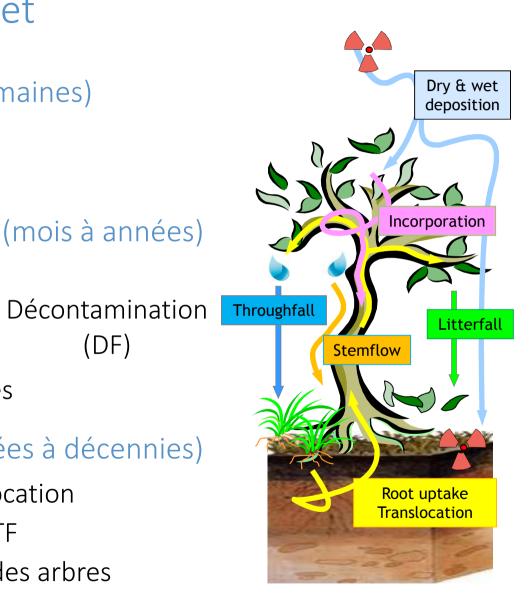


Faire avancer la sûreté nucléaire

Méta-analyse des données de contamination des arbres en ¹³⁷Cs dans les forêts japonaises (2011-2015)

M.A. Gonze¹, P. Calmon¹, P. Hurtevent¹, F. Coppin¹, V. Nicoulaud¹, C. Mourlon¹ and Y. Thiry²

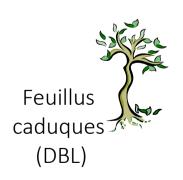
¹ IRSN, CE Cadarache, France ² ANDRA, Chatenay-Malabry, France


Congrès ICOBTE 2017, juillet 2017, Zürich Congrès ICRER 2017, septembre 2017, Berlin

Devenir du ¹³⁷Cs en forêt

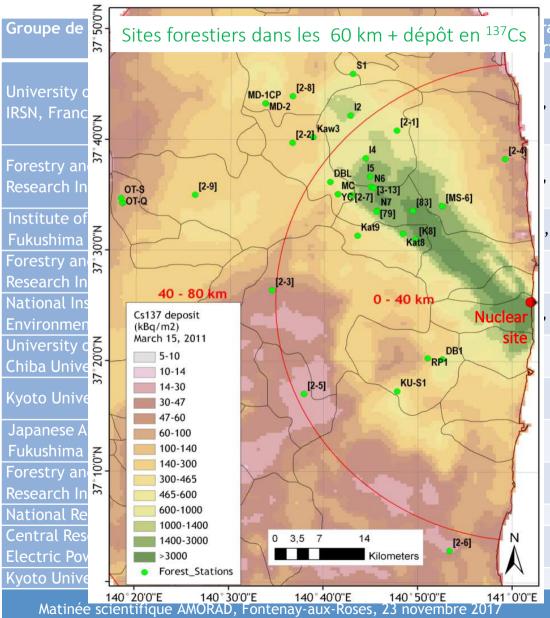
- Phase de dépôt (jours à semaines)
 - Dépôt sec
 - Dépôt humide (pluie)
- Phase de décontamination (mois à années)
 - Chute des feuilles (LF)
 - Pluvio-lessivage (TF)
 - Ruissellement /tronc (SF)
 - Incorporation bois et racines
- Recyclage long terme (années à décennies)

(DF)


- Transfert racinaire & translocation
- Pertes des arbres par LF & TF
- Croissance de la biomasse des arbres

Enjeux de recherche

- Acquérir une meilleure compréhension / connaissance quantitative à partir des études de terrain réalisées après l'accident de Fukushima
- Avec l'objectif d'améliorer les modèles développés après l'accident de Tchernobyl pour différentes catégories de forêts



Etudes sélectionnées

82 sites = 61 EGC + 7 DBL + 14 mixtes

ratégie de rveillance	Référence
, S2, S3	Kato et al., 2012, 2014, 2017; Loffredo et al., 2014, 2015; Takahashi, 2015; Hisadome et al., 2013; Teramage et al., 2014; Coppin et al., 2016
, S3	Komatsu et al., 2016; Kajimoto et al., 2015; Kuroda et al., 2013; Imamura et al. 2017
, S2	Yoschenko et al., 2016
	Itoh et al. 2014, 2015,
, S3	Nishikiori et al., 2015
	Endo et al., 2014, 2015; Murakami et al., 2014
	Okada et al., 2015; Nakai et al., 2015; Ohashi et al., 2014
	Niizato et al. , 2016
	Akama et al., 2013
	NRA 2017
	Yoshihara et al, 2013, 2014, 2016
	Koizumi et al., 2013

