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sive list of all symbols and their meaning used in the context of DEB theory can be
downloaded at http://www.bio.vu.nl/thb/research/bib/Kooy2010_n.pdf. I would
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General Introduction

1.1 General background

Aquatic ecosystems are the recipient of toxic by-products of industrial activities
linked to the nuclear fuel cycle (uranium ore leaching, storing of mine tailings,
nuclear fuel enrichment processes, transport, industrial accidents etc.) and as
such are submitted to chronic rejections of radionuclides which can directly
interact with aquatic organisms. In 2009, 28.4% of primary energy production
in europe was of nuclear origin. France is particularly pro-eminent in the field
of civil nuclear use with 78% of its energy being of nuclear origin (Bosch et al.,
2009).

At present, there is a heightened public awareness that long term effects of
pollution linked to the nuclear industry on the environment may have negative
human health and economic repercussions. According to the Institute of Radio-
protection and Nuclear Safety’s (IRSN) 2010 public barometer (IRSN, 2010),
over 80% of the population demand increasing transparence and information
concerning potential human health and evironmental hazard concomitant with
industrial activity. In 2010, detrimental effects of environmental pollution was
ranked the third major concern of the French population. There is a real so-
cietal need to scientifically address these questions with less than half of the
French population agreeing that scientific developments to date generate more
benefice than prejudice to society. When faced with the question of who should
be responsible for evaluating the risk associated with industrial pollution, most
were in favour of a designated scientific committee over government, indus-
trial representatives or non profit organisations. This type of study shows that
ecologists and ecotoxicologists have an important responsibility to impartially
evaluate and publicly communicate risks and impacts of industrial activities on
the environment.

In 2002, the IRSN launched the ENVIRHOM project with the goal to eval-
uate the long term effects on the environment and human health of chronic
exposure to low levels of radionuclides. Uranium is a heavy metal with dual
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chemical and radiological toxicity depending on the isotopic composition (Bar-
illet et al., 2007) and is generally the main component of the fuel for nuclear
power plants. While it is a naturally occurring element, its concentrations in
natural bodies of water are increased due to surrounding human activities (Fer-
nandes et al., 1995; Jurgens et al., 2010; Uralbekov et al., 2011; Villa et al.,
2011).

A body of literature results from this project and focusses on toxic effects
of uranium at different levels of biological organization (molecular, cellular,
tissular, organism and population). The research integrating effects and uptake
was conducted on a wide variety of model organisms representative of different
trophic levels in ecosystems: green algae Chlamydomonas reinhartii (Fortin
et al., 2004), asiatic clam Corbicula fulminea (e.g. Fournier et al., 2004; Simon
and Garnier-Laplace, 2004; Simon et al., 2011a), crayfish Procambarus clarkii
(Al Kaddissi et al., 2011) , water flea Daphnia magna (Zeman et al., 2008;
Massarin et al., 2010, 2011) and zebrafish Danio rerio. The focus of my thesis
is toxic effects of uranium on this last species.

The short generation (around three months), ease of husbandry, small size
(3-5 cm) and transparent eggs make zebrafish a popular model organism in
ecotoxicology (Hill et al., 2005), developmental biology (Laale, 1977; Kimmel
et al., 1995) and gerontology (Gerhard and Cheng, 2002). The full life-cycle of
zebrafish is presented in fig. 1.1. Zebrafish are vertebrates and present many
similarities with e.g. humans in terms of organization of development. It
further plays an important role in present day medical and cancer research.

MATERNAL EFFECT RULE

Juvenile
PUBERTY BIRTH
>90 days O 5 days
2-3cm 0.45cm

Figure 1.1: Life-cycle of zebrafish Danio rerio. Sizes and ages are qualitative.
Embryo: no external feeding; juvenile: external feeding; adult: allocation to repro-
duction, but not to maturation. Initial reserve in an egg is specified in DEB theory
using the maternal effect rule where the reserve density of the mother at spawning is
equal to the reserve density of the offspring at birth (Kooijman, 2009b).

