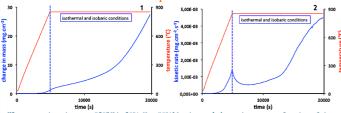
Modelling of zircaloy-4 cladding degradation in nitrogenoxygen mixtures at 850°C

M. Lasserre 1,2,*, V. Peres 2, M. Pijolat 2, O. Coindreau1, M. Mermoux3, J.-P. Mardon 4

- ¹ Institut de Radioprotection et de Sûreté Nucléaire, Cadarache Center, France
- Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF, F-42023 Saint-Etienne, France
- ⁴ AREVA, AREVA NP Fuel Business Unit, Lyon, France

IRSN, PSN-RES/SAG/LESAM, Bat 700, 13115 Saint-Paul-lez-Durance Cedex, France



INTRODUCTION

Zy4 cladding, providing the first containment of UO₂ fuel, could be exposed to air in case of severe accident in nuclear power plant (PWR: pressurized water

Kinetic analysis is made to understand the corrosion mechanism of Zy4 plates at 850°C in nitrogen and oxygen mixtures during post-transition stage:

- -does the corrosion proceed in a steady-state?
- -is the assumption of a rate-determining step confirmed?
- -what is the influence of oxygen and nitrogen partial pressures on the kinetic rate and how could it be explained?

 $850^{\circ}\mathrm{C}$ in 20% O_2 - $80\%\mathrm{N}_2$ mixture; 1 change in mass as and 2 derivation versus time of the change in mass (kinetic rate)

EXPERIMENTS

Thermogravimetric tests

Symmetrical balance Setaram TAG-24

Plates of recrystallized Zy4 (10mm x 10mm): 1.32-1.35 wt.% Sn

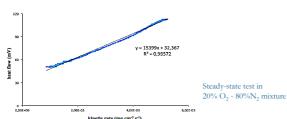
Experimental conditions:

- $O_2 N_2 He$ or Ar flowing mixtures (10 L.h⁻¹)
- ■heat-up ramp to 850°C: 10°C.min-1
- ■total pressure: 1 atm

KINETICS TESTS

Steady-state and rate-determining step assumptions validation(1):

$$\frac{d\left(\frac{\Delta m}{S}\right)}{dt} = \frac{n_0. M(O_2)}{S}. \frac{d\alpha}{dt} = \frac{n_0. M(O_2)}{S}. \Phi. Sm(t)$$

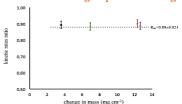

1) Steady-state approximation:

Heat flow (dQ/dt) versus mass gain rate (d∆m/dt)

→ test validated if the kinetic rates measured by the two methods are proportional

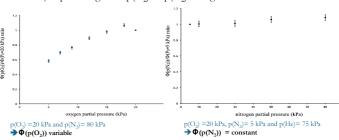
$$\frac{d\Delta m}{dt} = -\frac{\sum_{G} (M_{G}. \nu_{G})}{\Delta H}. \frac{dQ}{dt}$$

- Δ H: enthalpy of reaction

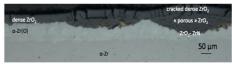

2) Rate-limiting step assumption: ΦSm test jumps method

Jumps from temperature T₁ to temperature T₂ for experiments conducted up to various change in mass (ta, tb, etc.)

→ determination of the ratio of kinetic rates after and before the jump


$$\mathbf{R} = \frac{\left(\frac{d\left(\frac{\Delta m}{S}\right)}{dt}\right)^{2}}{\left(\frac{d\left(\frac{\Delta m}{S}\right)}{dt}\right)^{2}} = \frac{B_{0} \cdot \Phi(T = 830) \cdot Sm(\mathbf{t_{0}})}{B_{0} \cdot \Phi(T = 850) \cdot Sm(\mathbf{t_{0}})} = \frac{B_{0} \cdot \Phi(T = 830) \cdot Sm(\mathbf{t_{0}})}{B_{0} \cdot \Phi(T = 850) \cdot Sm(\mathbf{t_{0}})} = \frac{\Phi(T = 830)}{\Phi(T = 850)} = \frac{\Phi(T = 830) \cdot Sm(\mathbf{t_{0}})}{\Phi(T = 850)} = \frac{\Phi(T = 830)}{\Phi(T = 830)} = \frac{\Phi(T = 830)}{\Phi(T = 830)} = \frac{\Phi(T = 830)}{\Phi(T =$$

ΦSm test in 20% O₂- 80%N₂ mixture with temperature jumps from 850°C to 830°C. Kinetic rates ratio obtained for various change in mass is constant: $R = 0.89 \rightarrow a$ rate determining step controls the growth process



3) Pressure jumps: study of $\Phi(p(O_2))$ and $\Phi(p(N_2))$

Pressure jumps at 8mg.cm⁻²:p(N₂) or p(O₂) changes

4) Zv-4 post-transition sample

"Porosity" of the oxide

laver due to:

→ cracks during ZrN creation

cracks in dense zirconia during oxidation of ZrN

MODELLING - CONCLUSION

Optical micrography + SEM → 3 reactions

 $O_2 + ZrN = ZrO_2 + N^*$ □oxidation of ZrN precipitates

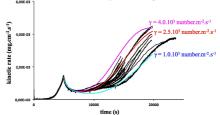
 $PBR_{ZrO2/ZrN}=1,47$

nitridation of metal

 $N^* + ZrO_x = ZrN + xO^*$

 $PBR_{ZrN/Zr} = 1,03$ oxidation of metal $PBR_{ZrO2/Zr} = 1,51$

 $(2 - x)0^* + ZrO_x = ZrO_2$


Steady-state and rate-determining step assumptions have been validated.

 Φ modelling: kinetic rate strongly dependant of p(O₂)

→ controlled by interfacial reaction step of ZrN oxidation

-Sm modelling: non uniform appearance of post-transition regions → nucleation

→ Mampel's model (2): nucleation and growth of post-transition regions

time (s)
Comparison of the model with experimental results Conditions : flow rate = 10 L/h, p(O2) = 20 kPa, p(N2) = 80 kPa, $T = 850^{\circ}\text{C}$

References (1) M. Pijolat & al., Thermochim. Acta 478, 34 (2008)

(2) B. Delmon, "Introduction à la cinétique hétérogène", Technip Editions, Paris (1969)