e equation :

1

2

|Dσ|
δt

[
ρnσ(u

n+1
σ,i )2 − ρn−1

σ (unσ,i)
2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũ
n+1
σ,i ũn+1

σ′,i

+ |Dσ| (∇pn+1)σ,i ũ
n+1
σ,i = Rnσ,i, (IV.24)with :

Rn+1
σ,i = −R(1)

σ,i −R
(2)
σ,i .By the same arguments as in the impli
it 
ase, we get :

∀K ∈ M,

Sn+1
K =

1

2

∑

σ∈E(K)

|DK,σ|
δt

ρn−1
K

∣∣ũn+1
σ − unσ

∣∣2 − 1

2

∑

σ∈E(K)

|DK,σ|
δt

ρnK
∣∣un+1
σ − ũn+1

σ

∣∣2

+ δup
∑

ε∩K̄ 6=∅,

ε=Dσ |Dσ′

αK,ε
|Fn+1
σ,ε |
2

|ũn+1
σ − ũn+1

σ′ |2. (IV.25)Note that, now, the term SK may be negative, whi
h we have indeed observed in 
omputations ; however,even in very severe 
ases (as, for instan
e, Test 3 of [68, 
hapter 4℄), at least with a reasonable time step,we still obtained a positive internal energy.



130 Chapitre IV. Consistent staggered s
hemes for 
ompressible �ows � Euler equations.IV.4.3 Passing to the limit in the s
hemeAs for the impli
it s
heme, we show in this se
tion, in the one dimensional 
ase, that, if a sequen
e ofsolutions is 
ontrolled in suitable norms and 
onverges to a limit, this limit ne
essarily satis�es a (partof the) weak formulation of the 
ontinuous problem.Let (M(m), δt(m))m∈N be a sequen
e of meshes and time steps, su
h that δt(m) and h(m) tend to zeroas m → ∞. Let ρ(m), p(m), e(m), ũ(m) and u(m) be the asso
iated solution of the pressure 
orre
tions
heme (IV.23), obtained, as in the impli
it 
ase, with the 1D version of the s
heme. We suppose thatthis solution satis�es similar 
ontrols as in the 
ase of the impli
it s
heme, so, in addition of the alreadywritten bounds for ρ(m), p(m), e(m) and u(m), we also assume :
|(ũ(m))nσ | ≤ C, ∀σ ∈ E(m), for 0 ≤ n ≤ N (m), ∀m ∈ N,and ‖ũ(m)‖T ,x,BV ≤ C, ‖ρ(m)‖T ,t,BV ≤ C, ∀m ∈ N. (IV.26)Note that we do not need any 
ontrol on ‖ũ(m)‖T ,t,BV . Then we get the following "passage to the limit"theorem.Theorem IV.4.1Let Ω be an open bounded interval of of R. Let (M(m), δt(m))m∈N be a sequen
e of meshes and timesteps, su
h that h(m) and δt(m) tend to zero as m tends to in�nity. Let (ρ(m), p(m), e(m), ũ(m), u(m)

)
m∈Nbe the 
orresponding sequen
e of solutions. We suppose that this sequen
e satis�es (IV.12)�(IV.14) and(IV.26) and 
onverges in Lp

(
(0, T ) × Ω

)5, for 1 ≤ p <∞, to (ρ̄, p̄, ē, ¯̃u, ū) ∈ L∞
(
(0, T ) × Ω

)5.Then ¯̃u = ū and (ρ̄, p̄, ē, ū) satis�es the system (IV.16).Proof . Let ϕ ∈ C∞
c (Ω× (0, T )). Let m ∈ N, M(m) and δt(m) be given, and let the interpolates, and timeand spa
e dis
rete derivatives of ϕ asso
iated to this dis
retization be de�ned, as in the impli
it s
heme,by (IV.17), (IV.18), (IV.19) and (IV.20).We begin with 
he
king that ¯̃u = ū. To this purpose, it is su�
ient to note that the 
orre
tion step yields :

|Dσ| |un+1
σ − ũn+1

σ | ≤ δt |pL − pK |, ∀σ = K|L ∈ E , and for 0 ≤ n ≤ N − 1,so :
‖u(m) − ũ(m)‖L1 ≤ δt ‖p(m)‖T ,x,BVwhi
h, passing to the limit when m→ +∞, yields the result.We now turn to the proof that the limit satis�es (IV.16). On one hand, lets us multiply the dis
retekineti
 energy equation (IV.24) by δt ϕnσ and sum over the edges and the time steps. On the other hand,let us multiply the dis
rete internal energy equation (IV.23d) by δt ϕnK , and sum over the primal 
elles
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orre
tion s
heme 131and the time steps. Finally, let us sum the two obtained relations. We get :
T

(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 + T

(m)
5 = R(m), with :

T
(m)
1 =

1

2

N−1∑

n=0

δt
∑

σ∈E

|Dσ|
δt

[
ρnσ(u

n+1
σ )2 − ρn−1

σ (unσ)
2
]
ϕnσ,

T
(m)
3 =

1

2

N−1∑

n=0

δt
∑

σ∈E

∑

ε∈Ē(Dσ), ε=Dσ |Dσ′

Fnσ,ε ũ
n+1
σ′ ũn+1

σ ϕnσ,

R(m) =

N−1∑

n=0

δt
∑

σ∈E

Rn+1
σ ϕnσ +

N−1∑

n=0

δt
∑

K∈M

Sn+1
K ϕnK ,the terms T (m)

2 , T (m)
4 and T (m)

5 being the same as in the impli
it s
heme.The passage to the limit in the term T
(m)
1 is done as in the impli
it 
ase, just remarking that ρ(m)(·, ·−δt)strongly 
onverges to ρ̄. For the term T

(m)
3 , still by a 
omputation similar to the impli
it 
ase, we get :

Tm3 = −1

2

N−1∑

n=0

δt
∑

K∈M, K=<σ,σ′>

|K| ρnK
unσ(ũ

n+1
σ )2 + unσ′(ũn+1

σ′ )2

2

ϕnσ − ϕnσ′

hK
+ R(m)

3 .Let us denote by T (m)
3 the �rst term. We get :
T (m)

3 = −1

2

∫ T

0

∫

Ω

ρ(m)(x, t− δt) u(m)(x, t− δt) ũ(m)(x, t)2 dxδt,so :
lim

m−→+∞
T (m)

3 = −1

2

∫ T

0

∫

Ω

ρ̄ ū3 ∂xϕdxδt.The residual term R(m)
3 reads :

R(m)
3 = −1

4

N−1∑

n=0

δt
∑

K∈M, K=<σ,σ′>[(
ρ̃nσu

n
σ + ρ̃nσ′unσ′

)
ũn+1
σ′ ũn+1

σ − ρnK

(
unσ (ũn+1

σ )2 + unσ′ (ũn+1
σ′ )2

)]
(ϕnσ − ϕnσ′ ).We thus get :

R(m)
3 = −1

4

N−1∑

n=0

δt
∑

K∈M, K=<σ,σ′>[(
ρ̃nσũ

n+1
σ′ − ρnK ũ

n+1
σ

)

︸ ︷︷ ︸
D1

unσ ũ
n+1
σ +

(
ρ̃nσ′ ũn+1

σ − ρnK ũ
n+1
σ′

)

︸ ︷︷ ︸
D2

unσ′ ũn+1
σ′

]
(ϕnσ − ϕnσ′ ).Using the identity 2(ab− cd) = (a− c)(b + d) + (a+ c)(b − d) for D1 and D1, we 
on
lude that :

|R(m)
3 | ≤ hCϕ ‖u(m)‖L∞ ‖ũ(m)‖L∞

[
‖ρ(m)‖T ,x,BV ‖ũ(m)‖L∞ + ‖ρ(m)‖L∞ ‖ũ(m)‖T ,x,BV

]
,and thus R(m)

3 tends to zero when m tends to +∞.
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hemes for 
ompressible �ows � Euler equations.Finally we study R(m), whi
h we split in R(m) = R
(m)
c +R

(m)
up , the �rst part, namely R(m)

c , gathering theterms whi
h are not asso
iated to the upwinding :
R(m)
c = −1

2

N−1∑

n=0

∑

σ∈E

|Dσ|
[
ρn−1
σ (ũn+1

σ − unσ)
2 − ρnσ (ũn+1

σ − un+1
σ )2

]
ϕnσ

+
1

2

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ|
[
ρn−1
K (ũn+1

σ − unσ)
2 − ρnK (ũn+1

σ − un+1
σ )2

]
ϕnKThanks to the de�nition of the density on the edges, we get :

R(m)
c =

1

2

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ|
[
ρn−1
K (ũn+1

σ − unσ)
2 − ρnK (ũn+1

σ − un+1
σ )2

]
(ϕnK − ϕnσ),so :

|R(m)
c | ≤ hCϕ

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ|
∣∣∣ρn−1
K (ũn+1

σ − unσ)
2 − ρnK (ũn+1

σ − un+1
σ )2

∣∣∣.Developping :
ρn−1
K (ũn+1

σ − unσ)
2 − ρnK (ũn+1

σ − un+1
σ )2 =

(ρn−1
K − ρnK) (ũn+1

σ − unσ)
2 + ρnK (un+1

σ − unσ)(2ũ
n+1
σ − unσ − un+1

σ )yields :
|R(m)
c | ≤ hCϕ ‖ρ(m)‖T ,t,BV

(
‖u(m)‖2

L∞ + ‖ũ(m)‖2

L∞

)

+ ‖ρ(m)‖L∞ ‖u(m)‖T ,t,BV
(
‖u(m)‖L∞ + ‖ũ(m)‖L∞

)
,and so R(m)

c tends to zero as m tends to +∞. Repla
ing u(m) by ũ(m), the term R
(m)
up takes the sameexpression as in the impli
it 
ase, and so also tends to zero. Gathering all the limits yields the result weare seeking. �IV.5 Numeri
al testsIn this se
tion, we assess the behaviour of the s
heme on a one dimensional Riemann problem. We 
hooseinitial 
onditions su
h that the stru
ture of the solution 
onsists in two sho
k waves, separated by the
onta
t dis
ontinuity, with su�
iently strong sho
ks to allow to easily dis
rimate between 
onvergen
eto the 
orre
t weak solution or not. These initial 
onditions are those proposed in [68, 
hapter 4℄, for thetest refered to as Test 5 :left state : ρLuL

pL


 =




5.99924

19.5975

460.894


 right state : ρRuR

pR


 =




5.99242

−6.19633

46.0950


The problem is posed over Ω = (−0.5, 0.5), and the dis
ontinuity is initially lo
ated at x = 0.We obtain a one dimensional s
heme by simply taking one horizontal stripe of meshes (of 
onstant size)with the MAC dis
retization, and applying perfe
t slip boundary 
onditions at the top and bottom
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al tests 133boundary. At the other boundaries, sin
e, in this test, the �ow is entering the domain, the solutionis pres
ribed (whi
h, in fa
t, is unimportant, the solution being 
onstant at any time in a su�
ientlylarge neighbourhood of these boundaries). Passed numeri
al experiments addressing barotropi
 �ows (seeChapter 1) showed that, at least for one dimensional 
omputations with s
hemes similar to the one understudy here, it was not ne
essary to use upwinding in the momentum balan
e equation ; 
onsequently, weonly employ a 
entered approximation of the velo
ity at the dual edges.The 
omputations are performed with the open-sour
e software ISIS [40℄, developed at IRSN on the basisof the software 
omponent library and programming environment PELICANS [63℄.The density �elds obtained with h = 1/2000 (or a number of 
ells n = 2000) at t = 0.035, with andwithout assembling the 
orre
tive sour
e term in the internal energy balan
e (SK)K∈M, together withthe analyti
al solution, are shown on Figure IV.2. The density and the pressure obtained, still with andwithout 
orre
tive terms, for various meshes, are plotted on Figure IV.3 and IV.3 respe
tively. For these
omputations, we take δt = h/20, whi
h yields a 
� number, with respe
t to the material velo
ity only,
lose to one. The �rst 
on
lusion is that both s
hemes seem to 
onverge, but the 
orre
tive term isne
essary to obtain the 
orre
t solution. In this 
ase, for instan
e, we obtain the 
orre
t intermediatestate for the pressure and velo
ity up to four digits in the essential part of the 
orresponding zone :(analyti
al) intermediate state : [
p∗

u∗

]
=

[
1691.65

8.68977

] for x ∈ (0.028, 0.428)numeri
al results : ∣∣∣∣∣∣

p ∈ (1691.6, 1691.8)

u ∈ (8.689, 8.690)
for x ∈ (0.032, 0.417)Without 
orre
tive term, one 
an 
he
k that the obtained solution is not a weak solution to the Eulersystem : indeed, the Rankine-Hugoniot 
ondition applied to the total energy balan
e, with the statesobtained numeri
ally, yields a right sho
k velo
ity slightly greater than the analyti
al solution one, whilethe same sho
k velo
ity obtained numeri
ally is 
learly lower.We also observe that the s
heme is rather di�usive, spe
ially for representing the 
onta
t dis
ontinuity,where the bene�
ial 
ompressive e�e
t of the sho
ks does not apply. More a

urate variants may 
ertainlybe derived, using for instan
e MUSCL-like te
hniques. Finally, let us also mention that a fully expli
itversion of the s
heme is 
urrently under testing.
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AnnexeA Some results asso
iated to �nitevolume 
onve
tion operators
We gather in this se
tion some results 
on
erning the dis
retization by the �nite volume method of two
onve
tion operators :- the �rst one reads, at the 
ontinuous level, ρ→ C(ρ) = ∂tρ+ div(ρu), where u stands for a givenvelo
ity �eld, whi
h is not assumed to satisfy any divergen
e 
onstraint,- the se
ond one is z → Cρ(z) = ∂t(ρz) + div(ρzu), where ρ and u stands for two given s
alar andve
tor �elds, whi
h are supposed to satisfy ∂tρ+ div(ρu) = 0.Multiplying these operators by fun
tions depending on the unknown is 
urrently used to obtain 
onve
tionoperators a
ting over di�erent variables, possibly with residual terms : one may think, for instan
e, tothe theory of renormalized solutions (for the �rst one), or, in me
hani
s, to the derivation of the so-
alledkineti
 energy transport identity (for the se
ond one). The results provided in this se
tion are dis
retevariants of su
h relations.We begin with a property of C, whi
h, at the 
ontinuous level, may be formally obtained as follows. Let
ψ be a regular fun
tion from (0,+∞) to R ; then :
ψ′(ρ) C(ρ) = ψ′(ρ) ∂t(ρ) + ψ′(ρ)u · ∇ρ+ ψ′(ρ) ρ divu