Extensive prior doctoral work already demonstrates genetic, molecular and
individual level effects of exposure to water-borne uranium on zebrafish (Bar-
illet, 2007; Bourrachot, 2009; Lerebours, 2009). Uranium impacts enzymatic
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activity linked to cellular anti-oxidative stress defence systems (Barillet et al.,
2005, 2007) and modifies the expression of genes involved in anti-oxidative
stress (Lerebours et al., 2009, 2010b). Studies conducted at the individual
level show that uranium reduces larval growth and survival (Bourrachot et al.,
2008) as well as adult reproductive output (Bourrachot, 2009). In addition
tissular damage to muscles, gills, gonads (Lerebours et al., 2009; Barillet et al.,
2010) and the olfactory bulb (Lerebours et al., 2010b) have been reported.

Using data collected in the aforementioned studies as well as new additional
experimental data, this fourth project seeks to understand how early responses
of the immune and the oxidative stress systems (measured at molecular and
cellular levels) are coupled to responses measured at the level of the individual
(mortality, reproduction) or even the population. The main focus of this work
is on linking these different levels of biological organisation through DEB theory.

DEB theory is a formal biological theory on the quantitative organisation of
metabolism. The theory describes the uptake of substrate and its use to fuel
metabolic processes (e.g. growth or reproduction) for all living organisms. The
standard DEB model specifies all mass and energy fluxes for animals (Kooijman,
2010). Each one of the model parameters quantifies a single metabolic process.
Compounds are assumed to be present in three concentration ranges within
an organism: too little, enough and too much. Effects on the physiological
performance of an organism commence below and above the too little and too
much range (Kooijman, 2010, Chap.6). For a non-essential compound such as
uranium there is no too little range. It is possible to capture distinct patterns
of effects on development, growth and/or reproduction by modifying a single
model parameter (Jager et al., 2010).

In general there is not enough information in toxicity data alone to esti-
mate DEB parameters for the control. It is recommended to estimate control
parameters separately including data on as many facets of metabolism as pos-
sible. The general method for parameter estimation is described in Lika et al.
(2011a,b). There is a growing library of parameter values for many animals
(one reserve and one structure): the Add_my_Pet library. The standard DEB
model manages to capture in a simple way the interaction between physiological
processes (growth, development, maintenance and reproduction) in a number
of organisms rather accurately. This supports the idea that there is a baseline
pattern for metabolism which allows the detection of physiological performance
which deviates from it. Comparing organisms on the basis of differences in pa-
rameters values for a same model which applies to the entire life-cycle means
that there are strong foundations for extrapolating between organisms. Major
deviations of observations from model predictions give insight into species spe-
cific properties and continue to test the foundations of the theory. And more
specifically deviations which are induced by the toxic compound of interest give
insight into the mode of action onto the metabolism.

A very fruitful consequence of working within the framework of DEB theory
is that insight on zebrafish is a small stepping stone to insight on what makes
zebrafish special relative to other animal species and alternatively what aspects
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of its metabolism are shared by other animal species. This strengthens the
possibility to extrapolate the present findings to other species using body size
scaling relationships (Kooijman, 1986) as well as reinforces extrapolations of
effects of life stages where only sparse data is available within the species.

1.2 Project outline

The general philosophy of my project is that effects of uranium on individual
fish appear as deviations from the unperturbed (blanc) situation. So I first paid
due attention to quantify this blanc situation in some detail. Application of any
model starts with the estimation of the parameter values. Hence, in chapter 2
parameter values for the standard DEB model for zebrafish are determined by
fitting the model to observations published in the literature and an experiment
performed in the laboratory where growth and reproduction at three food levels
where measured simultaneously. The goal was to characterize the metabolism
of zebrafish in the absence of perturbations such as extreme temperatures,
absence of food and the presence (or absence) of toxic compounds.

DEB theory is useful for performing theory guided experiments and allows
for detailed simulation of experimental design and optimization of type of mea-
surements (e.g. length, mass), number of replicates etc. By playing with the
notion of stochastic food input in a deterministic biochemical machine (the
DEB organism) we simulated growth and reproduction of zebrafish before the
experiment to decide on feeding protocols.