Stratégies d'échantillonnage

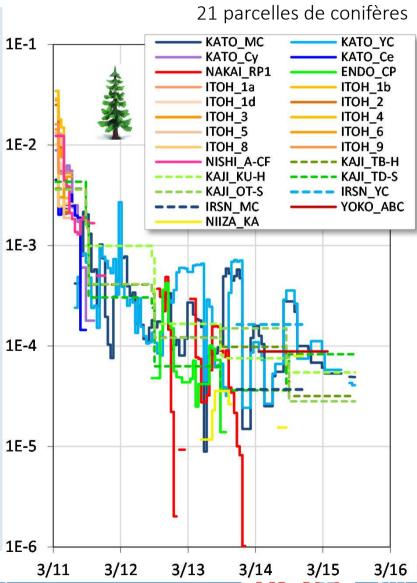
(S1) Echantillonnage annuel des horizons de sol et des arbres entiers

- Biomasses (kg.m⁻²)
- Concentrations (Bq.kg⁻¹)
- Stocks (Bq.m⁻²)
- ⇒ Flux de décontamination annuel DF (Bq.m⁻².yr⁻¹)

(S2) Echantillonnage hebdomadaire avec collecteurs

- Chutes de biomasse, flux d'eau (kg m⁻² d⁻¹)
- Concentrations
- \Rightarrow Flux TF, SF, LF
- \Rightarrow DF=TF+SF+LF

Concentrations

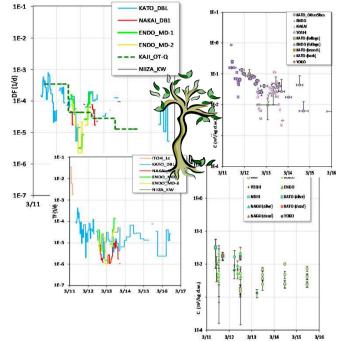


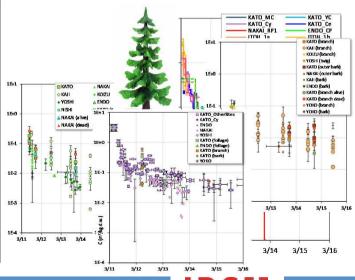
Pré-traitement des données ¹³⁷Cs

- Normalisation par le dépôt
 ⇒ concentrations (m².kg⁻¹), flux (j⁻¹), stocks (-)
- 2. Estimation du flux de décontamination (DF) annuel sur les sites S1 avant l'automne 2011, sur la base d'une valeur plausible du facteur d'interception f: 70%-95% (EGC)

Flux de décontamination (j-1)

Pré-traitement des données

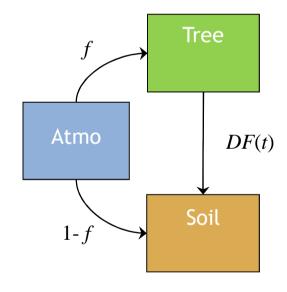

- Normalisation par le dépôt
 ⇒ concentrations (m².kg⁻¹), flux (j⁻¹), stocks (-)
- 2. Estimation du flux de décontamination (DF) annuel sur les sites S1 avant l'automne 2011, sur la base d'une valeur plausible du facteur d'interception *f*: 70%-95% (EGC)
- 3. Estimation des concentrations dans les arbres et les chutes de biomasse via la moyenne géométrique des données pour chaque site, à la même date et pour la même catégorie d'arbres