= ∂t(ψ(ρ)) + u · ∇ψ(ρ) + ρψ′(ρ) divu,so adding and subtra
ting ψ(ρ) divu yields :
ψ′(ρ) C(ρ) = ∂t

(
ψ(ρ)

)
+ div

(
ψ(ρ)u

)
+
(
ρψ′(ρ) − ψ(ρ)

)
divu. (A.1)Obtaining a proof of this last identity, in a weak sense and with minimal regularity assumptions for ρand u and in
reasing properties of ψ is the obje
t of the theory of renormalized solutions. The followinglemma states a dis
rete analogue to (A.1).



138 Annexe A. Some results asso
iated to �nite volume 
onve
tion operatorsLemma A.0.1Let K ∈ M. Let ρ∗K and ρK be two positive real numbers. For σ ∈ E(K), let Fσ be a quantity asso
iatedto the fa
e σ and the 
ontrol volume K, de�ned by
∀σ ∈ E(K), Fσ = ρσ Vσ.where ρσ and Vσ are a positive real number and a real number respe
tively, both asso
iated to the edge

σ. Let ψ be a twi
e 
ontinuously di�erentiable fun
tion, de�ned over (0,+∞).Then the following identity holds :
[ |K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

Fσ

]
ψ

′

(ρK) =
|K|
δt

[
ψ(ρK) − ψ(ρ∗K)

]
+

∑

σ∈E(K)

ψ(ρσ) Vσ

+
[
ρKψ

′

(ρK) − ψ(ρK)
] ∑

σ∈E(K)

Vσ +Rσ,δt (A.2)where
Rσ,δt =

1

2

|K|
δt
ψ

′′

(ρK)(ρK − ρ∗K)2 − 1

2

∑

σ∈E(K)

Vσ ψ
′′(ρσ)(ρσ − ρK)2,and, ∀σ ∈ E(K), ρK ∈ [min(ρK , ρ

∗
K),max(ρK , ρ

∗
K)] and ρσ ∈ [min(ρσ, ρK),max(ρσ, ρK)]. If we supposethat the fun
tion ψ is 
onvex and that ρσ = ρK as soon as Vσ ≥ 0, then the residual Rσ,δt is non-negative.Proof Let be a twi
e 
ontinuously di�erentiable fun
tion, de�ned over (0,+∞), and K ∈ M. We have :

[ |K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

Fσ

]
ψ

′

(ρK) =
|K|
δt

(ρK − ρ∗K) ψ
′

(ρK) +
∑

σ∈E(K)

ψ(ρσ) Vσ

+
∑

σ∈E(K)

[
ρσψ

′

(ρK) − ψ(ρσ)
]
Vσ.By the regularity assumption for ψ, we may write Taylor expansions of ψ to obtain that there exists realsnumbers ρK ∈ [min(ρK , ρ

∗
K),max(ρ∗K , ρ

∗
K)] and, for all the fa
es σ ∈ E(K), ρσ ∈ [min(ρσ, ρK),max(ρσ, ρK)]su
h that :

(ρK − ρ∗K)ψ
′

(ρK) = ψ(ρK) − ψ(ρ∗K) +
1

2
ψ

′′

(ρK)(ρK − ρ∗K)2,

ρσψ
′

(ρK) − ψ(ρσ) = ρKψ
′

(ρK) − ψ(ρK) − 1

2
ψ′′(ρσ)(ρσ − ρK)2,whi
h yields the result. �We now turn to the se
ond operator, for whi
h we have, at the 
ontinuous level and formally, using twi
ethe assumption ∂tρ+ div(ρu) = 0 :

ψ′(z) Cρ(z) = ψ′(z)
[
∂t(ρ z) + div(ρ z u)

]
= ψ′(z)ρ

[
∂tz + u · ∇z

]

= ρ
[
∂tψ(z) + u · ∇ψ(z)

]
= ∂t

(
ρψ(z)

)
+ div

(
ρψ(z)u

)
.Taking for z a 
omponent of the velo
ity �eld, this relation is the 
entral argument used to derive thekineti
 energy balan
e. The following lemma states a dis
rete 
ounterpart of this identity.



139Lemma A.0.2Let K ∈ M. Let ρ∗K and ρK be two positive real numbers. For σ ∈ E(K), let Fσ be a quantity asso
iatedto the fa
e σ, su
h that the following identity holds :
|K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

Fσ = 0. (A.3)Let u∗K and uK be two real numbers, and, to ea
h σ ∈ E(K), we asso
iate a rela number uσ. Let ψ be atwi
e 
ontinuously di�erentiable fun
tion, de�ned over (0,+∞). Then the following relation holds :
[ |K|
δt

(
ρK uK − ρ∗K u

∗
K

)
+

∑

σ∈E(K)

Fσ uε

]
ψ′(uK)

=
|K|
δt

[
ρK ψ(uK) − ρ∗K ψ(u∗K)

]
+

∑

σ∈E(K)

Fσ ψ(uσ) +RK,δt (A.4)where :
RK,δt =

1

2

|K|
δt
ρ∗K ψ′′(uK)(uK − u∗K)2 − 1

2

∑

σ∈E(K)

Fσ ψ
′′(uσ) (uσ − uK)2,with, uK ∈ [min(uK , u

∗
K),max(uK , u

∗
K)] and, ∀σ ∈ E(K), uσ ∈ [min(uσ, uK),max(uσ, uK)]. If we supposethat the fun
tion ψ is 
onvex and that uσ = uK as soon as Fσ ≥ 0, then the residual Rσ,δt is non-negative.If we now take for ψ the fun
tion ψ(s) = s2/2 and write, ∀σ ∈ E(K), uσ = (uK + u

K |
σ
·)/2 (or, in otherwords, de�ne u

K |
σ
· as u

K |
σ
· = 2 uσ − uK), we get the following identity :

[ |K|
δt

(
ρK uK − ρ∗K u

∗
K

)
+

∑

σ∈E(K)

Fσ uε

]
uK

=
1

2

|K|
δt

[
ρK u

2
K − ρ∗K (u∗K)2

]
+

∑

σ∈E(K)

Fσ uK u
K |
σ
· +RK,δt, (A.5)with RK,δt =

1

2

|K|
δt
ρ∗K (uK − u∗K)2.Proof Let ψ be a twi
e 
ontinuously di�erentiable fun
tion, de�ned over (0,+∞). Using Equation (A.3),we obtain :

TK =
[ |K|
δt

(ρKuK − ρ∗Ku
∗
K) +

∑

σ∈E(K)

Fσ uσ

]
ψ′(uK) =

[ |K|
δt

ρ∗K (uK − u∗K) +
∑

σ∈E(K)

Fσ(uσ − uK)
]
ψ′(uK).By a Taylor expansion of ψ, then there exists a real number uK ∈ [min(u∗K , uK),max(u∗K , uK)] su
h that :

ψ′(uK)
(
uK − u∗K

)
= ψ(uK) − ψ(u∗K) +

1

2
ψ′′(uK)

(
uK − u∗K

)2



140 Annexe A. Some results asso
iated to �nite volume 
onve
tion operatorsThen, using on
e again (A.3), we have :
TK =

|K|
δt

ρ∗K
(
ψ(uK) − ψ(u∗K)

)
+

1

2

|K|
δt
ρ∗K ψ

′′(uK) (uK − u∗K)2

+
∑

σ∈E(K)

Fσ (uσ − uK)ψ′(uK)

=
|K|
δt

(
ρKψ(uK) − ρ∗Kψ(u∗K)

)
+

∑

σ∈E(K)

Fσ
[
ψ(uK) + ψ′(uK)(uσ − uK)

]

+
1

2

|K|
δt
ρ∗K ψ

′′(uK) (uK − u∗K)2.On
e again by a Taylor expansion of ψ, for any fa
e σ ∈ E(K), there exists a real number uσ ∈
[min(uσ, uK),max(uσ, uK)] su
h that :

ψ(uK) + ψ′ (uK)(uσ − uK) = ψ(uσ) −
1

2
ψ′′(uσ) (uσ − uK)2.Hen
e :

TK =
|K|
δt

ρ∗K
(
ψ(uK) − ψ(u∗K)

)
+

∑

σ∈σ(K))

Fσ ψ(uσ) +RK,δt,where RK,δt is given by the expression given in the statement of the lemma. This yields the �rst assertionof the lemma ; the last two ones are straightforward 
onsequen
es of this equality. �



AnnexeB The Riemann problem for thehomegeneous model
In this se
tion, we show how to solve the RIemann problem for the homogeneous model.B.1 The system of 
onservation laws and its mathemati
al pro-pertiesThe model � We address in this se
tion a model for two-phase �ows (without phase 
hange), whi
hreads, in the one-dimensionnal 
ase :

∣∣∣∣∣∣∣∣∣∣∣∣

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p) = 0,

∂t(ρy) + ∂x(ρyu) = 0,

(B.1)where u stands for the �uid velo
ity, p for the pressure, ρ for the �uid density and y stands for the gasmass fra
tion. This system must be 
omplemented by an equation of state, whi
h takes the form :
ρ =

1
y

ρg
+

1 − y

ρl

, (B.2)where ρg and ρl stand for the (phasi
) gas and liquid density respe
tively. We assume that the liquiddensity ρl is 
onstant, and that the gas phase obeys the perfe
t gas law ρg = p/(RT ), where where R isthe gas 
onstant and T is the absolute temperature. This allows to 
ompute the pressure from relation(B.2), in order to obtain an expression of the quantity ∂xp as a fun
tion of the 
onservative variables :
p =

RTρl (ρy)

ρl + (ρy) − ρ
. (B.3)



142 Annexe B. The Riemann problem for the homegeneous modelWe de�ne q = ρu, z = ρy, U = (ρ, q, z)t. With these de�nitions, the system (B.1) reads :
∂tU + ∂x

(
F (U)

)
= 0, with F (U) = (q,

q2

ρ
+ p(ρ, z), z)t, p(ρ, z) =

RTρlz

ρl + z − ρ
. (B.4)We suppose that the variable U belongs to the 
onvex subset of R3 (sometimes referred to as the set ofstates of the system) :

C =
{
(ρ, q, z) ∈ R

3, ρ > 0, 0 < z ≤ ρ, ρl + z − ρ > 0
}
,whi
h ensures in parti
ular that the equation of state makes sense. For a regular solution, System (B.4)may be set in non-
onservative form :

∂tU + ∂xF (U) = ∂tU +A(U) · ∂xU = 0,with :
A =




0 1 0

− q
2

ρ2
+ ∂ρp

2q

ρ

q2

ρ2
+ ∂zp

−qz
ρ2

z

ρ

q

ρ



, (B.5)and, by (B.3) :

∂ρp =
RTρlz

(ρl + z − ρ)2
, ∂zp =

RTρl (ρl − ρ)

(ρl + z − ρ)2
.Hyperboli
ity, eigenvalues and eigenve
tors of the systemDefinition B.1.1 (hyperboli
 problems)Let C be an open subset of Rn. We 
onsider the nonlinear system of 
onservation laws :

∂tU +B(U) · ∂x
(
F (U, x, t)

)
= 0, x ∈ R, t > 0, (B.6)where U ∈ C is a ve
tor fun
tion of x an t, and F ∈ Rn stands for a regular ve
tor fun
tion dependingon U as well as, possibly, on x and t. We denote by A the n×n-matrix asso
iated to the di�erential of Fwith respe
t to U ; A depends on U as well as, possibly, on x and t. System (B.6) is said to be hyperboli
if, for ea
h x, t and U , all the eigenvalues of the matrix A belong to R :

λ1(U) ≤ λ2(U) ≤ ... ≤ λn(U).To ea
h eigenvalue λk(U), we asso
iate an eigenve
tor rk(U) :
A(U) · rk(U) = λk(U) rk(U).The kth 
hara
teristi
 �eld is said to be genuinely nonlinear if :

Dλk(U) · rk(U) 6= 0, ∀U ∈ C,where D stands for the di�erential operator in Rn (i.e. Dλk stands for the derivative of λk with respe
tto U). The kth 
hara
teristi
 �eld is said to be linearly degenerate if :
Dλk(U) · rk(U) = 0, ∀U ∈ C.