Constant food is in most cases a laboratory artefact and not a reflection
of realistic environmental conditions. Food availability in the environment is
fluctuating and organisms are subject to intermittent (or prolonged) periods
of starvation. Further findings show that organism may even be food limited
during part of their life-cycle in laboratory (toxicity) experiments (Jager et al.,
2005; Zimmer et al., 2012).

During the course of my project it became clear that I must pay due atten-
tion to blanc physiological responses to starvation. Therefore, in chapter 3 the
standard DEB model is extended in a simple way to deal with starvation. Monte
Carlo simulation studies are performed to understand how environmental fac-
tors such as food availability can potentially override maternal effects (initial
energy in the egg) and impact survival probability in early juveniles. While
we simulated early juvenile zebrafish, the extension of the standard model is
not species specific and brings up the notion of rejuvenation; a process where
metabolic learning is not maintained. Shrinking can occur when energy from
structure is taken to cover somatic maintenance. Death is instantaneous when
structure reaches a specific fraction of the maximum one at the onset of shrink-
ing.

At the start of the project we expected that uranium might impact de-
velopment, because it might increase the need for (metabolic) defence and so
reduce the maturation rate. During the project we learned that acceleration
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and retardation of maturation comes naturally in some frogs for clear ecologi-
cal reasons. We used the case to see if DEB theory can capture these processes
accurately.

For this reason, the standard DEB model is applied to two species of Aus-
tralian Myobatrachid frogs in chapter 4. Mass, age and dioxygen consumption
are recorded for each stage of development as defined by Gosner (1960). The
analysis of the data using the standard DEB model allows for the quantification
of cumulated energy invested in maturation to reach each stage of development
and number of mols of dioxygen consumed for each physiological process: as-
similation, growth, maturation, somatic and maturity maintenance. Can the
maturation concept of DEB theory give insight into how the development of one
species of frog is accelerated relative to the other?

In chapters 2 to 4 the baseline metabolism of zebrafish is characterized.
Effects of temperature and food on metabolism were studied using data and
Monte Carlo simulation studies. The DEB model was also applied to other or-
ganisms illustrating the generality of the model to characterize the metabolism
of diverse forms of life using a same set of assumptions on metabolic organisa-
tion (Kooijman, 2010, Chap.2).

A number of detailed studies from the Laboratory of Radioecology and
Ecotoxicology shed light on effects of uranium on the life history of zebrafish.
The objective is to analyse the data within the framework of DEB theory
and determine if effects are explained by the modification of a single model
parameter. If such is the case, the parameter which is modified represents the
predominant mode of action of uranium. In chapter 5 the totality of zebrafish
uranium toxicity data is compiled and analysed using the zebrafish DEB model.
Reproduction buffer handling and Toxico-kintics modules are developed and
incorporated into the study. Can the perturbation of a single process (as defined
by DEB theory) explain the different observations? As we build the case that the
life history of an individual zebrafish can be described by a single set of DEB
parameters and that embryo metabolism gives insight into adult metabolism,
we use simulation studies to imagine (through scenario analysis) how the mode
of action translates to effects on observable (measurable) quantities such mass,
length or number of eggs spawned.

Water-borne uranium may come into contact with the organism through
cutaneous exchange, uptake by gills and absorption by the digestive tract. The
morphology of gills and its role in uranium uptake has been previously studied
(Barillet et al., 2010). I took an interest in the function of the digestive tract
in nutrient assimilation, cellular defence and communication with microbiota.
The processing of food requires symbiosis. In chapter 6 samples of the digestive
tract of individuals exposed to water-borne uranium were compared histologi-
cally with the digestive tract of controls using fluorescent in situ hybridization,
light microscopy and transmission electron microscopy to understand if tissue
was impacted.