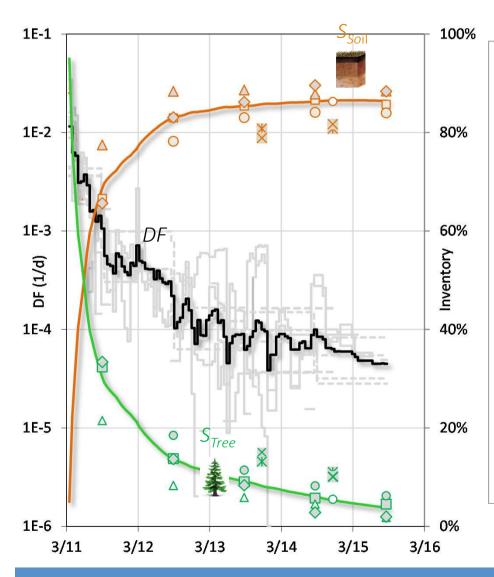

Concentration dans les aiguilles (m².kg⁻¹) des conifères 1E+1 **■ KATO** NAKAI KAJI KOIZU A ENDO YOSHI KATO (alive) ■ NISHI 1E+0 NAKAI (alive) ■ KATO (dead) ▲ NAKAI (dead) ● YOKO 1E-1 1E-2 1E-3 1E-4 3/11 3/12 3/13 3/14 3/15 3/16

Analyse exploratoire des données

- Individuellement, aucune étude ne fournit une image complète de l'évolution du Cs sur l'intégralité des 5 années
- Une certaine cohérence dans les données des différents sites (globalement avec une variation d'un facteur 5)
- Les caractéristiques écologiques des parcelles de conifères varient peu entre les différents sites (âge des arbres, densité, biomasse aérienne, hauteur des arbres, diamètre des troncs...)

⇒ Ce qui permet de calculer un comportement « représentatif » du Cs dans les forêts de conifères (c'est-à-dire une évolution générique)



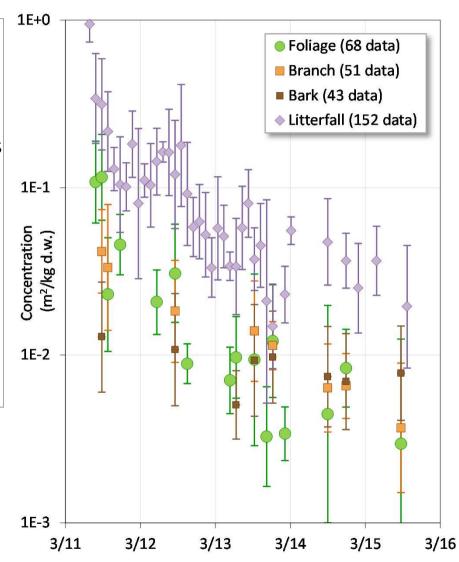

Calcul de l'évolution générique du ¹³⁷Cs

- 4. Flux de décontamination (*DF, TF, SF, LF*), concentrations et biomasses : via la moyenne géométrique des sites
- 5. Stocks dans les arbres (S_{Tree}) et le sol (S_{Soil}) :

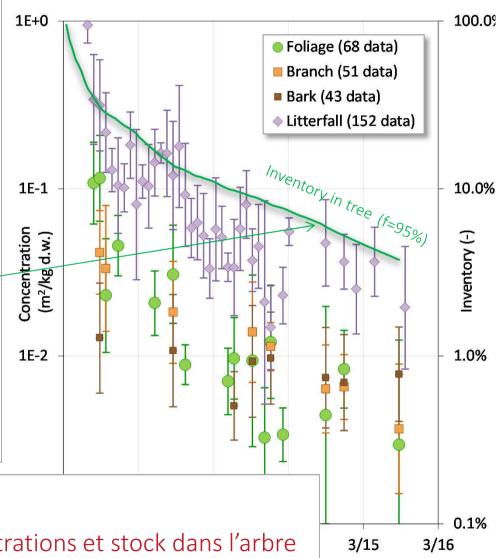
$$\left(\frac{d}{dt} + \lambda^{rad} \right) S_{Tree} = f \times \delta(t) - DF(t)$$

$$\left(\frac{d}{dt} + \lambda^{rad} \right) S_{Soil} = (1 - f) \times \delta(t) + DF(t)$$