B.1. The system of 
onservation laws and its mathemati
al properties 143Returning, to alleviate notations, to non-
onservative variables, the matrix A reads :
A =




0 1 0

∂ρp− u2 2u u2 + ∂zp

−uy y u


 . (B.7)We denote by a the positive real number su
h that :

a2 = ∂ρp+ y ∂zp =
RTρl z

(ρl + z − ρ)2
.This quantity a is referred to as the sound velo
ity of the mixture. The matrix A has three eigenvalues,whi
h, with this notation, read :

λ1(U) = u− a, λ2(U) = u, λ3(U) = u+ a,and the system is thus hyperboli
. The 
orresponding eigenve
tors are given by :
r1 =




1

u− a

y


 , r2 =




1

u

z/(ρ− ρl)


 , r3 =




1

u+ a

y


 .A tedious but straightforward 
omputation shows that the 
hara
teristi
 �elds asso
iated to the eigenva-lues λ1 and λ3 are genuinely nonlinear, while the 
hara
teristi
 �eld asso
iated to λ2 is linearly degenerate.Riemman invariantsDefinition B.1.2 (Riemann invariants)Fo 1 ≤ k ≤ n, a smooth fun
tion W : C → R is 
alled a k-Riemann invariant if it satis�es :

DW (U) · rk(U) = 0, ∀U ∈ C.A k-Rieman invariant W is 
onstant on a 
urve V : ξ ∈ R → V (ξ) ∈ Rn if :
d

dξ
W (V (ξ)) = DW (V (ξ)).V ′(ξ) = 0, (B.8)whi
h holds if V is an integral 
urve of rk, i.e. satis�es that V ′(ξ) is 
olinear to rk(V (ξ)). There existlo
ally (n− 1) k-Rieman invariants whose gradients are linearly independent.Let us now sear
h for the Riemann invariants asso
iated of the system equation (B.1). A

ording to thede�nition B.1.2, we have two Riemann invariants for ea
h eigenvalue of A.� the 1-Riemann invariants are :

W1,1 = y, W1,2 = u+
√
RTy log(

ρ− z

ρl + z − ρ
). (B.9)� the 2-Riemann invariants are given by :

W2,1 = u, W2,1 = p. (B.10)� the 3-Riemann invariants are :
W3,1 = y, W3,2 = u−

√
RTy log(

ρ− z

ρl + z − ρ
). (B.11)



144 Annexe B. The Riemann problem for the homegeneous modelRarefa
tion waves � System (B.4) satis�es the property of self-similarity, i.e. is invariant underthe transormation t 7→ αt, x 7→ αx, α > 0. If the intial data of the problem is also invariant under thetransformation x 7→ αx, we thus 
on
lude that a regular solution to (B.4) must satisfy U(x, t) = U(αx, αt)whatever α > 0 may be, i.e. U(x, t) = U(x/t), for t > 0. Su
h a (regular) solution is 
alled a rarefa
tionwave.Let ξ = x/t, and V (ξ) = U(x/t), and substitute this expression for U in (B.4), to obtain :
A(V ) V ′(ξ) = ξ V ′(ξ).We dedu
e for this relation that either V ′ is zero, whi
h 
orresponds to the trivial 
ase of a 
onstantstate, or this ve
tor is ne
essarily 
olinear to an eigenve
tor rk(V ) of the matrix A(V ) :

V ′(ξ) = β rk
(
V (ξ)

)
, λk

(
V (ξ)

)
= ξ. (B.12)The rarefa
tion waves are always asso
iated to genuinely nonlinear �elds, so, for the problem at hand,there are two possible families of rarefa
tion waves, the �rst one asso
iated to λ1 and the se
ond one to

λ3 ; a solution of the �rst 
lass is 
alled a 1-rarefa
tion wave, and a solution of the se
ond 
lass is 
alleda 3-rarefra
tion wave. Thanks to (B.8), Riemann invariants are kept 
onstant in rarefa
tion waves, so an1-wave satis�es :
W1,1(x, t) = y = cste, W1,2(x, t) = u+

√
RTy log(

ρ− z

ρl + z − ρ
) = cste, (B.13)and a 3-wave satis�es :

W3,1(x, t) = y = cste, W3,2(x, t) = u−
√
RTy log(

ρ− z

ρl + z − ρ
) = cste. (B.14)Dis
ontinuous solutions and entropy 
ondition � It is wellknown that hyperboli
 problems donot always have 
ontinuous solutions. This leads to introdu
e the notion of "weak solution", de�nedas a solution in the distribution sense of the problem in 
onservative form, here System (B.1). Let ussuppose that su
h a solution is pie
ewise 
onstant, 
onsisting (lo
ally) in two 
onstant states separatedby a dis
ontinuity. Exploiting the de�nition of weak solutions yields algebrai
 relations (one per equation)whi
h links the jump through the dis
ontinuity of the solution, the asso
iated �uxes and the velo
ity ofthe dis
ontinuity, de�ned by σ = d(xs)/dt, where xs stands for the dis
ontinuity lo
ation ; su
h a relationis 
alled a Rankine-Hugoniot 
ondition, and the system 
onstituted by these relations reads :

σ[U ] = [F (U)], (B.15)where [U ] (resp. [F (U)]) stands for the jump of U (resp. F (U)) through the dis
ontinuity. Unfortunately,this algebrai
 system is not su�
ient to ensure the uniqueness of the solution (of 
ourse, in the 
lass ofpie
ewise 
onstant fun
tions). Hen
e, we need to introdu
e some 
riterion that enables us to 
hoose the"physi
ally relevent" solution among all the weak solutions of the problem. This 
riterion is 
alled the"Lax entropy 
onditions".
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onditions)Let U be de�ned by U = UL if x < σt, and U = UR if x > σt, where UL and UR are two 
onstant states(i.e. two 
onstant ve
tors of Rn). We say that the dis
ontinuity satis�es the Lax entropy 
onditions ifthere exists an index k ∈ {1, 2 . . . , n} su
h that we have either :
λk−1(U

L) < σ < λk(U
L) and λk(UR) < σ < λk+1(U

R), (B.16)if the kth 
hara
teristi
 �eld is genuinely nonlinear (setting, in this relation, λ0 = −∞ and λn+1 = +∞),or :
λk(U

L) = σ = λk(U
R) (B.17)if the kth 
hara
teristi
 �eld is linearly degenerate.Sho
ks � For System (B.1), we have two 
lass of dis
ontinuities asso
iated to genuinely nonlinear �elds,whi
h we 
all sho
ks : a 1-sho
k is asso
iated to λ1 and a 3-sho
k is asso
iated to λ3. Exploiting theRankine-Hugoniot and Lax entropy 
onditions, we �nd that the quantity y is left 
onstant through thesho
ks, and that a state (u, p) may be 
onne
ted to UL and UR respe
tively by a 1-sho
k wave and a3-sho
k wave if :� 1-sho
k wave :

u = uL − p− pL√
p

√
ρlRT yL

ρlRT ρL yL + pL ρL (1 − yL)
, pL ≤ p. (B.18)� 3-sho
k wave :

u = uR +
p− pR√

p

√
ρlRT yR

ρlRT ρR yR + pR ρR (1 − yR)
, pR ≤ p. (B.19)Conta
t dis
ontinuity � The possible dis
ontinuity asso
iated to the linearly degenerated �eld is
alled a 
onta
t dis
ontinuity. The Riemann invariants are known to be kept 
onstant through su
h adis
ontinuity, so su
h is the asso
iated eingenvalue of the system. The Lax 
ondition thus implies that thevelo
ity of the dis
ontinuity is ne
essarily equal to this 
onstant value. Here, the 
onta
t dis
ontinuity isasso
iated to the se
ond eigenvalue λ2 = u, and thus, thanks to (B.10) :

σ = UL = UR, pL = pR.B.2 Solution of the Riemann problemA Riemann problem 
onsists in sear
hing for the solution to an hyperboli
 problem with a pie
ewise
onstant initial data, with a single dis
ontinuity, usually lo
ated at the origin. For �uid me
hani
s problem,it is often 
alled a "sho
k tube problem", sin
e it 
an be thought of as an in�nitely long (in order to avoidre�e
tions) tube where the left and the right regions are separated by a diaphragm, and �lled by thesame �uid in two di�erent physi
al states. At the bursting of the diaphragm, the dis
ontinuity betweenthe two initial states breaks into leftward and rightward moving waves, wi
h are separated by a 
onta
tsurfa
e.For the system under 
onsideration, a

ording to the wave stru
ture des
ribed in the previous se
tion,ea
h wave pattern is 
omposed by a 
onta
t dis
ontinuity (C) in the middle, and a sho
k (S) or a
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x= 0

L Rtwo-�uidFig. B.1 � Geometry of tuberarefa
tion wave (R) at the left and right hand sides separating uniform states (see Figure B.2). All theavailable 
ombinations produ
e four wave patterns ; RCR, RCS, SCR,SCS, whi
h are self-similar, that isonly depend on x/t.Let UL be the left state and UR be the right one. The unknown region between the left and right wavesis divided by the middle wave (
onta
t dis
ontinuity) into two intermediate states U1 and U2 su
h that :� U2 is 
onne
ted to the state UL by a 1-wave,� U1 is 
onne
ted to the state U2 by a 2-wave,� UR is 
onne
ted to the state U1 by a 3-wave.We use the fa
t that the pressure p and the velo
ity u are 
onstant through the 
onta
t dis
ontinuity,and the gas mass fra
tion y is a Riemann invariant for both the 1-wave and the 3-wave, to obtain :
u1 = u2 = u∗, p1 = p2 = p∗, y1 = yL, y2 = yR.where (p∗, u∗) stands for the pressure and velo
ity in the two intermediate states. The problem thusboils down to determine this pair of values. To this purpose, we use the results obtained in the previousse
tion :


onta
t dis
ontinuity
UL UR

1-rarefa
tionor1-sho
k wave 3-rarefa
tionor3-sho
k wave

onstant state U1
onstant state

U2

t

x
0

λ1(UL)

λ1(U2)

λ2(U2)

λ3(U1)

λ3(UR)

Fig. B.2 � Solution of the Riemann problem in (x, t) spa
e.



B.2. Solution of the Riemann problem 147� 1-wave � If p∗ > pL, the 1-wave is a sho
k, and the pair (u∗, p∗) satis�es (B.18) with UL = UL :
u∗ = uL − p∗ − pL√

p∗

√
ρlRT yL

ρlRT ρL yL + pL ρL (1 − yL)
, p∗ ≥ pL.Otherwise, the 1-wave is a rarefa
tion wave, and, using the expression (B.9) of the se
ond asso
iatedRiemann invariant, we obtain that (u∗, p∗) satis�es :

u∗ = uL +
√
RTyL log(

pL
p∗

), with p∗ ≤ pL.Equation (B.18) and this latter relation de�ne a 
urve C1 in the plane (u, p), representative of a fun
tionof p∗, p∗ ∈ (0,+∞) ; for yL > 0, this fun
tion is stri
tly in
reasing, and one-to-one from (0,+∞) to R(limp∗→0 u
∗ = +∞, and limp∗→+∞ u∗ = −∞).� 3-wave � Similarly, If p∗ > pL, the 3-wave is a sho
k, and the pair (u∗, p∗) satis�es (B.19) with

UR = UR :
u∗ = uR +

p∗ − pR√
p∗

√
ρlRT yR

ρlRT ρR yR + pR ρR (1 − yR)
, p∗ ≥ pR.Otherwise, the 3-wave is a rarefa
tion wave, and, using the expression (B.11) of the se
ond asso
iatedRiemann invariant, we obtain that (u∗, p∗) satis�es :

u∗ = uR −
√
RTyR log(

pR
p∗

), with p∗ ≤ pR.Equation (B.19) and this latter relation also de�ne a 
urve C3 in the plane (u, p), representative ofa fun
tion of p∗, p∗ ∈ (0,+∞) ; for yR > 0, this fun
tion is stri
tly de
reasing, and one-to-one from
(0,+∞) to R (limp∗→0 u

∗ = −∞, and limp∗→+∞ u∗ = +∞).The pair (u∗, p∗) is lo
ated at the (unique) interse
tion of the 
urves C1 and C3.We give below two exemples of appli
ation of this strategy to �nd the solution of parti
ular Riemannproblems.B.2.1 Sod sho
k tubeWe assume here that the gas mass fra
tion is set to y ≡ 1 (one phase problem) ; the equation of state isgiven by p = ρRT , and the two-phase problem just boils down to the isothermal Euler equations. Thetwo initial 
onstant states are given by :
(
ρ

u

)

L

=

(
1

0

)
,

(
ρ

u

)

R

=

(
0.125

0

)
.The parameters R and T are adjusted to produ
e RT = 1.We start by determining the intermediate states by drawing the set of a

essible states from the left andright in the spa
e (p, u) (see Figure B.3), and we determine the interse
tion :

(p∗, u∗) = (0.34, 1.06).The wave stru
ture of this system 
onsists in a sho
k travelling to the right with a velo
ity equal to 1.66and a rarefa
tion wave travelling to the left, whi
h reads :
p(x) =

1

ex+1
and u(x) = x+ 1, for − t 6 x 6 0.061 t.This solution is drawn in Fig B.4.
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Fig. B.3 � 
urves of the sho
k-rarefa
tion in the spa
e (p, u)

Fig. B.4 � Sod sho
k tube problem � Exa
t solution at t = 1B.2.2 Two-�uid sho
k tubeWe now address a two-phase problem, the equation of state (B.3) of whi
h we re
all :
p =

RTρℓρy

ρℓ + ρy − ρ
.The parameters R and T are adjusted to produ
e RT = 10 and the liquid density is 
onstant and set to

ρℓ = 0.8. The two initial 
onstant states are given by :



ρ

u

y




L

=




1.