The final chapter presents concluding remarks and synthesis of insights and
new research venues opened up through this study.
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Abstract

Using zebrafish (Danio rerio) as a case study, we show that the maturity concept
of Dynamic Energy Budget (DEB) theory is a useful metric for developmental state.
Maturity does not depend on food or temperature contrary to age and to some extent
length. We compile the maturity levels for each developmental milestone recorded in
staging atlases. The analysis of feeding, growth, reproduction and ageing patterns
throughout the embryo, juvenile and adult life stages are well-captured by a sim-
ple extension of the standard DEB model and reveals that embryo development is
slow relative to adults. A threefold acceleration of development occurs during the
larval period. Moreover we demonstrate that growth and reproduction depend on
food in predictable ways and their simultaneous observation is necessary to estimate
parameters. We used data on diverse aspects of the energy budget simultaneously
for parameter estimation using the covariation method. The lowest mean food intake
level to initiate reproduction was found to be as high as 0.6 times the maximum level.
The digestion efficiency for Tetramin™" was around 0.5, growth efficiency was just
0.7 and the value for the allocation fraction to soma (0.44) was close to the one that
maximizes ultimate reproduction.

Key words: ageing, Danio rerio, development, Dynamic Energy Budget theory,
feeding, growth, reproduction
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Figure 2.1: Conceptual organisation of animal metabolism as defined by DEB the-
ory (Kooijman, 2010). Arrows: energy fluxes (Jd™!); boxes: state variables of the
system. Embryo: pa = 0; birth: assimilation is switched on; puberty: allocation to
maturity stops and allocation to reproduction starts. Energy allocated to reproduc-
tion accumulates in the reproduction buffer and is emptied at spawning.

2.1 Introduction

Experimental evidence points to developmental processes being heterochronic
and they play an important role in evolutionary theory (McKinney and McNa-
mara, 1991). Spicer and Burggren (2003) propose the concept of heterokairy to
study how changes in the sequence of developmental events relate to changes
in the timing of physiological regulatory systems and/or its components. The-
oretical progress in the analysis of these processes lags behind experimental
work for lack of a quantifier for internal time which does not necessarily corre-
late with morphological (e.g. length) or chronological (e.g. age) criteria (Reiss,
1989). The objective of the present study is to provide a such a quantifier for
the rate of development of the individual. We focus on zebrafish Danio rerio
since it is widely used to study development (Kimmel et al., 1995; Parichy
et al., 2009). A growing number of disciplines use zebrafish as a model with
the consequence that numerous observations on life history traits, under lab-
oratory controlled conditions, are available (Laale, 1977; Gerhard and Cheng,
2002; Lawrence, 2007; Spence et al., 2008).

We undertake a theoretical analysis of zebrafish development over its entire
life cycle using Dynamic Energy Budget (DEB) theory (Kooijman, 2001, 2010),
see Sousa et al. (2010) for an introduction to the theory. The theory quantifies
the uptake and use of substrates (food) by organisms, see figure 2.1. Stage tran-
sitions, such as from embryo to juvenile (defined as the initiation of feeding)
and from juvenile to adult (defined as the ceasing of further maturation and
the initiation of allocation to reproduction) are linked to the level of maturity.
Maturity is quantified as the cumulated energy invested in development. Al-
though the standard DEB model has been applied to a wide variety of animals
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(Zonneveld and Kooijman, 1993; van der Veer et al., 2010; Bodiguel et al., 2009;
Flye-Sainte-Marie et al., 2009; Pecquerie et al., 2009; Rico-Villa et al., 2010),
tests that the parameters for the embryo, juvenile and adult are all the same
are relatively rare (Kooijman et al., 2011; Lika et al., 2011a). We collected a
number of detailed studies on the growth, reproduction and ageing of zebrafish,
and we also did a growth-and-reproduction experiment at three feeding levels,
to estimate the parameters of the standard DEB model and judge if the full life
cycle could be captured with a single set of parameter values. We discuss the
coupling of developmental milestone to age and size at stage transitions (e.g.
birth and puberty) and give a mechanistic underpinning of effects of food and
temperature.