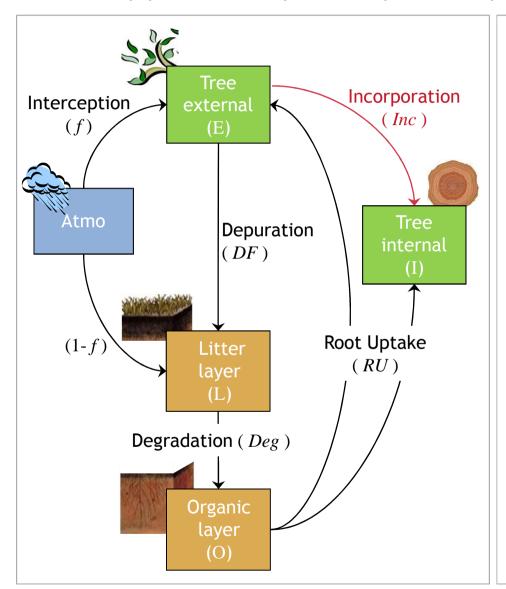
$$\uparrow$$
 Décroissance Fonction Dirac radioactive (t=0: date du dépôt)


Flux de décontamination et stocks - Conifères (f=95%)

- DF décroît de ~2 ordres de grandeur, de 1 % à <0.01 % j⁻¹
- *S*_{tree} décroît de 95% à <5%,
- 2 demi-vies caractéristiques : 50 jours et 20 mois
- Dans la gamme de ce qui est reporté par Bunzl et al. 1989, Tikhomirov and Shcheglov 1991, 1994


Concentrations dans les conifères

- Chutes de biomasse >> végétation en place
- A cause d'une plus grande proportion d'aiguilles « pré-Fukushima » (= apparues avant l'accident de Fukushima) dans les chutes de biomasse
- En 4 ans : diminution d'un facteur 16 (aiguilles), 10 (branches), 2 (écorce)


Concentrations génériques dans les organes des arbres EGC

- Chutes de biomasse >> végétation en place
- A cause d'une plus grande proportion d'aiguilles « pré-Fukushima » (= apparues avant l'accident de Fukushima) dans les chutes de biomasse
- En 4 ans : diminution d'un facteur 16 (aiguilles), 10 (branches), 2 (écorce)
- Plus rapide que celle du stock dans l'arbre prédite par la seule décontamination et décroissance radioactive
- Cause = incorporation dans les organes internes de l'arbre

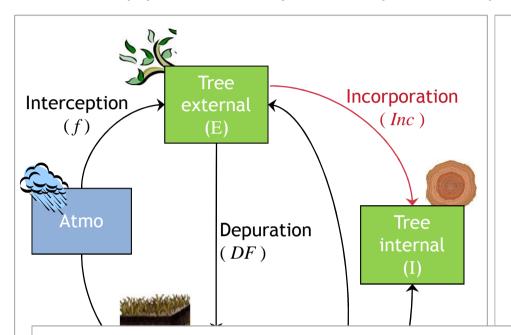
- ⇒ Quantifier le flux d'incorporation
- ⇒ Vérifier la cohérence entre concentrations et stock dans l'arbre

Une approche dynamique simplifiée

$$\left(\frac{d}{dt} + \lambda^{rad}\right)S_{E} = f \times \delta(t) - DF - Inc + RUe$$

Concentration
$$_{\rm E} = \frac{S_{\rm E}}{Biomass_{\rm E}}$$
 $Inc = \lambda^{inc} \times S_{\rm E}$

$$Inc = \lambda^{inc} \times S_{E}$$


$$\left(\frac{d}{dt} + \lambda^{rad}\right) S_{\rm I} = Inc + RUi$$

$$Concentration_{\rm I} = \frac{S_{\rm I}}{Biomass_{\rm I}}$$

$$\left(\frac{d}{dt} + \lambda^{rad}\right) S_{L} = (1 - f) \times \delta(t) + DF - Deg$$

$$\left(\frac{d}{dt} + \lambda^{rad}\right) S_{O} = Deg - RUe - RUi$$

Une approche dynamique simplifiée

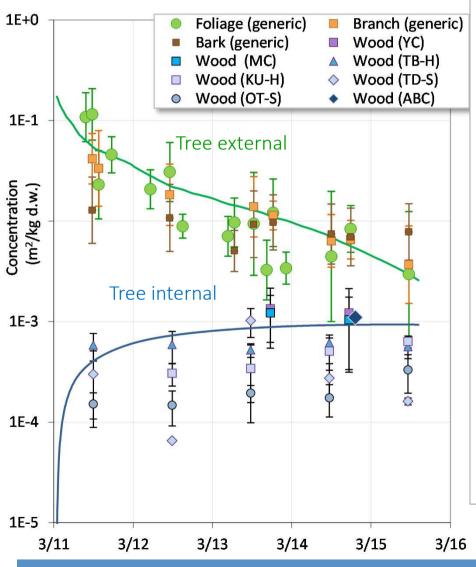
$$\left(\frac{d}{dt} + \lambda^{rad}\right)S_{E} = f \times \delta(t) - DF - Inc + RUe$$