5.

0.3


 ,




ρ

u

y




R

=




2.

1.

0.8


 .We determine the intermediates states by drawing the set of a

essible states from the left and right in
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Fig. B.5 � Curves of the sho
k-rarefa
tion in the spa
e (p, u)the spa
e (p, u) (see Figure B.5), and then 
ompute the interse
tion :
(u∗, p∗) = (3.14 , 67.06).The asso
iated waves are a 1-sho
k and a 3-sho
k. The wave stru
ture of this system thus 
onsists ina sho
k wave travelling to the left and a sho
k wave travelling to the right, separated by a 
onta
tdis
ontinuity in the middle, see Figure B.6. The solution reads :� (uL, pL) is 
onne
ted to (u∗, p∗) by 1-sho
k with a sho
k velo
ity equal to −18.16, and (u∗, p∗) is
onne
ted to uR by a 3-sho
k with a sho
k velo
ity equal to 9.18,� y = yL up to the 
onta
t dis
ontinuity, and then equal to yR ; the 
onta
t dis
ontinuity velo
ity isequal to u∗ = 3.14.� ρL is 
onne
ted to ρ1 by the 1-sho
k (sho
k velo
ity equal to −18.16), then ρ1 is 
onne
ted to ρ2 by the
onta
t dis
ontinuity (velo
ity equal to u∗ = 3.14), then, �nally, ρ2 is 
onne
ted to ρR by the 3-sho
k(sho
k velo
ity equal to 9.18).
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Fig. B.6 � Two-phase : sho
k � 
onta
t dis
ontinuity � sho
k - Exa
t solution at t = 0.1.



AnnexeC Staggered dis
retizations,pressure 
orre
tions s
hemesand all speed barotropi
 �ows

W
e present in this paper a 
lass of s
hemes for the solution of thebarotropi
 Navier-Stokes equations. These s
hemes work on ge-neral meshes, preserve the stability properties of the 
ontinuousproblem, irrespe
tively of the spa
e and time steps, and boil down, when theMa
h number vanishes, to dis
retizations whi
h are standard (and stable) inthe in
ompressible framework. Finally, we show that they are able to 
apturesolutions with sho
ks to the Euler equations.
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C.1 Introdu
tionThe problem addressed in this paper is the system of the so-
alled barotropi
 
ompressible Navier-Stokesequations, whi
h reads :
∂tρ̄+ div(ρ̄ū) = 0, (C.1a)
∂t(ρ̄ū) + div(ρ̄ū ⊗ ū) + ∇p̄− div(τ (ū)) = 0, (C.1b)
ρ̄ = ℘(p̄), (C.1
)where t stands for the time, ρ̄, ū and p̄ are the density, velo
ity and pressure in the �ow, and τ (u)stands for the shear stress tensor. The fun
tion ℘(·) is the equation of state used for the modelling ofthe parti
ular �ow at hand, whi
h may be the a
tual equation of state of the �uid or may result fromassumptions 
on
erning the �ow ; typi
ally, laws as ℘(p̄) = p̄1/γ , where γ is a 
oe�
ient whi
h is spe
i�
to the 
onsidered �uid, are obtained by making the assumption that the �ow is isentropi
. This systemof equations is posed over Ω× (0, T ), where Ω is a domain of R

d, d ≤ 3 supposed to be polygonal (d = 2)or polyhedral (d = 3), and the �nal time T is �nite. We suppose that the boundary of Ω is split into
∂Ω = ∂ΩD ∪ ∂ΩN , and we suppose that the velo
ity and density are pres
ribed on ∂ΩD, while Neumannboundary 
onditions are pres
ribed on ∂ΩD. The �ow is assumed to enter the domain on ∂ΩD and toleave it on ΩN . This system must be supplemented by initial 
onditions for ρ̄ and ū.The obje
tive of this paper is to present a 
lass of s
hemes whi
h enjoy three essential features. First, theses
hemes work on quite general two and three dimensional meshes, in
luding lo
ally re�ned non-
onforming(i.e. with hanging nodes) dis
retizations. Se
ond, they respe
t the (expe
ted) stability properties ofthe 
ontinuous problem at hand, irrespe
tively of the spa
e and time step : positivity of the density,
onservation of mass, energy inequality. Third, they boil down, for vanishing Ma
h numbers, to usualstable 
oupled or pressure 
orre
tion s
hemes, whi
h means that the dis
retization enjoys a dis
rete inf-sup 
ondition. Note, even if this aspe
t is left beyond the s
ope of this paper, that this implies that a
ontrol of the pressure will be obtained through a 
ontrol of its gradient ; this property is used as a 
entralargument to obtain 
onvergen
e results on model problems [21, 18, 17℄.This paper is organized as follows. First, we des
ribe the general form of the s
hemes (Se
tion C.2).Then we show how stability requirements are taken into a

ount to design the dis
retization of thevelo
ity 
onve
tion term (Se
tion C.3). The �nal expression for the s
hemes is given in Se
tion C.4, andtheir stability properties are stated. Finally, we dis
uss their 
apability to 
apture solutions of the Eulerequations with sho
ks (Se
tion C.5).C.2 The s
hemes : general formC.2.1 Meshes and unknownsA �nite volume mesh of Ω is de�ned by a set M of non�empty 
onvex open disjoint subsets K of Ω (the
ontrol volumes), su
h that Ω̄ =

⋃
K∈M K̄. We denote by E the set of edges (in 2D) or fa
es (in 3D), by

E(K) ⊂ E the set of fa
es of the 
ell K ∈ M, by Eext and Eint the set of boundary and interior fa
es,respe
tively. The set of external fa
es Eext is split in EN and ED, whi
h stand for the set of the fa
esin
luded in ∂ΩN and ∂ΩD, respe
tively. Ea
h internal fa
e, denoted by σ ∈ Eint, is supposed to haveexa
tly two neighboring 
ells, say K, L ∈ M, and K̄ ∩ L̄ = σ̄ whi
h we denote by σ = K|L. By analogy,
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retizations, pressure 
orre
tions s
hemes and all speed barotropi
 �owswe write σ = K|ext for an external fa
e σ of K, even if this notation is somewhat in
orre
t, sin
e K mayhave more than one external edge. The mesh M will be referred to hereafter as the "primal mesh".The outward normal ve
tor to a fa
e σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by
|K| the measure of K and by |σ| the (d− 1)-measure of the fa
e σ.Then, for σ ∈ E and K ∈ mesh su
h that σ ∈ E(K) (in fa
t, the only 
ell if σ ∈ Eext and one amongthe two possible ones if σ ∈ Eint), we denote by DK,σ a subvolume of K having σ as a fa
e (see FigureC.1), and by |DK,σ| the measure of DK,σ. For σ ∈ Eint, σ = K|L, we set Dσ = DK,σ ∪ DL,σ, so
|Dσ| = |DK,σ|+ |DL,σ| (see Figure C.1), and for σ ∈ Eext, σ = K|ext, Dσ = DK,σ, so |Dσ| = |DK,σ|. Theset of fa
es of the dual 
ell Dσ is denoted by Ē(Dσ), and the fa
e separating two adja
ent dual 
ells Dσand Dσ′ is denoted by ε = σ|σ′.For 1 ≤ i ≤ d, the degree of freedom for the ith 
omponent of the velo
ity are assumed to be asso
iatedto a subset of E , denoted by E(i) ⊂ E , and are denoted by :

{
uσ,i, σ ∈ E(i)

}
.The sets of internal, external, Neumann and Diri
hlet fa
es asso
iated to the 
omponent i are denotedby E(i)

int, E(i)
ext, E(i)

N and E(i)
D (so, for instan
e, E(i)

int = Eint ∩ E(i)). We 
onsider the following assumption :(H1) for 1 ≤ i ≤ d, ∀K ∈ M, ∪σ∈E(i)∩E(K)DK,σ = Kand ∑

σ∈E(i)∩E(K)

|DK,σ| = |K|,whi
h means that the volumes DK,σ, σ ∈ E(i), are disjoint, and that, for 1 ≤ i ≤ d, (Dσ)σ∈E(i) is apartition of Ω. The sets of fa
es, internal fa
es and Neumann fa
es of this dual mesh are denoted by Ē(i),
Ē(i)
int and Ē(i)

N respe
tively.We suppose that the degrees of freedom for the pressure and the density are asso
iated to primal 
ells,so they read
{
pK , K ∈ M

}
,
{
ρK , K ∈ M

}
.We denote by V the approximation spa
e for the velo
ity, by V (i), 1 ≤ i ≤ d the approximation spa
esfor the velo
ity 
omponents and by Q the approximation spa
e for the pressure and the density, and weidentify the dis
rete fun
tions to their degrees of freedom :

∀v ∈ V , vi ∈ V (i), 1 ≤ i ≤ d and vi = (vσ,i)σ∈E(i) ; ∀q ∈ Q, q = (qK)K∈M.For the velo
ity, sin
e the 
on
erned degrees of freedom at lo
ated on the boundary, the Diri
hlet boundary
onditions are enfor
ed in the approximation spa
e :For 1 ≤ i ≤ d, ∀σ ∈ E(i)
D , uσ,i =

1

|σ|

∫

σ

uD,i dγ,where uD,i stands for the ith 
omponent of the pres
ribed velo
ity.
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Dσ

Dσ′

σ
′=K|MK

σ
=
K

|L

L

M

ε=D
σ |D

σ′

Fig. C.1 � Notations for 
ontrol volumes and diamond 
ells.C.2.2 The s
hemesWe now introdu
e the following notations and assumptions :� for K ∈ M and σ ∈ E(K), by u ·nK,σ, we denote an approximation of the normal velo
ity to thefa
e σ outward K,� for v ∈ V , 1 ≤ i ≤ d and σ ∈ E(i), we denote by (divτ(v))
(i)
σ an approximation of the vis
ous termasso
iated to σ and to the 
omponent i, and we suppose that the following assumption is satis�ed :(H2) d∑

i=1

∑

σ∈E(i)

|Dσ| (divτ(v))(i)σ vσ,i ≥ 0.� for q ∈ Q, 1 ≤ i ≤ d and σ ∈ E(i), we denote by (∇q)
(i)
σ the 
omponent i of the dis
rete gradientof q at the fa
e σ, and we suppose that the following assumption is satis�ed for any q ∈ Q and

v ∈ V : (H3) d∑

i=1

∑

σ∈E(i)

|Dσ| (∇q)(i)σ vσ,i =
∑

K∈M

qK
∑

σ∈E(K)

|σ| v · nK,σ.With these notations, we are able to write the general form of the impli
it s
heme :
∀K ∈ M,

|K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

FK,σ = 0. (C.2a)For 1 ≤ i ≤ d, ∀σ ∈ E(i)
int ∪ E(i)

N ,

|Dσ|
δt

(ρσuσ,i − ρ∗σu
∗
σ,i) +

∑

ε∈Ē(Dσ)

Fσ,εuε,i

+|Dσ| (∇p)
(i)
σ + |Dσ| (divτ(u))

(i)
σ = 0,

(C.2b)
∀K ∈ M, ρK = ℘(pK), (C.2
)where FK,σ stands for the mass �ux leaving K through σ, ρσ stands for an approximation of the densityat the fa
e, and Fσ,ε is a mass �ux leaving Dσ through ε. For the �ux FK,σ at the internal edge σ = K|L,we 
hoose an upwind approximation of the density :