2.2 DEB model

The conceptual organisation of metabolism, described in the DEB model, is
presented in figure 2.1. The mobilisation of reserve p¢ is such that weak home-
ostasis is respected, i.e. the ratio of the amounts of reserve E (J) and structure
V' (cm), called the reserve density [E], is constant at constant food densities
in juveniles and adults. The increase in the maturity level Ey (J), called mat-
uration, is by allocating a fixed fraction of mobilised reserve (1 — k)pc after
subtraction of maturity maintenance costs p; (e.g. immune system, hormonal
regulation, anti-oxidative stress system). p; = kj Ey, with k; (d~!) the matu-
rity maintenance rate coefficient. Positive maturity maintenance implies that
reproduction is absent at low food levels. There is no assimilation during the
embryonic period, i.e. when Ey < EY%, with E% the cumulated amount of
energy invested in maturity at birth.

From birth onwards reserve is replenished by assimilation, p4 (J d~1). We
now explain how assimilation is linked to actual ingestion. Ingestion rate, px
(J d71), is a function of food density and is taken proportional to surface area
L?, with L = V/3 the (volumetric) structural length of an organism. px is
quantified by the scaled functional response (ingestion level) f, defined as the
ratio of actual ingestion rate and the maximum possible one for an individual
of that size. This makes px = f{pxm} L%, where {pxm} (J d~ cm™2) is the
maximum surface area specific ingestion rate. The conversion efficiency of food
to reserve (digestion efficiency), kx, is specific to each type of food. Finally,
pa = kx px. Digestion efficiency is calculated using the following relationship:

Kx = {pAm}/{pXm} (21)

where {pan,}(J d71 em™2) is the maximum surface-area specific assimilation
rate and a model parameter (see table 2.1).

Growth is defined as the increase of structure. Energy allocated to growth
pg is a fixed fraction of mobilised reserve kpc after subtraction of somatic
maintenance costs pyr = [pas] V' (e.g maintaining intra-cellular concentration,
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protein turnover, movement), with [pas] (J d=! em~2) the volume-specific main-
tenance costs. The cost of the synthesis of a unit of structure is called [E¢g] (J
cm~3) which indirectly defines growth efficiency kg being the ratio of energy
fixed and invested in new structure (see table A.3, online appendix A).

Allocation to maturation in juveniles is redirected to reproduction in adults
(pr) at puberty which occurs at Ey = E¥;. Reserve allocated to reproduction
is first accumulated in a buffer which is emptied at spawning. The conversion
of reserve to egg (embryo reserve) occurs with efficiency k. The value of 0.95
in table 2.1 has been chosen in view of the absence of substantial chemical
work. Allocation to growth and somatic maintenance occurs in parallel to allo-
cation to maturation and reproduction (see figure 2.1). The embryo starts its
development with zero structure and maturity, and an amount of reserve such
that the reserve density at birth equals that of the mother at egg formation.
The latter condition is a maternal effect Kooijman (2009b).

The standard DEB model assumes that the individual is isomorphic, i.e.
it does not change in shape during growth, which makes that surface area is
proportional to volume to the power 2/3. Motivated by studies on Anchovy, En-
graulis encrasicolus, and Bluefin Tuna, Thunnus orientalis, (Pecquerie, 2007;
Jusup et al., 2010), we implemented the possibility that development accel-
erates after birth (Ex = EY%) by including a V1-morphic stage (surface area
grows proportional to volume) for the larva (early juvenile) till maturity reaches
a threshold level for metamorphosis (Ey = FY,;), after which growth resumes
in an isomorphic fashion (Kooijman et al., 2011). If E}{ = EY% there is no
acceleration, but if £, > E% both {pa,,} and energy conductance o (cm d1)
increase with length. © controls reserve mobilization.

Auxiliairy theory assumes that the shape coefficient d, i.e. the ratio of struc-
tural length (L) and physical observed length L.,,, is constant for isomorphs.
Shape changes during the early juvenile (V1-morphic) period are described by
the empirical function 6 (L) = o + (dy — 6M)LLJ?':LLI7 for L € [Ly, L;] with
0y and drq shape coefficients for embryos and adults respectively, L structural
length at birth and L; structural length at metamorphosis.