Concentration
$$_{\rm E} = \frac{S_{\rm E}}{Biomass_{\rm E}}$$
 $Inc = \lambda^{inc} \times S_{\rm E}$

$$Inc = \lambda^{inc} \times S_{E}$$

$$\left(\frac{d}{dt} + \lambda^{rad}\right) S_{\rm I} = Inc + RUi$$

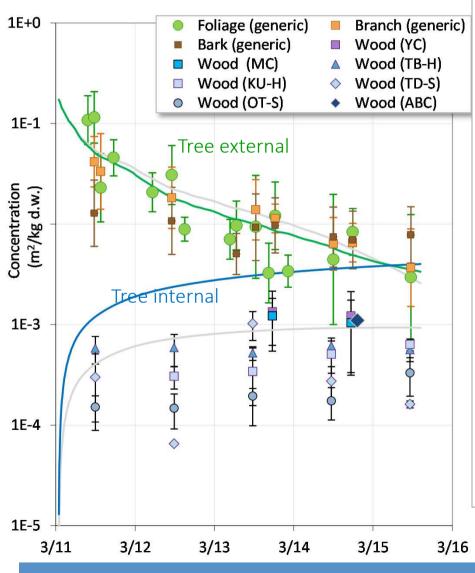
$$Concentration_{\rm I} = \frac{S_{\rm I}}{Biomass_{\rm I}}$$


Méthode:

- 1- Calibrer λ^{inc} par ajustement de "External concentrations" aux observations
- 2- Vérifier que "Internal concentrations" cohérent avec observations

Avec:

- f imposé, DF (issu de la méta-analyse) et Biomasses (valeurs génériques)
- RootUptake estimé à l'aide du modèle RIFE (Shaw et al. 1994, Hashimoto et al. 2013)


« Best-estimate » concentrations - conifères (*f*=95%)

Sans transfert racinaire

- $\lambda^{inc} \approx 10^{-4} \text{ j}^{-1}$
- Augmentation rapide dans les organes internes, jusqu'à 10⁻³ m² kg⁻¹
- En accord avec TRS 472 (*IAEA 2010*)
- Surestimation modérée de certaines valeurs reportées par *Imamura et al.* 2017

« Best-estimate » concentrations - conifères (*f*=95%)

Sans transfert racinaire

- $\lambda^{inc} \approx 10^{-4} \text{ j}^{-1}$
- Augmentation rapide dans les organes internes, jusqu'à 10⁻³ m² kg⁻¹
- En accord avec TRS 472 (IAEA 2010)
- Surestimation modérée de certaines valeurs reportées par *Imamura et al.* 2017

Avec transfert racinaire

- $\lambda^{inc} \approx 4 \cdot 10^{-4} \, j^{-1}$
- Forte surestimation

Conclusion

- Méta-analyse ~40 études de sites (~2000 données spatio-temporelles)
- La plupart pour des forêts de conifères, manque de données pour forêts de feuillus et mixtes!
- Pour les forêts de conifères, évolutions génériques des concentrations, flux, stocks en ¹³⁷Cs ont pu être déterminées, puis « expliquées » (dans une certaine mesure) grâce à un modèle dynamique simplifié:
 - ~95% du dépôt vraisemblablement intercepté
 - ~85% transféré au sol en 5 ans (selon 2 demi-vies)
 - ~4% incorporé principalement à partir du feuillage (selon 1 demi-vie)
- Un jeu de données utile pour améliorer les modèles dynamiques développés après l'accident de Tchernobyl

Merci de votre attention

APPENDICES

Mean ecological characteristics (EGC forests):

- mean tree age: 41±10 y (n=11)
- stand density: 1510±530 trees ha⁻¹ (n=21)
- above-ground biomass: 23.5±9 kg m⁻² (n=6)
- mean tree height: 18±3 m (n=8)
- mean trunk diameter: 22±5 cm (n=21)