FK,σ = |σ| u · nK,σ ρup
σ , with ρup

σ = ρK if FK,σ ≥ 0, ρup
σ = ρL otherwise. (C.3)
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retizations, pressure 
orre
tions s
hemes and all speed barotropi
 �owsOn σ ∈ ED, the density ρup
σ is given by the boundary 
ondition, and, on σ ∈ EN , σ = K|ext, ρup

σ = ρK ,whi
h, sin
e the �ow is supposed to enter the domain on ∂ΩD and to leave the domain on ∂ΩN , is
onsistent with the upwind 
hoi
e. For the velo
ity 
omponents at the dual edges, uε,i, we 
hoose eitherthe 
entered or upwind approximation on the internal fa
es, and the value at the fa
e for the out�owones.A pressure 
orre
tion s
heme is obtained from (C.2) by splitting the resolution in two steps :1- Velo
ity predi
tion step � Solve for ũ ∈ V the momentum balan
e equation with the beginning-of-step pressure :For 1 ≤ i ≤ d, ∀σ ∈ E(i)
int ∪ E(i)

N ,

|Dσ|
δt

(ρσũσ,i − ρ∗σu
∗
σ,i) +

∑

ε∈Ē(Dσ)

Fσ,εũε,i

+|Dσ| (∇p∗)
(i)
σ + |Dσ| (divτ(ũ))

(i)
σ = 0,

(C.4)2 - Corre
tion step � Solve for u ∈ V and p ∈ Q :
∀K ∈ M,

|K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

FK,σ = 0. (C.5a)For 1 ≤ i ≤ d, ∀σ ∈ E(i)
int ∪ E(i)

N ,

|Dσ|
δt

ρσ (uσ,i − ũσ,i) + |Dσ|
(
∇(p− p∗)

)(i)
σ

= 0,
(C.5b)

∀K ∈ M, ρK = ℘(pK), (C.5
)The equations of the 
orre
tion step are 
ombined to produ
e a nonlinear paraboli
 problem for thepressure, whi
h reads, ∀K ∈ M :
|K|
δt

(
℘(pK) − ρ∗K

)
+
∑

σ=K|L

ρup
σ

ρσ

|σ|2
|Dσ|

(φK − φL) +
∑

σ∈E(K)∩EN

ρup
σ

ρσ

|σ|2
|Dσ|

φK

=
1

δt

∑

σ∈E(K)

|σ| ρup
σ ũ · nK,σ,

(C.6)where φ ∈ Q is de�ned by φ = p−p∗. Note that the se
ond and third terms at the left-hand side look likea �nite volume dis
retization of a di�usion operator, with homogeneous Neumann boundary 
onditionson ED and Diri
hlet boundary 
onditions on EN for the pressure in
rement, as usual in pressure 
orre
tions
hemes (see [12℄ for a dis
ussion on the e�e
t on these spurious boundary 
onditions).The standard dis
retizations entering the present framework are either low-degree non-
onforming �niteelements, namely the Crouzeix-Raviart element [11℄ for simpli
ial meshes or the Ranna
her-Turek element[65℄ for quadrangles and hexahedra, or, for stru
tured 
artesian grids, the MAC s
heme [37, 36℄. Wedes
ribe here the 
onstru
tion of the di�usion and pressure gradient term for the �nite element s
hemes,supposing for the sake of simpli
ity that the velo
ity obeys homogeneous Diri
hlet boundary 
onditionson ∂Ω. Let σ ∈ Eint and ϕσ be the �nite element shape fun
tion asso
iated to σ. In Ranna
her-Turek or
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es 157Crouzeix-Raviart elements, a degree of freedom for ea
h 
omponent of the velo
ity is asso
iated to ea
hedge, so E(i)
int = Eint, for 1 ≤ i ≤ d. Let 1 ≤ i ≤ d be given, let e(i) be the ith ve
tor of the 
anoni
al basisof Rd and let us de�ne ϕ

(i)
σ by :

ϕ(i)
σ = ϕσ e(i).Then the usual �nite element dis
retization reads, for a 
onstant vis
osity Newtonian �uid (so supposing

divτ (u) = µ∆u + (µ/3)∇div(u), with µ the vis
osity) :
(divτ (u))(i)σ =

∑

K∈M

µ

∫

K

∇u : ∇ϕ(i)
σ dx +

u

3

∫

K

divu divϕ(i)
σ dx.The pressure gradient term at the internal fa
e σ = K|L reads :

(∇p)(i)σ =
∑

K∈M

∫

K

p divϕ(i)
σ dx = |σ| (pL − pK) nK,σ · e(i).C.3 The stability issue and 
onsequen
esC.3.1 A stability result for the 
onve
tionAt the 
ontinuous level, let us assume that the mass balan
e ∂tρ + div(β) = 0 holds, with β a regularve
tor-valued fun
tion. Then, for all s
alar regular fun
tions u and v, we have :

∫

Ω

[
∂t(ρu) + div(uβ)

]
v dx =

∫

Ω

[
∂t(ρu) −

1

2
(∂tρ)u

]
v dx + s(u, v) +

1

2

∫

∂ΩN

u vβ · ndγ (C.7)where s is the following skew-symmetri
 bilinear form :
s(u, v) =

1

2

∫

Ω

vβ · ∇udx − 1

2

∫

Ω

uβ · ∇v dx.Taking u = v = ui and summing over i, the �rst term gives the time derivative of the kineti
 energy, these
ond one vanishes and the last one 
orresponds to the kineti
 energy �ux through the boundary of thedomain. The following Lemma, proven in [48℄, states a dis
rete 
ounterpart of this 
omputation (see also[1℄ and [22℄ for a dire
t estimate of the kineti
 energy, for an impli
it and expli
it s
heme respe
tively).Lemma C.3.1Let us suppose that, for an index i, 1 ≤ i ≤ d, the following dis
rete mass balan
e holds over the dual
ells asso
iated to the ith 
omponent of the velo
ity :
∀σ ∈ E(i)

int ∪ E(i)
N ,

|Dσ|
δt

(ρσ − ρ∗σ) +
∑

ε∈Ē(Dσ)

Fσ,ε = 0. (C.8)Let u, v ∈ V (i), and let us suppose that these dis
rete fun
tions obey homogeneous Diri
hlet boundary.Then we have :
∑

E∈E
(i)
int∪E

(i)
N

vσ

[ |Dσ|
δt

(ρσuσ − ρ∗σu
∗
σ) +

∑

ε∈Ē(Dσ)

Fσ,εuε

]

≥ TΩ,k(u, v) + TΩ,s(u, v) + T∂Ω(u, v), (C.9)
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 �owswith :
TΩ,k(u, v) =

∑

E∈E
(i)
int∪E

(i)
N

|Dσ|
δt

(ρσuσ − ρ∗σu
∗
σ) vσ − 1

2
(ρσ − ρ∗σ)uσ vσ,

TΩ,s(u, v) = S(u, v) − S(v, u), S(u, v) =
1

2

∑

ε∈Ē
(i)
int , ε=Dσ |Dσ′

Fσ,ε vε (uσ′ − uσ),

T∂Ω(u, v) =
1

2

∑

ε∈Ē
(i)
N
, σ=Dσ |ext

Fσ,ε uε vε.Of 
ourse, TΩ,s(u, u) = 0, and an easy 
omputation shows that :
TΩ,k(u, v) =

1

2δt

∑

E∈E
(i)
int∪E

(i)
N

|Dσ|
[
ρσu

2
σ − ρ∗σ(u

∗
σ)

2
]
.Applying Lemma C.3.1 to ea
h 
omponent of the velo
ity, the obtained term is thus the dis
rete time-derivative of the kineti
 energy, and may be used to obtain stability estimates for the s
heme (see Se
tionC.4).Remark 9 (Non-homogeneous Diri
hlet boundary 
onditions)The limitation to homogeneous Diri
hlet boundary 
onditions may be seen, from the proof, to stem fromthe fa
t that no balan
e equation is written on the dual 
ells asso
iated to edges lying on ∂ΩD. Theproblem thus may be �xed by keeping these degrees of freedom and using a penalization te
hnique.Remark 10 (Arti�
ial boundary 
onditions)Lemma C.3.1 may be used to derive arti�
ial boundary 
onditions allowing the �ow to enter the domainthrough ∂ΩN , by �rst 
olle
ting the boundary terms in the variational form of the momentum balan
eequation (i.e. adding to T∂Ω(u, v) the terms issued from the di�usion and the pressure gradient) andthen imposing that the result may be written as a linear form a
ting on the test fun
tion (see [6℄ for asimilar development in the in
ompressible 
ase). The so-built boundary 
ondition is observed in pra
ti
eto give quite good results when modelling external �ows [48℄.C.3.2 Dis
retization of the 
onve
tion termThe problem to ta
kle is now the following one : on one side, the dis
rete mass balan
e over the dual
ells (C.8) is ne
essary for the stability of the s
heme ; on the other side, the mass balan
e is only writtenby the s
heme(s) for the primal 
ells (Equation (C.2a) or (C.5a)). We are thus lead to express the mass�uxes (Fσ,ε) through the dual edges as a fun
tion of the mass �uxes (FK,σ) through the primal ones, insu
h a way that the dis
rete balan
e over the primal 
ells implies the same property over the dual ones.We des
ribe in this se
tion how this may be done, �rst for the MAC (stru
tured) mesh and se
ond forthe Ranna
her-Turek element on general quadrangles.C.3.2.a MAC s
hemeWe des
ribe a possible 
onstru
tion of the momentum 
onve
tion operator for the MAC s
heme [38℄. Intwo spa
e dimensions and with the lo
al notations introdu
ed on Figure C.2, the mass balan
e on the
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FO FC FE

FNW

FSW

FNE

FSE

K L

Fig. C.2 � Lo
al notations for the de�nition of the mass �uxes at the dual edges with the MAC s
heme.primal 
ells reads :
K :

|K|
δt

(̺K − ̺∗K) − FO − FSW + FC + FNW = 0,

L :
|L|
δt

(̺L − ̺∗L) − FC − FSE + FE + FNE = 0.Multiplying both equations by 1/2 and summing them yields, for σ = K|L :
|Dσ|
δt

(̺σ − ̺∗σ)

− 1

2

[
FW + FC

]
− 1

2

[
FSW + FSE

]
+

1

2

[
FC + FE

]
+

1

2

[
FNW + FNE

]
= 0, (C.10)with the usual de�nition of the dual 
ell Dσ, whi
h implies that |DK,σ| = |K|/2 and |DL,σ| = |L|/2, andwith the following de�nition of the density on the fa
e :

|Dσ| ̺σ = |DK,σ| ̺K + |DL,σ| ̺L. (C.11)Equation (C.10) thus suggests the following de�nition for the mass �uxes at the dual fa
es :left fa
e : Fσ,ε = −1

2

[
FW + FC

]
; right fa
e : Fσ,ε =

1

2

[
FC + FE

]
;bottom fa
e : Fσ,ε = −1

2

[
FSW + FSE

]
; top fa
e : Fσ,ε =

1

2

[
FNW + FNE

]
.Note that this de�nition is rather non-standard : for instan
e, the �ux at the left fa
e of DK|L, whi
his in
luded in K, may involve densities of the neighbouring primal 
ells. The extension of the above
onstru
tion to the three-dimensional 
ase is straightforward.C.3.2.b Ranna
her-Turek elementA 
onstru
tion similar to the MAC s
heme one may be performed for re
tangular meshes. For K and

L two neighboring 
ells of M, the half-diamond 
ell DK,σ (resp. DL,σ) asso
iated to the 
ommon fa
e
σ = K|L is de�ned as the 
one having the mass 
enter of K (resp. L) as a vertex and σ as basis, thedensity ρσ is de�ned by the weighted average (C.11), and the dual mass �uxes are obtained by multiplyingthe mass balan
es over K and L by 1/4 and summing. With the lo
al notations of Figure C.3, this yields,for the dual mass �uxes, expressions of the form :

Fσ,ε = −1

8
FW +

3

8
FN − 3

8
FE +

1

8
FS . (C.12)



160 Annexe C. Staggered dis
retizations, pressure 
orre
tions s
hemes and all speed barotropi
 �ows
FW FE

FN

FS

Fσ,ε

Fig. C.3 � Lo
al notations for the de�nition of the mass �uxes at the dual edges with the Ranna
her-TurekelementWe now explain how to extend this formulation to general meshes.Let us suppose that we are able to de�ne the �uxes through the dual fa
es in su
h a way that :(A1) The mass balan
e over the half-diamond 
ells is proportional to the mass balan
e over the primal
ells, in the following sense :
∀K ∈ M, ∀σ ∈ E(K), FK,σ +

∑

ε∈Ē(Dσ), ε⊂K

Fσ,ε = ξσK
∑

σ∈E(K)

FK,σ,with, for any 
ell K ∈ M, ∑

σ∈E(K)

ξσK = 1 and, for any σ ∈ E(K), ξσK ≥ 0.(A2) The dual �uxes are 
onservative, i.e. for any dual fa
e ε = Dσ|D′
σ, we have Fσ,ε = −Fσ′,ε.(A3) The dual �uxes are bounded with respe
t to the (FK,σ)σ∈E(K) :