The effect of temperature on all biological rates is well captured by the Ar-
rhenius relationship (Kooijman, 2010), quantified by the Arrhenius tempera-
ture T'4. This relationship only holds within a particular temperature tolerance
range.

DEB theory considers development and senescence to be parallel processes.
The ageing module of DEB theory (Kooijman, 2010; van Leeuwen et al., 2010)
specifies that the induction of damage inducing compounds (e.g. modified
mitochondrial DNA) is proportional to the mobilisation rate of reserve, which
is (about) proportional to the use of dioxygen (linking to free radicals) that is
not associated with assimilation. Damage inducing compounds can also induce
themselves at a rate that is proportional to their concentration and, again, to
the mobilisation rate of reserve as quantifier for metabolic activity. Damage
inducing compounds induce damage compounds (e.g. modified proteins) which
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Table 2.1: State variables and primary parameters (affecting changes of state vari-
ables at 20°C of the zebrafish DEB model, and other parameters (see text).

Sym-  Value Unit Name

bol

State Variables

E - J Reserve

1% - cm? Structure

L - cm Structural length V1/3

En - J Cumulated energy invested in maturity uptill

puberty and reproduction after puberty

Primary Energy Parameters

{pam} 2463 Embryo Maximum surface area specific
Jd 'em™2 assimilation rate

V 0.0278 cmd™?! Embryo Energy conductance

K 0.437 - A specific fraction of energy mobilized from
reserve allocated to growth and somatic
maintenance

KX 0.5 - Digestion efficiency for Tetramin™"

KR 0.95 - Reproduction efficiency

[pM] 500.9 Jd ! Volume specific somatic maintenance costs

cm ™3

kJ 0.0166 d—! Maturity maintenance rate

[Ec] 4652 Jem™3 Cost of synthesis of a unit of structure

EY 0.54 J Cumulated energy invested in maturity at
birth

EfH 19.66 J Cumulated energy invested in maturity at
metamorphosis

E%, 2062 J Cumulated energy invested in maturity at
puberty

Other parameters

Ta 3000 K Arrhenius Temperature

ha 1.96107° d72 Weibull aging acceleration

sa 0.0405 - Gombertz stress coeflicient

oy 0.1325 - Shape coefficient for embryos

oM 0.1054 - Shape coefficient juveniles and adults for total

length
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accumulate in the body. The hazard rate due to ageing is taken proportional to
the density of damage compounds. This specifies the ageing module, and how
ageing depends on energetics, and so on the nutritional status of the organism.

2.3 Materials and methods

2.3.1 Caloric restriction experiment

We designed a caloric restriction experiment to obtain quantitative data on
growth in combination with reproduction at 3 ingestion levels for individual
fish.

2 cm (SL) fish were acquired from a commercial fish breeder (Elevage de la
grande riviere, Lyon, France) and were 116 days post-fertilization (dpf) upon
arrival. Based on this size and age we estimated the mean intake level f....
Animals were kept in soft water: T = 26°C, pH = 6.51+0.4, electrical conductiv-
ity 200 xS em~!. Food given was Tetramin™ (proteins,46%, lipids 7.0%, ash
10.0% cellulose 2.0% and moisture 8.0%). We calculated the energetic content
of Tetramin as 19.1 kJ g=! with 17.2 and 38.9 kJ g~ for lipids and proteins
respectively (Kooijman, 2010, table 4.2). This result is used to obtain kx (see
equation 2.1) for individuals during acclimatization (116 and 132 dpf), where
they were fed ad libitum f,,cear. Caloric restriction took place between 132
and 214 dpf. We started with 6, 4.5 and 3 mg Tetramin per day per individual
fish for the first (f1), second (f2) and third (f3) ingestion level respectively. fi
and fo were gradually raised to 10 mg d—! while f3 remained constant during
the caloric restriction phase, in accordance with the expectation that feeding
rate is proportional to squared length. The daily ration was hand weighed
in aluminium micro weighing dishes (VWR) with an SE2 ultra-microbalance
(Sartorius AG, Gottingen, Germany) and dispensed 2 to 3 times throughout
the day. Individuals fasted one day per week. The experimental system is fully
characterized in Appendix B. We kept 20 individuals per condition. Reproduc-
tion was assessed by forming couples (1:1 male to female ratio) in the evening
and counting the number of eggs spawned the following morning. We followed
the daily egg output of individual females over two successive breeding trials
which lasted 22 and 15 days respectively.