∀K ∈ M, ∀σ ∈ E(K), ∀ε ∈ Ē(Dσ) |Fσ,ε| ≤ C max
{
|FK,σ|, σ ∈ E(K)

}
.In addition, let us de�ne |DK,σ| as :

|DK,σ| = ξσK |K|, (C.13)and ρσ, on
e again, by the weighted average (C.11). Then the dual �uxes satisfy the required massbalan
e. Indeed, for σ ∈ Eint, σ = K|L, we have :
|Dσ|
δt

(ρσ − ρ∗σ) +
∑

ε∈E(Dσ)

Fσ,ε

=
|DK,σ|
δt

(ρK − ρ∗K) + FK,σ +
∑

ε∈Ē(Dσ), ε⊂K

Fσ,ε

+
|DL,σ|
δt

(ρL − ρ∗L) + FL,σ +
∑

ε∈Ē(Dσ), ε⊂L

Fσ,ε

= ξσK

[ |K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

FK,σ

]
+ ξσL

[ |L|
δt

(ρL − ρ∗L) +
∑

σ∈E(L)

FL,σ

]
= 0.A similar 
omputation leads to the same 
on
lusion for the (half-)dual 
ells asso
iated to the Neumannboundary fa
es.The next issue is to 
he
k whether Assumptions (A1)-(A3) are su�
ient for the 
onsisten
y of the s
heme.In this respe
t, the following lemma brings a de
isive argument.
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hemes and stability estimates 161Lemma C.3.2Let Assumptions (A1)-(A3) hold. For v ∈ V and K ∈ M, let vK be de�ned by vK =
∑

σ∈E(K) ξ
σ
K vσ. Let

u ∈ V , and R(u, v) be the quantity de�ned by :
R(u, v) =

∑

σ∈Eint

vσ
∑

ε∈Ē(Dσ),

ε=Dσ |D′

σ

Fσ,ε
uσ + uσ′

2
−
∑

K∈M

vK
∑

σ∈E(K)

FK,σ uσ.Let us suppose that the primal �uxes are asso
iated to a 
onve
tion momentum �eld β, i.e. :
∀K ∈ M, ∀σ ∈ E(K), FK,σ = |σ| βσ · nK,σ.For the s
hemes used here, of 
ourse, β is a 
ombination of the density and the velo
ity, as introdu
edin Se
tion C.2 and made pre
ise in Se
tion C.4. Then there exists C depending only on the regularity ofthe mesh su
h that :

|R(u, v)| ≤ C h ‖β‖l∞ ‖u‖1 ‖v‖1,with ‖β‖l∞ = maxσ∈E |βσ| and the dis
rete H1-norm on the dual mesh is de�ned by :
∀v ∈ V, ‖v‖1 =

∑

K∈M

hd−2
K

∑

σ,σ′∈E(K)

(uσ − uσ′)2.The quantity R(u, v) 
ompares two dis
rete analogue to ∫Ω v div(uβ) dx, the �rst one being de�ned withthe divergen
e taken over the dual meshes, and the se
ond one with the divergen
e over the primal 
ells.The dis
rete H1-norm of the solution is 
ontrolled by the di�usion term. Thus, when making a 
onvergen
eor error analysis study in the linear 
ase (i.e. with a given regular 
onve
tion �eld β), Lemma C.3.2 allowsto repla
e the �rst formulation by the se
ond one, thus substituting well de�ned quantities to quantitiesonly de�ned through (A1)-(A3). It is used in [39℄ to prove that the s
heme is �rst-order for the stationary
onve
tion-di�usion equation. The 
onvergen
e for the 
onstant density Navier-Stokes equations (so with
β = u has also been proven, 
ontrolling now ‖u‖l∞ by ‖u‖1 thanks to an inverse inequality.The last task is now to build �uxes satisfying (A1)-(A3), whi
h is easily done by 
hoosing ξσK = 1/4, andkeeping for the expression of the dual �uxes as a fun
tion of the primal ones the same linear 
ombination(C.12) as in the re
tangular 
ase. Note that this impli
itly implies that the geometri
al de�nition of thedual 
ells has been generalized, sin
e it is not possible in general to split a (even 
onvex) quadrangle infour simpli
es of same measure. Extension to three dimensions only needs to deal with the re
tangularparallelepipedi
 
ase, whi
h is quite simple [1℄. Finding dire
tly a solution to (A1)-(A3) may also be analternative route, to deal with more 
omplex 
ases, as done in [39℄ to extend the s
heme to lo
ally re�nednon-
onforming grids.C.4 S
hemes and stability estimatesTo obtain the 
omplete formulation of the 
onsidered s
hemes, we now have to �x the time-mar
hingpro
edure. This is straightforwart for the impli
it s
heme, and we 
on
entrate here on the pressure
orre
tion s
heme. The problem whi
h we fa
e in this 
ase is that the mass balan
e is not yet solvedwhen dealing with the predi
tion step. In our implementations [40℄, it is 
ir
umvented by just shiftingin time the density ρσ, and the mass balan
e on the dual 
ells is re
overed from the mass balan
e on
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 �owsthe primal 
ells at the previous time step. This has essentially two drawba
ks. First, the tri
k indeedworks only if the time step is 
onstant ; when it 
hanges, one has to 
hoose between loosing stability or
onsisten
y (lo
ally in time, so fortunately, without observed impa
t in pra
ti
e). Se
ond, the s
heme isonly �rst order in time.In addition, stability seems to require an initial pressure renormalization step, whi
h is an algebrai
variant of the one introdu
ed in [28℄. It seems however that this step may be omitted in pra
ti
e.The algorithm (keeping in this presentation the pressure renormalization step) reads, assuming that un,
pn, ρn and the family (FnK,σ) are known :1- Pressure renormalization step � Let (λσ)σ∈Eint be a family of positive real numbers, and let

−div(λ∇)M be the dis
rete ellipti
 operator from Q to Q de�ned by, ∀K ∈ M and q ∈ Q :
[
−div(λ∇)M(q)

]
K

=
∑

σ=K|L

λσ
|σ|2
|Dσ|

(qK − qL) +
∑

σ∈EN ,σ=K|ext

λσ
|σ|2
|Dσ|

qK .Then p̃n+1 ∈ Q is given by :
−div(

1

ρn
∇)M (p̃n+1) = −div(

1

[ρn ρn−1]1/2
∇)M (pn), (C.14)the weights (ρnσ)σ∈Eint∪EN

and (ρn−1
σ )σ∈Eint∪EN

being the densities involved in the time-derivativeterm of the momentum balan
e equation (next step of the algorithm).2- Velo
ity predi
tion step � Solve for ũn+1 ∈ V , for 1 ≤ i ≤ d and ∀σ ∈ E(i)
int ∪ E(i)

N :
|Dσ|
δt

(ρnσũn+1
σ,i − ρn−1

σ unσ,i) +
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i

+ |Dσ| (∇p̃n+1)(i)σ + |Dσ| (divτ(ũn+1))(i)σ = 0, (C.15)where the quantity (Fnσ,ε)ε∈Ē(Dσ) are built as explained in the previous se
tion, from the primal�uxes at time tn.3 - Corre
tion step � Solve for un+1 ∈ V and pn+1 ∈ Q :
∀K ∈ M,

|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0. (C.16a)For 1 ≤ i ≤ d, ∀σ ∈ E(i)

int ∪ E(i)
N ,

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
(
∇(pn+1 − p̃n+1)

)(i)
σ

= 0,
(C.16b)

∀K ∈ M, ρn+1
K = ℘(pn+1

K ), (C.16
)The algorithm must be initialized by the data of u0 ∈ V , ρ−1 ∈ Q, ρ0 ∈ Q satisfying the dis
retemass balan
e equation, and with the 
orresponding mass �uxes (F 0
K,σ). A possible way to obtain thesequantities is to evaluate u0 and ρ−1 from the initial 
onditions, and, as a preliminary step, to solve for

ρ0 the mass balan
e equation.
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retization of the mass balan
e equation has for 
onsequen
e that any densityappearing in the algorithm is positive (provided that the initial density is positive). The existen
e anduniqueness of a solution to Steps 1 and 2 is then 
lear : these are linear problems with 
oer
ive operators(for Step 2, thanks to the stability of the 
onve
tion term). The existen
e of a solution to Step 3 may beobtained by a Brouwer �xed point argument, using the fa
t that the 
onservativity of the mass balan
eyields an estimate for ρ, so for p, and �nally for u (in any norm, sin
e we work on �nite dimensionalspa
es). The algorithm is thus well-posed.Let us now turn to the energy estimate. At the 
ontinuous level, this relation is obtained for the barotropi
Navier-Stokes equations by 
hoosing the velo
ity u in the variational form of the momentum balan
eequation, writing the 
onve
tion term as the time derivative of the kineti
 energy, and setting the pressurework, namely− ∫Ω p div(u) dx, under a 
onvenient form. This is done by the following formal 
omputation.Let b(·) be a regular fun
tion from (0,+∞) to R, and let us multiply the mass balan
e by b′(ρ) :
b′(ρ)

[
∂tρ+ div(ρu)

]
= 0.Using :

b′(ρ)div(ρu) = b′(ρ)[u · ∇ρ+ ρdiv(u)] = u · ∇b(ρ) + ρb′(ρ)div(u)

= div(b(ρ)u) +
[
ρb′(ρ) − b(ρ)

]
div(u),we get :

∂t
[
b(ρ)

]
+ div

[
b(ρ)u

]
+
[
ρb′(ρ) − b(ρ)

]
div(u) = 0.Choosing now the fun
tion b(·) in su
h a way that ρb′(ρ) − b(ρ) = ℘−1(p), integrating over Ω and usingthe boundary 
onditions yields :

−
∫

Ω

p div(u) dx =
d

dt

∫

Ω

b(ρ) dx.The following lemma [20℄ states a dis
rete 
ounterpart of this 
omputation.Lemma C.4.1Let b(·) be a regular 
onvex fun
tion from (0,+∞) to R, and (ρ⋆K)K∈M be a positive family of realnumbers. Then, with the upwind dis
retization (C.3) of the mass balan
e equation, the family (ρK)K∈Mis also positive, and we get :
∑

K∈M

b′(ρK)
[ |K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

FK,σ

]
≥ 1

δt

∑

K∈M

|K|
[
b(ρK) − b(ρ∗K)

]
.We are now in position to state the following stability result.Theorem C.4.2The s
heme (C.14)-(C.16) satis�es the following energy identity, for 1 ≤ n ≤ N :

d∑

i=1

∑

σ∈E
(i)
int

|σ| ρn−1
σ (unσ,i)

2 + δt

n∑

k=1

∑

σ∈E(i)

|Dσ| (divτ(uk))(i)σ ukσ,i

+
∑

K∈M

|K| b(ρnK) ≤
d∑

i=1

∑

σ∈E
(i)
int

|σ| ρ(−1)
σ (u0

σ,i)
2 +

∑

K∈M

|K| b(ρ0
K)
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 �owsThe proof of this theorem is based on Lemma C.3.1 and Lemma C.4.1, and may be found, for the essentialarguments, in [20℄.Remark 11Let us suppose that the equation of state reads p = ργ , with γ ∈ (1,+∞). Then an easy 
omputation yields
b(ρ) = ργ/(γ − 1) = p/(γ − 1). Theorem C.4.2 thus yields an estimate for the pressure in L∞(0, T ; L1)-norm. Note that this estimate is however not su�
ient to ensure that a sequen
e of pressures obtainedas dis
rete solutions 
onverges to a fun
tion, whi
h explains that the pressure has to be 
ontrolled fromestimates of its gradient, in 
onvergen
e studies of numeri
al s
hemes as well as in mathemati
al analysisof the 
ontinuous problem [51℄.C.5 Euler equations and solutions with sho
ksIn this se
tion we brie�y dis
uss the 
apability of the 
onsidered numeri
al s
hemes to 
ompute irregular(i.e. with dis
ontinuities) solutions of invis
id �ows.The results obtained with the above des
ribed pressure 
orre
tion s
heme for the so-
alled one-dimensionalSod sho
k-tube problem are displayed on Figure C.4 (see [45℄ for a more detailed presentation). From nu-meri
al experiments, it seems that this s
heme 
onverges when the velo
ity spa
e translates are 
ontrolled,either by upwinding the dis
retization of the velo
ity 
onve
tion term, or by keeping a residual vis
osityin the (dis
rete) momentum balan
e equation. Numeri
al experiments reported in [45℄ (addressing alsoan extension of this algorithm to the barotropi
 homogeneous two-phase �ow model [26℄) 
on�rm thestability of the s
heme, and show that the qualitative behaviour of the solution is 
aptured up to verylarge values of the CFL number (typi
ally, in the range of 50).From the theoreti
al point of view, for Euler equations (i.e. , pre
isely speaking, with a di�usion vanishingwith the spa
e step), the 
ontrol that we are able to prove on the solution of 
ourse does not yield (weakor strong) 
onvergen
e in strong enough norms to pass to the limit in the s
heme. We 
an however provethe following result : supposing 
onvergen
e for the density in Lp(Ω), p ∈ [1,+∞) and for the velo
ity in
Lp(Ω), p ∈ [1, 3], it is possible to pass to the limit in the dis
rete equations, provided that the vis
osityvanishes as hα, α ∈ (0, 2) for both the impli
it and the pressure 
orre
tion s
heme. In this 
ase, the limitof a sequen
e of dis
rete solutions is proven to satisfy the weak form of the Euler equations, and so, inparti
ular, the Rankine-Hugoniot 
onditions at the sho
ks.C.6 Dis
ussion and perspe
tivesThe analysis of the s
hemes presented here has been undertaken, for the present time for model stationaryproblems : in [21, 18℄, we prove the 
onvergen
e for the Crouzeix-Raviart dis
retization of the Stokesequations (however, with the addition, for te
hni
al reasons, of a stabilization term) ; in [17℄, we provethe same result for the (this time, standard) MAC s
heme. Extension, still for the MAC dis
retization,to the stationary Navier-Stokes equations is underway.From a pra
ti
al point of view, a next step for the barotropi
 Navier-Stokes equations should be to derivean upwind expli
it version of the s
heme presented here ; in this dire
tion, an extension of Lemma C.3.1(stability of the velo
ity 
onve
tion term) to the expli
it 
ase may be found in [22℄.
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Fig. C.4 � Solution for the Sod sho
k-tube problem, obtained with a uniform mesh of 800 
ells, with aresidual vis
osity � left : velo
ity, right : pressure.The main obje
tive is however to deal with the full (i.e. non barotropi
, so in
luding an energy balan
e)Navier-Stokes equations. An un
onditionally stable pressure 
orre
tion s
heme has been derived for thisproblem (see Chapter 3 of this do
ument), but extensive tests of this s
heme remain to be done. Inparti
ular, stability requires that the internal energy remains non-negative (in pra
ti
e, positive), andthe way we obtained this property was to solve the internal energy balan
e, with a s
heme able topreserve the sign of the unknown . . .but it is 
ommonly agreed that, for the s
heme to 
onverge towardthe 
orre
t weak solution, a 
onservative dis
retization of the total energy balan
e should be used. Thea
tual o

urren
e of this problem, and the possibility to 
ir
umvent it, possibly by adding stabilizingvis
ous terms, will deserve investigations in the next future ; a preliminary step on this route may befound in [23℄.





AnnexeD Dis
retization of the vis
ousdissipation term with the MACs
heme

W
e propose a dis
retization for the MAC s
heme of the vis
ousdissipation term τ (u) : ∇u (where τ (u) stands for the shearstress tensor asso
iated to the velo
ity �eld u), whi
h is sui-table for the approximation of this term in a 
onservation equation for a s
a-lar variable. This dis
retization enjoys the property that the integral over the
omputational domain Ω of the (dis
rete) dissipation term is equal to what isobtained when taking the inner produ
t of the (dis
rete) momentum balan
eequation by u and integrating over Ω. As a 
onsequen
e, it may be used asan ingredient to obtain an un
onditionally stable s
heme for the 
ompressibleNavier-Stokes equations. It is also shown, in some model 
ases, to ensure thestrong 
onvergen
e in L1 of the dissipation term.
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D.1 Introdu
tionLet us 
onsider the 
ompressible Navier-Stokes equations, whi
h may be written as :
∂tρ+ div(ρu) = 0, (D.1a)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (D.1b)
∂t(ρe) + div(ρeu) + pdivu + div(q) = τ (u) : ∇u, (D.1
)
ρ = ℘(p, e), (D.1d)where t stands for the time, ρ, u, p and e are the density, velo
ity, pressure and internal energy in the�ow, τ (u) stands for the shear stress tensor, q for the temperature di�usion �ux, and the fun
tion ℘is the equation of state. This system of equations is posed over Ω × (0, T ), where Ω is a domain of Rd,

d ≤ 3. This system must be supplemented by a 
losure relation for τ (u) and for q, assumed to be :
τ (u) = µ(∇u + ∇

tu) − 2µ

3
divu I, q = −λ∇e, (D.2)where µ and λ stand for two (possibly depending on x) positive parameters.Let us suppose, for the sake of simpli
ity, that u is pres
ribed to zero on the whole boundary, and thatthe system is adiabati
, i.e. ∇q ·n = 0 on ∂Ω. Then, formally, taking the inner produ
t of (D.1b) with ūand integrating over Ω, integrating (D.1
) over Ω, and, �nally, summing both relations yields the stabilityestimate :

d

dt

∫

Ω

[1
2
ρ |u|2 + ρe

]
dx ≤ 0. (D.3)If we suppose that the equation of state may be set under the form p = f(ρ, e) with f(·, 0) = 0 and

f(0, ·) = 0, Equation (D.1
) implies that e remains positive (still at least formally), and so (D.3) yieldsa 
ontrol on the unknown. Mimi
king this 
omputation at the dis
rete level ne
essitates to 
he
k somearguments, among them :
(i) to have at disposal a dis
rete 
ounterpart to the relation :

∫

Ω

[
∂t(ρu) + div(ρu ⊗ u)

]
· u dx =

d

dt

∫

Ω

1

2
ρ |u|2 dx.

(ii) to identify the integral of the dissipation term at the right-hand side of the dis
rete 
ounterpartof (D.1
) with what is obtained from the (dis
rete) L2 inner produ
t between the velo
ity and thedi�usion term in the dis
rete momentum balan
e equation (D.1b).
(iii) to be able to prove that the right-hand side of (D.1
) is non-negative, to preserve the positivityof the internal energy.The point (i) is extensively dis
ussed in [25℄ (see also [38℄), and will not be treated here. Des
ribing away, implemented in the ISIS free software developed at IRSN [40℄, to obtain the two other issues withthe usual Marker and Cell (MAC) dis
retization [37, 36℄ is the obje
tive of this paper. We 
omplete thepresentation by showing how (ii) may also be used, in some model problems, to prove the 
onvergen
ein L1 of the dissipation term.
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hx
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2

Fig. D.1 � Dual 
ell for the x-
omponent of the velo
ityD.2 Dis
retization of the dissipation termD.2.1 The two-dimensional 
aseLet us begin with a two-dimensional 
ase, for the sake of simpli
ity, let us suppose that :
τ (u) = µ(x)(∇u + ∇

tu),the extension of the present material to the other term in (D.2) being straightforward.The �rst step is to propose a dis
retization for the di�usion term in the momentum equation. We beginwith the x-
omponent of the velo
ity, for whi
h we write a balan
e equation on Kx
i− 1

2 ,j
= (xi−1, xi) ×

(yj− 1
2
, yj+ 1

2
) (see Figure D.1 for the notations). Integrating the proje
tion of the momentum balan
eequation onto Ox over Kx

i− 1
2 ,j

, we get for the di�usion term :
T̄ dif
i− 1

2 ,j
= −

[∫

Kx

i− 1
2

,j

div
[
τ (u)] dx

]
· e(x) = −

[∫

∂Kx

i− 1
2

,j

τ (u) ndγ
]
· e(x), (D.4)where e(x) stands for the �rst ve
tor of the 
anoni
al basis of R2. We denote by σxi,j the left fa
e ofKx

i− 1
2 ,j

,i.e. σxi,j = {xi} × (yj− 1
2
, yj+ 1

2
). Splitting the boundary integral in (D.4), the part of T̄ dif

i− 1
2 ,j

asso
iatedto σxi,j , also referred to as the vis
ous �ux through σxi,j , reads :
−
[∫

σx
i,j

τ (u) ndγ
]
· e(x) = −2

∫

σx
i,j

µ ∂xu
x dγ,and the usual �nite di�eren
e te
hnique yields the following approximation for this term :

−2

∫

σx
i,j

µ ∂xu
x dγ ≈ 2µi,j

hyj
hxi

(uxi− 1
2 ,j

− uxi+ 1
2 ,j

),
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retization of the dissipation term 171where µi,j is an approximation of the vis
osity at the fa
e σxi,j . Similarly, let σx
i− 1

2 ,j+
1
2

= (xi, xi+1)×{yj+ 1
2
}be the top edge of the 
ell. Then :

−
[∫

σx

i− 1
2

,j+ 1
2

τ (u) ndγ
]
· e(x) = −

∫

σx

i− 1
2

,j+ 1
2

µ (∂yu
x + ∂xu

y) dγ

≈ µxy
i− 1

2 ,j+
1
2

[hx
i− 1

2

hy
j+ 1

2

(uxi− 1
2 ,j

− uxi− 1
2 ,j+1) +

hx
i− 1

2

hx
i− 1

2

(uy
i−1,j+ 1

2

− u
y

i,j+ 1
2

)
]
,where µxy

i− 1
2 ,j+

1
2

stands for an approximation of the vis
osity at the edge σx
i− 1

2 ,j+
1
2

.Let us now multiply ea
h dis
rete equation for ux by the 
orresponding degree of freedom of a velo
ity �eld
v (i.e. the balan
e over Kx

i− 1
2 ,j

by vx
i− 1

2 ,j
) and sum over i and j. The vis
ous �ux at the fa
e σxi,j appearstwi
e in the sum, on
e multiplied by ux

i− 1
2 ,j

and the se
ond one by −ux
i+ 1

2 ,j
, and the 
orresponding termreads :

T dis
i,j (u,v) = 2µi,j

hyj
hxi

(uxi− 1
2 ,j

− uxi+ 1
2 ,j

) (vxi− 1
2 ,j

− vxi+ 1
2 ,j

)

= 2µi,j h
y
jh
x
i

ux
i− 1

2 ,j
− ux

i+ 1
2 ,j

hxi

vx
i− 1

2 ,j
− vx

i+ 1
2 ,j

hxi
. (D.5)Similarly, the term asso
iated to σx

i− 1
2 ,j+

1
2

appears multiplied by vx
i− 1

2 ,j
and −vx

i− 1
2 ,j+1

, and we get :
T dis
i− 1

2 ,j+
1
2
(u,v) = µxy

i− 1
2 ,j+

1
2

hxi− 1
2
hy
j+ 1

2

[ux
i− 1

2 ,j
− ux

i− 1
2 ,j+1

hy
j+ 1

2

+
u
y

i−1,j+ 1
2

− u
y

i,j+ 1
2

hx
i− 1

2

] vx
i− 1

2 ,j
− vx

i− 1
2 ,j+1

hy
j+ 1

2

. (D.6)Let us now de�ne the dis
rete gradient of the velo
ity as follows :� The derivatives involved in the divergen
e, ∂Mx ux and ∂My uy, are de�ned over the primal 
ells by :
∂Mx ux(x) =

ux
i+ 1

2 ,j
− ux

i− 1
2 ,j

hxi
, ∂My uy(x) =

u
y

i,j+ 1
2

− u
y

i,j− 1
2

hyj
, ∀x ∈ Ki,j . (D.7)� For the other derivatives, we introdu
e another mesh whi
h is vertex-
entered, and we denote by

Kxy the generi
 
ell of this new mesh, with Kxy

i+ 1
2 ,j+

1
2

= (xi, xi+1) × (yj , yj+1). Then :
∂My ux(x) =

ux
i+ 1

2 ,j+1
− ux

i+ 1
2 ,j

hy
j+ 1

2

, ∂Mx uy(x) =
u
y

i+1,j+ 1
2

− u
y

i,j+ 1
2

hx
i+ 1

2

,

∀x ∈ Kxy

i+ 1
2 ,j+

1
2

. (D.8)With this de�nition, we get :
T dis
i,j (u,v) = 2µi,j

∫

Ki,j

∂Mx ux ∂Mx vx dx,and :
T dis
i− 1

2 ,j+
1
2
(u,v) = µxy

i− 1
2 ,j+

1
2

∫

Kxy

i− 1
2

,j+ 1
2

(∂My ux + ∂Mx uy) ∂My vx dx.
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Fig. D.2 � Dual 
ell for the y-
omponent of the velo
ityLet us now perform the same operations for the y-
omponent of the velo
ity. Doing so, we are lead tointrodu
e an approximation of the vis
osity at the edge σy
i− 1

2 ,j+
1
2

= {xi+ 1
2
}× (yj , yj+1) (see Figure D.2).Let us suppose that we take the same approximation as on σx

i− 1
2 ,j+

1
2

. Then, the same arguments yieldthat multiplying ea
h dis
rete equation for ux and for uy by the 
orresponding degree of freedom of avelo
ity �eld v, we obtain a dissipation term whi
h reads :
T dis(u,v) =

∫

Ω

τM(u) : ∇
Mv dx, (D.9)with the above de�ned gradient and :

τM(u) =




2µ ∂Mx ux µxy (∂My ux + ∂Mx uy)

µxy (∂My ux + ∂Mx uy) 2µ ∂My uy


 , (D.10)where µ is the vis
osity de�ned on the primal mesh by µ(x) = µi,j , ∀x ∈ Ki,j and µxy is the vis
osityde�ned on the vertex-
entered mesh, by µ(x) = µi+ 1