To check the condition of the gonads three males and three females in each
condition were sacrificed at the end of the experiment. Gonads were removed
and immersed in 2.5% glutaraldehyde sodium cacodylate buffer (0.1 M, pH
7.4) for 24h at 4°C then post fixed with 1% osmium tetroxyde for 1h. The
samples were dehydrated through a graded ethanol series and finally embedded
in monomeric resin Epon 812. Semi-thin sections for light microscopy analysis
(500 nm) were obtained with an ultramicrotome UCT (Leica Microsystems
GmbH, Wetzlar, Germany). Plastic sections were stained with aqueous blue
toluidine and gonad structure was examined under a light microscope (Leica,
DM750) equipped with a Leica camera ICC50 and LAS EZ Software. For
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each replicate, at least 20 micrographs of local detailed structures were taken,
analysed and compared.

2.3.2 Data and parameter estimation

We incorporated real and pseudo data into the parameter estimation routine.
Real data, compiled from the literature and the caloric restriction experi-
ment, include observed lengths, weights, reproduction, and survival at single
(0-variate) or multiple (1-variate) time and/or temperatures points. Pseudo
data represent the more conserved aspects of animal metabolism; large devia-
tions from these data are considered to be less likely. The pseudo data concern:
0=0.02cmd~—1, [py] =18 d ' em™3, k = 0.8, kg = 0.8 and k; = 0.002
d=! (see Kooijman, 2010, pp.300). The chemical indices (c-mol per c-mol),
molar weights (g mol™!), and chemical potentials (J mol™!) and are as given
in Lika et al. (2011a) (table A.1, Appendix A). The densities dy4 and dgq (g
em~3) for structure and reserve were derived from Craig and Fletcher (1984)
(table A.1, Appendix A).

Table 2.2: Model predictions for 0-variate data are compared with observations.

Data Obser- Predic- Unit Reference
vations tions
size at birth 0.39 0.40 cm Schilling (2002)
maximum length 5.00 5.10 cm Spence et al. (2008);
(TL) Schilling (2002)
maximum 60 - 240 113.6 #eggsd™!  Eaton and Farley
reproduction rate (1974a) and Geffroy
(Unpublished 2009)
egg dry mass 30 - 106 73 ng Augustine
(Unpublished 2010)
egg diameter 0.08 - 0.10 cm Uusi-Heikkila et al.
0.09 (2010)
maximum wet 1 0.99 g Pers. Obs
weight

We allowed expectations to deviate from these values by giving them less
weight relative to real data. We converted all rates and ages to a reference
temperature of 20°C. We measured the ratio of standard length SL (tip of
snout till base of caudal fin) and total length TL (tip of snout to end of caudal
fin) of 70 adult zebrafish (Adam-Guillermin unpublished 2009) and found an
average ratio of 0.8. DEB model predictions are given in TL so when necessary
the predictions are corrected to standard length SL. We treated forked length
FL (tip of snout till fork in the caudal fin) equal to TL.

We applied the method of covariation for parameter estimation (Lika et al.,
2011a) using the freely downloadable software DEBtool (Kooijman et al., 2008).
This software uses the simplex (Nelder-Mead) method to simultaneously min-
imise the weighted sum of squared deviations between model predictions and
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Figure 2.2: Energy budget at birth when the mother was at abundant food. Initial
reserve in an egg (FEo) is 1.670 J while structure and maturity are zero. Slices represent
the cumulated energy investments at birth relative to Eo. Maturity (cumulated energy
invested in maturity) as well as maturity and somatic maintenance are dissipated in
the environment as minerals (e.g. CO2). A fraction 1 — k¢ of energy invested in
structure is lost as overheads of growth. The reserve and structure contribute 