2 ,j+
1
2
, ∀x ∈ Kxy

i+ 1
2 ,j+

1
2

.Then, �nally, to dis
retize the vis
ous dissipation term in the internal energy balan
e, we just set on ea
hprimal 
ell Ki,j :
(τ (u) : ∇u)i,j =

1

|Ki,j|

∫

Ki,j

τM(u) : ∇
Mudx, (D.11)whi
h, thanks to (D.9), yields the 
onsisten
y property (ii) we are sear
hing for, namely :

T dis(u,u) =
∑

i,j

|Ki,j | (τ (u) : ∇u)i,j .In addition, we get from De�nition (D.10) that τM(u)(x) is a symmetri
al tensor, for any i, j and
x ∈ Ki,j, so an elementary algebrai
 argument yields :

(τ (u) : ∇u)i,j =
1

|Ki,j|

∫

Ki,j

τM(u) : ∇
Mudx

=
1

2 |Ki,j|

∫

Ki,j

τM(u) :
[
∇

Mu + (∇Mu)t
]
dx ≥ 0.
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ell Kxy
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2 ,j+

1
2 ,k

, used in the de�nition of ∂My ux, ∂Mx uy, and τM(u)x,y =

τM(u)y,x.Remark 12 (Approximation of the vis
osity)Note that, for the symetry of τM(u) to hold, the 
hoi
e of the same vis
osity at the edges σx
i− 1

2 ,j+
1
2

and
σy
i− 1

2 ,j+
1
2

is 
ru
ial. . .and that other 
hoi
es may appear natural. For instan
e, suppose that the vis
osityis a fun
tion of the temperature ; then the following 
onstru
tion is reasonable :1. de�ne, from the dis
rete temperature, a 
onstant value for µ over the primal meshes,2. asso
iate a value of µ to the primal edges, by taking the average between the value at the adja
ent
ells,3. �nally, split the integral of the shear stress over σx
i− 1

2 ,j+
1
2

in two parts, one for the part in
ludedin the (top) boundary of Ki−1,j and the se
ond one in the boundary of Ki,j .Then the vis
osities on σx
i− 1

2 ,j+
1
2

and σy
i− 1

2 ,j+
1
2


oin
ide only for uniform meshes, and, in the general 
ase,the symetry of τM(u) is lost.D.2.2 Extension to the three-dimensional 
aseExtending the 
omputations of the pre
eding se
tion to dimension three yields the following 
onstru
tion.� First, de�ne three new meshes, whi
h are "edge 
entered" : Kxy

i+ 1
2
,j+ 1

2
,k

= (xi, xi+1 × (yi, yj + 1)×
(zk− 1

2
, zk+ 1

2
) is staggered from the primal mesh Ki,j,k in the x and y dire
tion (see Figure D.3),

Kxz
i+ 1

2 ,j,k+
1
2

in the x and z dire
tion, and Kyz

i,j+ 1
2 ,k+

1
2

in the y and z dire
tion.� The partial derivatives of the velo
ity 
omponents are then de�ned as pie
ewise 
onstant fun
tions,the value of whi
h is obtained by natural �nite di�eren
es :- for ∂Mx ux, ∂My uy and ∂Mz uz , on the primal mesh,- for ∂My ux and ∂Mx uy on the 
ells (Kxy

i+ 1
2 ,j+

1
2 ,k

),- for ∂Mz ux and ∂Mx uz on the 
ells (Kxz
i+ 1

2 ,j,k+
1
2

),- for ∂My uz and ∂Mz uy on the 
ells (Kyz

i,j+ 1
2 ,k+

1
2

).
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retization of the vis
ous dissipation term with the MAC s
heme� We then de�ne four families of values for the vis
osity �eld, µ, µxy, µxz and µyz, asso
iated to theprimal and the three edge 
entered meshes respe
tively.� The shear stress tensor is obtained by the extension of (D.10) to d = 3.� And, �nally, the dissipation term is given by (D.11).D.3 A strong 
onvergen
e resultWe �nally 
on
lude this paper by showing how the 
onsisten
y property (ii) may be used, in someparti
ular 
ase, to obtain the strong 
onvergen
e of the dissipation term. To this purpose, let us justaddress �rst the model problem :
−∆u = f in Ω = (0, 1) × (0, 1), u = 0 on ∂Ω, (D.12)with u and f two s
alar fun
tions, f ∈ L2(Ω). Let us suppose that this problem is dis
retized by the usual�nite volume te
hnique, with the uniform MAC mesh asso
iated to the x-
omponent of the velo
ity. Wede�ne a dis
rete fun
tion as a pie
ewise 
onstant fun
tion, vanishing on the left and right sides of thedomain (so on the left and right stripes of (half-)staggered meshes adja
ent to these boundaries), and wede�ne the dis
rete H1-norm of a dis
rete fun
tion v by :

‖v‖2
1 =

∫

Ω

(∂Mx v)2 + (∂My v)2 dx.Let (M(n))n∈N be a sequen
e of su
h meshes, with a step hn tending to zero, and (u(n))n∈N the 
orres-ponding sequen
e of dis
rete solutions. Then, with the variational te
hnique employed in the pre
edingse
tion (i.e. multiplying ea
h dis
rete equation by the 
orresponding equation and summing), we get,with the usual dis
retization of the right-hand side :
‖u(n)‖2

1 =

∫

Ω

(∂Mx u(n))2 + (∂My u(n))2 dx =

∫

Ω

fu(n) dx. (D.13)Sin
e the dis
rete H1-norm 
ontrols the L2-norm (i.e. a dis
rete Poin
aré inequality holds, [16℄), thisyields a uniform bound for the sequen
e (u(n))n∈N in dis
rete H1-norm. We know [16℄ that this impliesthat the sequen
e (u(n))n∈N 
onverges in L2(Ω) to a fun
tion ū ∈ H1
0(Ω), and that the dis
rete derivatives

(∂Mx u(n))n∈N and (∂My u(n))n∈N weakly 
onverge in L2(Ω) to ∂xū and ∂yū respe
tively. This allows to passto the limit in the s
heme, and we obtain that ū satis�es the 
ontinuous equation (D.12), so, taking ū astest fun
tion in the variational form of (D.12) :
∫

Ω

(∂xū)
2 + (∂yū)

2 dx =

∫

Ω

fūdx.But, passing to the limit in (D.13), we get :
lim
n7→∞

∫

Ω

(∂Mx u(n))2 + (∂My u(n))2 dx = lim
n7→∞

∫

Ω

fu(n) dx =

∫

Ω

fū dx,whi
h, 
omparing to the pre
eding relation, yields :
lim
n→∞

∫

Ω

(∂Mx u(n))2 + (∂My u(n))2 dx =

∫

Ω

(∂xū)
2 + (∂yū)

2 dx.
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rete gradient weakly 
onverges and its norm 
onverges to the norm of the limit : the dis
retegradient strongly 
onverges in L2(Ω)2 to the gradient of the solution. Let us now imagine that Equation(D.12) is 
oupled to a balan
e equation for another variable, the right-hand side of whi
h is |∇u|2 ; thissituation o

urs in several physi
al situations, as the modelling of Joule e�e
t [5℄, or RANS turbulen
emodels [49, 24℄. Then using the expression (D.11) for the dis
retization of the dissipation term in the 
ell
K, whi
h reads here :

(
|∇u(n)|2

)
K

=
1

|K|

∫

K

(∂Mx u(n))2 + (∂My u(n))2 dx,yields a 
onvergent right-hand side, in the sense that, for any regular fun
tion ϕ ∈ C∞
c (Ω), we have :

lim
n→∞

∑

K

∫

K

(
|∇u(n)|2

)
K
ϕdx =

∫

Ω

|∇u|2ϕdx.(A de
lination of) this argument has been used to prove the 
onvergen
e of numeri
al s
hemes in [5, 49, 24℄.
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Méthodes de 
orre
tion de pression pour les é
oulements 
ompressiblesRésumé : Cette thèse porte sur le développement de s
hémas semi-impli
ites à pas fra
tionnaires pour les équations deNavier-Stokes 
ompressibles ; 
es s
hémas entrent dans la 
lasse des méthodes de 
orre
tion de pression. La dis
rétisationspatiale 
hoisie est de type "à mailles dé
alées" : éléments �nis mixtes non 
onformes (éléments �nis de Crouzeix-Raviartou Ranna
her-Turek) ou s
héma MAC 
lassique. Une dis
rétisation en volumes �nis dé
entrée amont du bilan de massegarantit la positivité de la masse volumique. La positivité de l'énergie interne est obtenue en dis
rétisant le bilan d'énergieinterne 
ontinu, par une méthode de volumes �nis dé
entrée amont, et en 
ouplant 
e bilan d'énergie interne dis
ret à l'étapede 
orre
tion de pression. Une dis
rétisation parti
ulière en volumes �nis sur un maillage dual du terme de 
onve
tion devitesse dans le bilan de quantité de mouvement et l'adjon
tion d'une étape de renormalisation de la pression permettentde garantir le 
ontr�le au 
ours du temps de l'intégrale de l'énergie totale sur le domaine. L'ensemble de 
es estimations apriori implique en outre, par un argument de degré topologique, l'existen
e d'une solution dis
rète.L'appli
ation de 
e s
héma aux équations d'Euler pose une di�
ulté supplémentaire. En e�et, l'obtention de 
ho
s 
orre
tsné
essite que le s
héma soit 
onsistant ave
 l'équation de bilan d'énergie totale, propriété que nous obtenons 
omme suit.Tout d'abord, nous établissons un bilan dis
ret (lo
al) d'énergie 
inétique. Ce dernier 
omporte des termes sour
es, quenous 
ompensons ensuite dans le bilan d'énergie interne. Les équations d'énergie 
inétique et interne sont asso
iées auxmaillages dual et primal respe
tivement, et ne peuvent don
 être additionnées pour obtenir un bilan d'énergie totale ; 
ettedernière équation est toutefois retrouvée, sous sa forme 
ontinue, à 
onvergen
e : si nous supposons qu'une suite de solutionsdis
rètes 
onverge lorsque le pas de temps et d'espa
e tendent vers 0, nous montrons en e�et, en 1D au moins, que la limiteen satisfait une forme faible. Ces résultats théoriques sont 
onfortés par des tests numériques.Des résultats similaires sont obtenus pour les équations de Navier-Stokes barotropes.Mots 
lefs : Méthodes de 
orre
tion de pression, équations de Navier-Stokes 
ompressibles, s
héma MAC, éléments �nismixtes non 
onformes, stabilité, 
onvergen
e, tests numériques.Pressure 
orre
tion s
hemes for 
ompressible �owsAbstra
t : This thesis is 
on
erned with the development of semi-impli
it fra
tional step s
hemes, for the 
ompressibleNavier-Stokes equations ; these s
hemes are part of the 
lass of the pressure 
orre
tion methods. The 
hosen spatial dis-
retisation is staggered : non 
onforming mixed �nite elements (Crouzeix-Raviart or Ranna
her-Turek) or the 
lassi
 MACs
heme. An upwind �nite volume dis
retisation of the mass balan
e guarantees the positivity of the density. The positivityof the internal energy is obtained by dis
retising the internal energy balan
e by an upwind �nite volume s
heme and by
oupling the dis
rete internal energy balan
e with the pressure 
orre
tion step. A spe
ial �nite volume dis
retisation on dual
ells is performed for the 
onve
tion term in the momentum balan
e equation, and a renormalisation step for the pressureis added to the algorithm ; this ensures the 
ontrol in time of the integral of the total energy over the domain. All these apriori estimates imply the existen
e of a dis
rete solution by a topologi
al degree argument.The appli
ation of this s
heme to Euler equations raises an additional di�
ulty. Indeed, obtaining 
orre
t sho
ks requiresthe s
heme to be 
onsistent with the total energy balan
e, property whi
h we obtain as follows. First of all, a lo
al dis
retekineti
 energy balan
e is established ; it 
ontains sour
e terms whi
h we somehow 
ompensate in the internal energy balan
e.The kineti
 and internal energy equations are asso
iated with the dual and primal meshes respe
tively, and thus 
annot beadded to obtain a total energy balan
e ; its 
ontinuous 
ounterpart is however re
overed at the limit : if we suppose that asequen
e of dis
rete solutions 
onverges when the spa
e and time steps tend to 0, we indeed show, in 1D at least, that thelimit satis�es a weak form of the equation. These theoreti
al results are 
onforted by numeri
al tests.Similar results are obtained for the barotropi
 Navier�Stokes equations.Key words : Pressure 
orre
tion s
heme, 
ompressible Navier-Stokes equations, MAC s
heme, mixed non-
onforming �niteelements, stability, 
onvergen
e, numeri
al tests.Dis
ipline - Spé
ialité do
torale : Mathématiques.Adresse de laboratoires : IRSN/DPAM/SEMIC/LIMSI/, BP 3, 13115 St-Paul-Lez-Duran
e,LATP, 39 rue F. Joliot Curie, 13453 Marseille 
edex 13.


